
Citation: Qedear, A.; AlMatrafy, A.;

Al-Sowat, A.; Saigh, A.; Alayed, A.

Real-Time Air-Writing Recognition for

Arabic Letters Using Deep Learning.

Sensors 2024, 24, 6098. https://

doi.org/10.3390/s24186098

Academic Editor: Zhenbo Wei

Received: 17 July 2024

Revised: 3 September 2024

Accepted: 16 September 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time Air-Writing Recognition for Arabic Letters Using
Deep Learning
Aseel Qedear 1, Aldanh AlMatrafy 1, Athary Al-Sowat 1, Abrar Saigh 1 and Asmaa Alayed 2,*

1 Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University,
Makkah 21955, Saudi Arabia; abrarsaigh1@gmail.com (A.S.)

2 Department of Software Engineering, College of Computing, Umm Al-Qura University,
Makkah 21955, Saudi Arabia

* Correspondence: asayed@uqu.edu.sa

Abstract: Learning to write the Arabic alphabet is crucial for Arab children’s cognitive development,
enhancing their memory and retention skills. However, the lack of Arabic language educational
applications may hamper the effectiveness of their learning experience. To bridge this gap, SamAbjd
was developed, an interactive web application that leverages deep learning techniques, including
air-writing recognition, to teach Arabic letters. SamAbjd was tailored to user needs through extensive
surveys conducted with mothers and teachers, and a comprehensive literature review was performed
to identify effective teaching methods and models. The development process involved gathering
data from three publicly available datasets, culminating in a collection of 31,349 annotated images
of handwritten Arabic letters. To enhance the dataset’s quality, data preprocessing techniques
were applied, such as image denoising, grayscale conversion, and data augmentation. Two models
were experimented with using a convolution neural network (CNN) and Visual Geometry Group
(VGG16) to evaluate their effectiveness in recognizing air-written Arabic characters. Among the CNN
models tested, the standout performer was a seven-layer model without dropout, which achieved a
high testing accuracy of 96.40%. This model also demonstrated impressive precision and F1-score,
both around 96.44% and 96.43%, respectively, indicating successful fitting without overfitting. The
web application, built using Flask and PyCharm, offers a robust and user-friendly interface. By
incorporating deep learning techniques and user feedback, the web application meets educational
needs effectively.

Keywords: deep learning; Arabic air-writing recognition; mid-air; Arabic alphabet; hand gestures;
fingertips; writing; Arabic language

1. Introduction

Writing is a fundamental skill for children, enabling them to convey their emotions,
ideas, and thoughts effectively. Developing strong writing skills at a young age lays a
solid foundation for personal development and academic achievement. Specifically, robust
Arabic writing skills provide children with a deep understanding of a language that is
gaining global attention [1,2]. Arabic is considered one of the most challenging languages,
ranking second in difficulty in 2022 [3]. This underscores our responsibility as Arabic-native
speakers to use modern technologies to facilitate language learning and proficiency.

One advanced technique to enhance writing skills is air-writing, also known as sky-
writing or finger spelling [4]. This method involves using hand or finger movements to
write in the air, eliminating the need for physical objects. Air-writing can be used by
individuals of all ages.

Recently, air-writing recognition technology, which detects hand or body movements
to understand intended gestures, has seen significant advancements. This technology
offers numerous benefits across various domains. In accessibility, it helps individuals

Sensors 2024, 24, 6098. https://doi.org/10.3390/s24186098 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24186098
https://doi.org/10.3390/s24186098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0008-9952-3560
https://doi.org/10.3390/s24186098
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24186098?type=check_update&version=4

Sensors 2024, 24, 6098 2 of 25

with physical disabilities, such as those with muscular dystrophy, spinal cord injuries, or
cerebral palsy, by providing an alternative means of communication and text input [5].
In education [6], it supports interactive and engaging learning experiences. Additionally,
workers in noisy environments can use this technology to interact without relying on
physical buttons or touch-based interfaces.

Integrating air-writing recognition technology opens new avenues for effective lan-
guage learning and writing skill development, particularly for the Arabic language. There
are multiple compelling reasons that led us to select this field and, specifically, this idea.
Primarily, our choice is driven by the significance of transforming education and is strongly
anchored in the Vision 2030 of the Kingdom of Saudi Arabia, which explicitly promotes
the widespread adoption of modern teaching methodologies [7]. SamAbjd can be seen as a
pioneering effort to utilize air-writing recognition in the education sector.

Moreover, the lack of artificial intelligence [8–10] applications in teaching the Arabic
language, compared to many other languages, motivated us to enhance language education
for children through the development of an air-writing recognition system for the alphabet.
Recognizing the significant role of technology in education, SamAbjd aims to leverage
advanced technologies, such as artificial intelligence, to offer a unique and interactive
approach to learning Arabic.

By using air-writing recognition technology, SamAbjd strives to capture children’s
attention and make the learning process enjoyable and exciting. The ability to write in the
air and see their movements transformed into a recognizable Arabic alphabet fosters a sense
of empowerment and wonder among children, encouraging them to actively participate in
their own learning journey.

The paper is structured as follows: Section 2 reviews the relevant literature. Section 3
covers the methodology, beginning with a discussion of gathering and preprocessing
the dataset, followed by an overview of the model selection and training process. The
methodology section then describes the development of the backend for the air-writing
component and concludes with details on the implementation of the frontend user interface
for the air-writing system. Results are discussed in Section 4. Section 5 concludes the paper
and discusses the future work.

2. Related Work

Researchers have proposed various approaches and techniques to recognize air-written
characters, utilizing technologies such as depth cameras, fingertip detection, tracking al-
gorithms, and deep learning [11] models. This section will explore several recent research
papers in the field of air-writing recognition, highlighting their methodologies and contri-
butions to improving the accuracy and performance of these systems. Itaguchi et al. [12]
highlighted the importance of air-writing in kanji and its influence on cognitive processing
and motor actions. The study demonstrated that air-writing had varying impacts depend-
ing on the task, with visualizing finger movements aiding character identification and
specific finger movements affecting counting performance. Air-writing proved beneficial
in enhancing task performance, while unrelated finger movements had a negative effect.
According to the reviewed literature, air-writing recognition can be divided into four cat-
egories based on acquisition devices: sensor-based recognition, radar-based recognition,
device-based recognition, and vision-based recognition.

2.1. Air-Writing Recognition with Sensor-Based Recognition

In 2013, Xin Zhang et al. [13] developed a finger-writing system that allows users
to write characters in the air using the Kinect sensor without the need for an additional
handheld device. The system used the Microsoft Kinect sensor to capture depth and color
information, creating a finger-writing interface. A depth-skin background was introduced
in a mixture model (DSB-MM) for accurate hand segmentation and employed a state-of-the-
art handwriting character recognition method. A modified quadratic discriminant function
(MQDF) character classifier was used to recognize 6763 Chinese characters, 26 English

Sensors 2024, 24, 6098 3 of 25

letters (uppercase and lowercase), and 10 digits. Experiments showed real-time recogni-
tion rates exceeding 90%. In 2015, Wang et al. [14] tackled the challenge of recognizing
handwritten Chinese characters in air-writing. A discriminative three-level classifier was
proposed using learning vector quantization (LVQ) for discriminative prototypes and adap-
tive discriminative locality alignment (ADLA) to distinguish similar characters. Tested on
the IAHCC-UCAS2014 dataset with a Leap Motion controller, this method showed higher
recognition accuracy and lower computational cost compared to a basic classifier, offering
insights and suggesting future improvements for in-air handwritten Chinese character
recognition. In 2019, Mohammadi Shahram et al. [15] tackled the problem of recognizing
Persian digits and numbers in air-writing using the Kinect sensor. The method involves
extracting a feature vector from the trajectory and employing an analytical classifier for
character recognition. The experiments demonstrated a 98% recognition rate for Persian
digits and numbers, highlighting the system’s practical usability.

2.1.1. Air-Writing with Radar-Based Recognition

Radar technology is a valuable tool for sensor-based recognition in air-writing. In
2019, Arsalan et al. [16] addressed air-writing recognition by detecting linguistic characters
or words written in free space through hand gestures. A two-stage approach was proposed
using millimeter-wave radars. The extraction stage captured and processed hand motion
trajectories to detect and localize the hand marker. In the recognition stage, the long short-
term memory (LSTM) used variants with a connectionist temporal classification (CTC) loss
function and a deep convolutional neural network (DCNN) for character classification.
The convolutional LSTM with CTC (ConvLSTM-CTC) approach achieved a classification
accuracy of 98.33%, comparable to the DCNN’s performance. In 2022, Ahmed et al. [17]
explored recognizing mid-air-writing gestures as a promising application for human–
computer interfaces. A multistream convolutional neural network (MS-CNN) approach
was proposed using a frequency-modulated continuous wave (FMCW) radar. This method
involved a three-stream CNN network with range-time, Doppler-time, and angle-time
spectrograms as inputs fused for recognition. A dataset of air-written digits from zero to
nine was used and collected from twelve volunteers, and the MS-CNN system achieved
95% accuracy, outperforming traditional CNN architectures. The authors also made the
radar data available for further research and suggested real-time application exploration
and larger datasets for training and testing.

2.1.2. Air-Writing with Devices

Devices play a crucial role in capturing and analyzing hand gestures in air-writing
recognition. Various devices, including handheld devices, mobile phones with accelerome-
ters, smart bands, and biometric smart pens, facilitate the recognition of air-written char-
acters and words by collecting hand movement data. In 2011, Muzaffar Bashir et al. [18]
introduced a biometric smart pen for personal authentication via air handwriting. Using
dynamic time warping (DTW) for time-series data classification, the recognition rates
achieved higher than 99.9% for PIN words and characters, with a 2 s response time for
a population of 40 users. The same year, Sandip et al. [19] developed the PhonePoint
Pen, which used a mobile phone’s accelerometer to capture hand gestures as geometric
strokes, translating them into English characters with an average accuracy of 91.9%. In 2016,
Mingyu Chen et al. [20] studied air-writing variability across devices, using optical tracking
and inertial measurements to collect 6-DOF hand motion data. Hidden Markov models
(HMMs) achieved high accuracy, with a word error rate of 0.8% for words and 1.9% for
letters. In 2020, Yanay et al. [21] proposed two methods for recognizing air-written letters
using smart bands. The user-dependent method with K-nearest neighbors (KNN) and
DTW achieved 89.2% accuracy, while the user-independent method with CNN achieved
83.2% accuracy (95.6% with auto-correction).

Sensors 2024, 24, 6098 4 of 25

2.2. Air-Writing with Vision-Based Recognition

Air-writing recognition systems often use vision-based technology, leveraging depth-
sensing cameras or regular cameras. These systems have gained significant attention due to
the widespread availability of devices with built-in cameras, such as tablets and smartphones.

In 2013, Faisal Baig et al. [22] introduced a real-time video-based system for writing
English text in the air using a mobile phone’s front camera. This approach tracks the red-
colored index finger, extracts its coordinates, and plots them. The system achieved a 92.08%
character recognition accuracy but struggled with color sensitivity issues. In 2016, Robiul
et al. [23] used the Microsoft Kinect depth camera to capture hand motions for recognizing
English capital letters (ECAs). They employed the DTW algorithm, achieving an average
accuracy of 96.3%. Future improvements involve collecting additional datasets. Prasun
Roy et al. [24], in 2018, presented a CNN framework for recognizing handwritten numerals
in air-writing gestures using a video camera. This method, using a fixed-color marker,
achieved high recognition accuracy across multiple languages: 97.7% for English, 95.4% for
Bengali, and 93.7% for Devanagari. In 2018, Sohom et al. [25] proposed a webcam-based
air-writing recognition system. The method used was Faster R-CNN for hand detection
and a novel fingertip detection algorithm, achieving 96.11% character recognition accuracy.
Shahinur Alam et al. [26], in the year 2020, developed an air-writing identification system
using the Intel RealSense SR300 depth camera. By normalizing the trajectory and using
CNN and LSTM for recognition, they achieved 99.32% accuracy. Al Abir et al. [27] tackled
the challenge of recognizing air-written characters using deep learning techniques and
interpolation. The issue of variable signal duration in air-writing data was addressed by
proposing interpolation to ensure consistent signals. Using seven publicly available air-
writing datasets, the researchers developed a two-dimensional deep convolutional neural
network (2D-CNN) model. Their experiments showed that this model outperformed
state-of-the-art methods in both user-dependent and user-independent scenarios. The
user-dependent model achieved 100% accuracy for digits, while the user-independent
model showed an accuracy gain of 3.55% for all classes combined, with specific gains of
0.52%, 1.62%, and 2.24% for digit, lowercase, and uppercase datasets, respectively. In 2021,
Chaur-Heh Hsieh et al. [28] explored air-writing recognition for smart TV control using
deep CNNs and a single webcam. The system achieved over 99% accuracy for digit and
directional symbol recognition. Watanabe Taiki et al. [29], in 2023, employed a hybrid
CNN and BiLSTM framework to recognize air-written characters using fingertip positions
captured by a webcam. An accuracy of 99.3% was achieved for alphabets and 99.5% for
digits. Khalid M. O. Nahar et al. [30] focused on recognizing air-written Arabic letters
using a hybrid model that combines feature extraction, deep learning, and optical character
recognition (OCR) techniques. Using CNNs like VGG16, their system achieved 88.8%
accuracy. Two notable reviews include Zabulis et al. [31], who, in 2020, discussed vision-
based hand gesture recognition for human–robot interaction in museums, and in 2021, Liu
et al. [32] explored gesture recognition for human–robot collaborative manufacturing.

To conclude, some of the papers faced challenges in finding suitable datasets for air-
writing recognition, which led them to collect their own dataset for the study. In contrast,
other papers were able to rely on publicly available datasets. While some papers utilized
self-collected datasets, others relied on publicly available datasets or created their own to
address the lack of data in the field. Additionally, it is worth noting that only one paper
specifically addressed the recognition of air-written Arabic letters, highlighting a potential
gap in research focusing on Arabic alphabets in the context of air-writing recognition. It is
worth mentioning that all of the papers focused solely on utilizing air-writing techniques
with models without exploring practical applications. In contrast, our project aims to go
beyond the theoretical aspects and apply these techniques in a practical format. Through
the development of an application, our goal is to bridge the gap between research and
real-world usage, offering a tangible solution that can be utilized by individuals seeking to
recognize Arabic alphabets through air-writing.

Sensors 2024, 24, 6098 5 of 25

3. Methodology

In this study, the researchers collected 31,349 handwritten Arabic letters from three
different public sources to create a diverse and representative dataset. They prepared
this dataset for analysis by cleaning up the images to remove noise, converting them to
grayscale, and enhancing them through techniques like rotation, zooming, and shifting.
CNN and the VGG16 model are known for their accuracy in recognizing images. Addi-
tionally, the researchers developed a real-time system for recognizing air-written Arabic
letters using Python 3.9.13, Flask 3.0.3, OpenCV 4.9.0, and MediaPipe 0.10.10 for the back-
end. They also created a user-friendly web application for the frontend, designed to make
learning intuitive for young children. The methodological steps are illustrated in Figure 1.

Sensors 2024, 24, 6098 5 of 27

address the lack of data in the field. Additionally, it is worth noting that only one paper
specifically addressed the recognition of air-written Arabic letters, highlighting a potential
gap in research focusing on Arabic alphabets in the context of air-writing recognition. It
is worth mentioning that all of the papers focused solely on utilizing air-writing tech-
niques with models without exploring practical applications. In contrast, our project aims
to go beyond the theoretical aspects and apply these techniques in a practical format.
Through the development of an application, our goal is to bridge the gap between research
and real-world usage, offering a tangible solution that can be utilized by individuals seek-
ing to recognize Arabic alphabets through air-writing.

3. Methodology
In this study, the researchers collected 31,349 handwritten Arabic letters from three

different public sources to create a diverse and representative dataset. They prepared this
dataset for analysis by cleaning up the images to remove noise, converting them to gray-
scale, and enhancing them through techniques like rotation, zooming, and shifting. CNN
and the VGG16 model are known for their accuracy in recognizing images. Additionally,
the researchers developed a real-time system for recognizing air-written Arabic letters us-
ing Python 3.9.13, Flask 3.0.3, OpenCV 4.9.0, and MediaPipe 0.10.10 for the backend. They
also created a user-friendly web application for the frontend, designed to make learning
intuitive for young children. The methodological steps are illustrated in Figure 1.

Figure 1. Overview of the methodological steps.

3.1. Data Gathering
The dataset was carefully constructed by gathering handwritten Arabic letters from

three publicly available datasets. The process involved assembling a significant collection
of handwritten Arabic letters from these sources. The resulting dataset comprises an im-
pressive total of 31,349 meticulously annotated images, encompassing both black-and-
white and colored variations.

The first dataset, available in [33], is a comprehensive collection specifically designed
to support research in Arabic handwritten character recognition. This dataset comprises
33,600 handwritten Arabic characters contributed by 60 participants aged between 19 and
40 years, with 90% being right-handed. Each participant was assigned the task of writing
each Arabic character, from ‘alef’ ‘ أ’ to ‘yeh’ ‘ ي ‘, ten times on two separate forms. The
dataset is further divided into a training set and a test set, with the training set containing

Figure 1. Overview of the methodological steps.

3.1. Data Gathering

The dataset was carefully constructed by gathering handwritten Arabic letters from
three publicly available datasets. The process involved assembling a significant collection
of handwritten Arabic letters from these sources. The resulting dataset comprises an
impressive total of 31,349 meticulously annotated images, encompassing both black-and-
white and colored variations.

The first dataset, available in [33], is a comprehensive collection specifically designed
to support research in Arabic handwritten character recognition. This dataset comprises
33,600 handwritten Arabic characters contributed by 60 participants aged between 19 and
40 years, with 90% being right-handed. Each participant was assigned the task of writing

each Arabic character, from ‘alef’ ‘

@’ to ‘yeh’ ‘ ø

‘, ten times on two separate forms. The

dataset is further divided into a training set and a test set, with the training set containing
26,880 characters and the test set comprising 6720 characters. Notably, all images in this
dataset are presented in black and white. To enhance our own dataset, we utilized only the
training set from this initial dataset.

The second dataset, sourced from [34], comprises 16,800 handwritten Arabic characters.
The dataset is split into a training set containing 13,440 characters (480 images per class)
and a test set with 3360 characters (120 images per class). The images in this data set are
red, green, and blue (RGB) images. We incorporated image files from both the training and
test sets from this dataset.

The third dataset [35] contains characters and numbers, and the characters appear in
various positions—at the beginning, middle, and end of words, as well as in isolation (not

Sensors 2024, 24, 6098 6 of 25

within a word). Our focus has been on recognizing the isolated character forms, so we only
gather these data.

To facilitate the labeling process, we consolidated three datasets into a single file and
renamed them using the following structure: “Label_Letter_numberOfImageForTheLetter”
(e.g., “1_alef_1” and “2_beh_1”). Additionally, a comma-separated value (CSV) file was
created with a single column containing labels numbered from 1 to 28, representing the
images in the dataset file. Each label was repeated based on the number of images associated
with that particular letter. Finally, the dataset file and CSV file were merged into one file,
which was then uploaded to Google Drive for storage and accessibility. Figure 2 presents
sample images for each letter in the dataset.

Sensors 2024, 24, 6098 6 of 27

26,880 characters and the test set comprising 6720 characters. Notably, all images in this
dataset are presented in black and white. To enhance our own dataset, we utilized only
the training set from this initial dataset.

The second dataset, sourced from [34], comprises 16,800 handwritten Arabic charac-
ters. The dataset is split into a training set containing 13,440 characters (480 images per
class) and a test set with 3360 characters (120 images per class). The images in this data set
are red, green, and blue (RGB) images. We incorporated image files from both the training
and test sets from this dataset.

The third dataset [35] contains characters and numbers, and the characters appear in
various positions—at the beginning, middle, and end of words, as well as in isolation (not
within a word). Our focus has been on recognizing the isolated character forms, so we
only gather these data.

To facilitate the labeling process, we consolidated three datasets into a single file and
renamed them using the following structure: “Label_Letter_numberOfImageForTheLet-
ter” (e.g., “1_alef_1” and “2_beh_1”). Additionally, a comma-separated value (CSV) file
was created with a single column containing labels numbered from 1 to 28, representing
the images in the dataset file. Each label was repeated based on the number of images
associated with that particular letter. Finally, the dataset file and CSV file were merged
into one file, which was then uploaded to Google Drive for storage and accessibility. Fig-
ure 2 presents sample images for each letter in the dataset.

Figure 2. Handwritten Arabic letters dataset.

3.2. Dataset Splitting
The final dataset was divided into training, testing, and validation sets. The training

set comprised 90% of the total data, while the remaining 10% was allocated for testing. To
create the validation set, data augmentation techniques were applied to the test set. This
approach enhances the model’s ability to generalize and handle diverse data, a crucial
aspect for successful character recognition in real-world applications.

3.3. Data Preprocessing
Data preprocessing is a crucial step in deep learning and computer vision projects.

Its primary objective is to transform raw data into a suitable format for training models
and improving their performance. In this section, we will provide a detailed explanation
of the four data preprocessing techniques that were applied to our dataset: image resizing,
denoising, grayscale conversion, and data augmentation. These techniques enhance the
dataset’s quality and usability by eliminating noise, inconsistencies, and irrelevant

Figure 2. Handwritten Arabic letters dataset.

3.2. Dataset Splitting

The final dataset was divided into training, testing, and validation sets. The training
set comprised 90% of the total data, while the remaining 10% was allocated for testing. To
create the validation set, data augmentation techniques were applied to the test set. This
approach enhances the model’s ability to generalize and handle diverse data, a crucial
aspect for successful character recognition in real-world applications.

3.3. Data Preprocessing

Data preprocessing is a crucial step in deep learning and computer vision projects. Its
primary objective is to transform raw data into a suitable format for training models and
improving their performance. In this section, we will provide a detailed explanation of
the four data preprocessing techniques that were applied to our dataset: image resizing,
denoising, grayscale conversion, and data augmentation. These techniques enhance the
dataset’s quality and usability by eliminating noise, inconsistencies, and irrelevant infor-
mation. As a result, they contribute to more accurate predictions and improved model
performance; see Figure 3.

Sensors 2024, 24, 6098 7 of 27

information. As a result, they contribute to more accurate predictions and improved
model performance; see Figure 3.

Figure 3. Data preprocessing techniques applied to the dataset.

3.3.1. Image Denoising
The first step in the preprocessing phase involved image denoising, which is the pro-

cess of reducing or removing unwanted noise from an image [36]. The goal was to effec-
tively reduce the noise while preserving the important details and features of the image.
The focus was on denoising the images using the non-local means denoising method [37].
This advanced technique preserves the edges and details of the images by averaging the
pixel values within small local neighborhoods. The weights for averaging are determined
based on the similarity between these neighborhoods, allowing effective noise reduction
while keeping important image features intact.

3.3.2. Grayscale Conversion
Another preprocessing technique involved converting the images into grayscale. To

determine if an image was already in grayscale, a function for converting to grayscale was
implemented. If an image was found to be in color, it was converted to grayscale using
the ‘L’ mode. The modified grayscale image was then saved, overwriting the original data.

3.3.3. Data Augmentation
Data augmentation has been applied to generate wide-ranging data variations, aim-

ing to improve the model’s prediction accuracy. Taking into account that the dataset com-
prises handwritten Arabic letters, it is crucial to exercise caution when selecting suitable
data augmentation techniques that do not alter the integrity of the letter structure.

Several common augmentation techniques have been employed for the handwritten
letters dataset. Rotation is among these techniques, where the images are randomly ro-
tated within a typical range of 10 degrees. By applying rotation, the model becomes more
capable of handling variations in letter orientation, enabling accurate recognition regard-
less of the rotation angle. This technique introduces slight orientation variations without
distorting the fundamental structure of the letters.

By employing zooming, either the scale or size of the images is randomly adjusted.
In our case, the zooming range was set to 0.1, meaning the images of handwritten Arabic
letters could be magnified or reduced in size by up to 10% of their original dimensions.
This random scaling simulates diversities in the letter sizes that can occur during the writ-
ing process. Zooming enables the model to become more adaptable to different letter sizes
and improves its ability to recognize and classify letters accurately. Additionally, width
shifting has been utilized as another augmentation technique. Applying width shifting,
the images are horizontally translated by up to 10% of their original width. Consequently,
letters can appear slightly displaced toward the left or the right within the image. The
intention behind implementing this technique is to simulate differences that can occur
during the handwriting process, such as slight changes in the horizontal positioning of
the letters.

Figure 3. Data preprocessing techniques applied to the dataset.

Sensors 2024, 24, 6098 7 of 25

3.3.1. Image Denoising

The first step in the preprocessing phase involved image denoising, which is the
process of reducing or removing unwanted noise from an image [36]. The goal was to
effectively reduce the noise while preserving the important details and features of the image.
The focus was on denoising the images using the non-local means denoising method [37].
This advanced technique preserves the edges and details of the images by averaging the
pixel values within small local neighborhoods. The weights for averaging are determined
based on the similarity between these neighborhoods, allowing effective noise reduction
while keeping important image features intact.

3.3.2. Grayscale Conversion

Another preprocessing technique involved converting the images into grayscale. To
determine if an image was already in grayscale, a function for converting to grayscale was
implemented. If an image was found to be in color, it was converted to grayscale using the
‘L’ mode. The modified grayscale image was then saved, overwriting the original data.

3.3.3. Data Augmentation

Data augmentation has been applied to generate wide-ranging data variations, aiming
to improve the model’s prediction accuracy. Taking into account that the dataset comprises
handwritten Arabic letters, it is crucial to exercise caution when selecting suitable data
augmentation techniques that do not alter the integrity of the letter structure.

Several common augmentation techniques have been employed for the handwritten
letters dataset. Rotation is among these techniques, where the images are randomly rotated
within a typical range of 10 degrees. By applying rotation, the model becomes more capable
of handling variations in letter orientation, enabling accurate recognition regardless of the
rotation angle. This technique introduces slight orientation variations without distorting
the fundamental structure of the letters.

By employing zooming, either the scale or size of the images is randomly adjusted.
In our case, the zooming range was set to 0.1, meaning the images of handwritten Arabic
letters could be magnified or reduced in size by up to 10% of their original dimensions. This
random scaling simulates diversities in the letter sizes that can occur during the writing
process. Zooming enables the model to become more adaptable to different letter sizes and
improves its ability to recognize and classify letters accurately. Additionally, width shifting
has been utilized as another augmentation technique. Applying width shifting, the images
are horizontally translated by up to 10% of their original width. Consequently, letters
can appear slightly displaced toward the left or the right within the image. The intention
behind implementing this technique is to simulate differences that can occur during the
handwriting process, such as slight changes in the horizontal positioning of the letters.

Finally, the dataset benefits from the implementation of the height-shifting technique,
where small random shifts, typically around 10% of the image height, are introduced in the
vertical position of the letter images. This enhances the model’s ability to handle variations
that can occur during the writing process, such as subtle changes in the vertical alignment
of the letters.

3.4. Searching for Suitable Neural Network Algorithms

The selection of appropriate algorithms is crucial in computer vision, as it directly
impacts the effectiveness of solving specific problems. For the image classification of
handwritten Arabic alphabets and numerals, the researchers prioritized precision and
accuracy, leading them to choose two highly suitable deep learning models: CNN [38] and
the VGG16 architecture [39].

This decision is well supported by the previous literature, as CNN and VGG16 have
consistently emerged as successful models for real-time recognition tasks. Researchers have
demonstrated significant success in classifying and identifying images of written alpha-
bets using deep learning models like CNNs, which have proven highly effective in image

Sensors 2024, 24, 6098 8 of 25

classification [30,40]. These models are designed to learn spatial hierarchies of features,
capturing essential characteristics in the early layers and progressively learning more com-
plex patterns in deeper layers. This hierarchical feature extraction is particularly beneficial
for the Arabic letters dataset, enabling the models to effectively represent the unique visual
properties of Arabic script [41]. Consequently, CNN and VGG16 are exceptionally well
suited for recognizing the nuanced visual patterns in Arabic letter images.

3.4.1. The CNN Model

CNNs [42], as shown in Figure 4, are feed-forward neural networks that learn feature
engineering through filter optimization. CNNs are widely used in image classification
and offer several advantages over traditional algorithms. They require less preprocessing
than other image classification algorithms because they learn to optimize filters using
automated learning.

Sensors 2024, 24, 6098 8 of 27

Finally, the dataset benefits from the implementation of the height-shifting tech-
nique, where small random shifts, typically around 10% of the image height, are intro-
duced in the vertical position of the letter images. This enhances the model’s ability to
handle variations that can occur during the writing process, such as subtle changes in the
vertical alignment of the letters.

3.4. Searching for Suitable Neural Network Algorithms
The selection of appropriate algorithms is crucial in computer vision, as it directly

impacts the effectiveness of solving specific problems. For the image classification of
handwritten Arabic alphabets and numerals, the researchers prioritized precision and ac-
curacy, leading them to choose two highly suitable deep learning models: CNN [38] and
the VGG16 architecture [39].

This decision is well supported by the previous literature, as CNN and VGG16 have
consistently emerged as successful models for real-time recognition tasks. Researchers
have demonstrated significant success in classifying and identifying images of written al-
phabets using deep learning models like CNNs, which have proven highly effective in
image classification [30,40]. These models are designed to learn spatial hierarchies of fea-
tures, capturing essential characteristics in the early layers and progressively learning
more complex patterns in deeper layers. This hierarchical feature extraction is particularly
beneficial for the Arabic letters dataset, enabling the models to effectively represent the
unique visual properties of Arabic script [41]. Consequently, CNN and VGG16 are excep-
tionally well suited for recognizing the nuanced visual patterns in Arabic letter images.

3.4.1. The CNN Model
CNNs [42], as shown in Figure 4, are feed-forward neural networks that learn feature

engineering through filter optimization. CNNs are widely used in image classification and
offer several advantages over traditional algorithms. They require less preprocessing than
other image classification algorithms because they learn to optimize filters using auto-
mated learning.

Figure 4. The architecture of the CNN model, inspired by [30].

A CNN’s architecture consists of three layers: an input layer, a hidden layer, and an
output layer. The hidden layers may include one or more convolutional layers. Similar to
how a neuron in the visual cortex responds to a specific stimulus, convolutional layers
convolve the input and pass the result to the next layer. Each convolutional neuron pro-
cesses data exclusively for its receptive field, which is a subset of the previous layer.

The receptive field of a neuron in a CNN is the region from which it receives input.
Because of the repeated convolution operation that considers the value of a pixel and its
surrounding pixels, each neuron in a convolutional layer receives input from a larger area
of the input than previous layers. Alternatives to the standard convolutional layer include
atrous or dilated convolution, which increases the receptive field size without increasing
the number of parameters.

Figure 4. The architecture of the CNN model, inspired by [30].

A CNN’s architecture consists of three layers: an input layer, a hidden layer, and an
output layer. The hidden layers may include one or more convolutional layers. Similar
to how a neuron in the visual cortex responds to a specific stimulus, convolutional layers
convolve the input and pass the result to the next layer. Each convolutional neuron
processes data exclusively for its receptive field, which is a subset of the previous layer.

The receptive field of a neuron in a CNN is the region from which it receives input.
Because of the repeated convolution operation that considers the value of a pixel and its
surrounding pixels, each neuron in a convolutional layer receives input from a larger area
of the input than previous layers. Alternatives to the standard convolutional layer include
atrous or dilated convolution, which increases the receptive field size without increasing
the number of parameters.

3.4.2. The VGG16 Model

The VGG-16 model [43], shown in Figure 5, also known as VGG16Net, is considered
one of the CNN architectures proposed by the VGG for object detection and classification.
It is known by its depth, consisting of 16 layers, including 13 convolutional layers and 3
fully connected layers. VGG-16 is deeper compared to other CNN architectures and can
capture more complex visual patterns. Its depth, however, makes it more computationally
expensive and prone to overfitting. Despite this, VGG-16 is widely used for image-related
tasks due to its strong performance.

Sensors 2024, 24, 6098 9 of 27

3.4.2. The VGG16 Model
The VGG-16 model [43], shown in Figure 5, also known as VGG16Net, is considered

one of the CNN architectures proposed by the VGG for object detection and classification.
It is known by its depth, consisting of 16 layers, including 13 convolutional layers and 3
fully connected layers. VGG-16 is deeper compared to other CNN architectures and can
capture more complex visual patterns. Its depth, however, makes it more computationally
expensive and prone to overfitting. Despite this, VGG-16 is widely used for image-related
tasks due to its strong performance.

Figure 5. The architecture of the VGG16 model, inspired by [30].

3.5. Build and Train the Model
The core aim of our model is to accurately recognize air-written Arabic letters and

effectively distinguish between them with the highest level of performance. In order to
achieve optimal results, a comprehensive series of experiments were conducted to evalu-
ate various CNN models with different types and layers, which are CNNs with 7 layers
and 9 layers and VGG16 with and without a fully connected layer.

3.5.1. Training Hyperparameters
A series of adjustments were conducted, as shown in Table 1, to the training param-

eters, specifically targeting the epoch, batch size, and learning rate. In the first set of
changes, different epochs were experimented with, trying out values of 20, 25, and 50 to
observe their impact on the training process. Simultaneously, the batch size was also mod-
ified, exploring the effects of 400, 512, and 515 as batch size values. Additionally, we fine-
tuned the learning rate, setting it to 0.001 and 0.02 to optimize the convergence of our
model.

Table 1. Hyperparameters for the selected models.

Epoch Batch Size Learning Rate
50 0.001 400
20 0.001 515
25 0.02 515
20 0.001 512

Moreover, to further explore the effects of different activation functions on the
model’s performance, changes were made to the activation functions used in the convo-
lutional layers. Specifically, the activation functions Scaled Exponential Linear Unit
(SELU), Rectified Linear Unit (ReLU), and Stochastic Gradient Descent (SGD) allowed us
to evaluate their impact on the model’s ability to learn and generalize.

By combining these tunings, including changes in the number of convolutional layers
and activation functions, we aimed to comprehensively analyze the impact of these pa-
rameters on the model’s convergence, accuracy, and overall performance.

Figure 5. The architecture of the VGG16 model, inspired by [30].

Sensors 2024, 24, 6098 9 of 25

3.5. Build and Train the Model

The core aim of our model is to accurately recognize air-written Arabic letters and
effectively distinguish between them with the highest level of performance. In order to
achieve optimal results, a comprehensive series of experiments were conducted to evaluate
various CNN models with different types and layers, which are CNNs with 7 layers and
9 layers and VGG16 with and without a fully connected layer.

3.5.1. Training Hyperparameters

A series of adjustments were conducted, as shown in Table 1, to the training parame-
ters, specifically targeting the epoch, batch size, and learning rate. In the first set of changes,
different epochs were experimented with, trying out values of 20, 25, and 50 to observe
their impact on the training process. Simultaneously, the batch size was also modified,
exploring the effects of 400, 512, and 515 as batch size values. Additionally, we fine-tuned
the learning rate, setting it to 0.001 and 0.02 to optimize the convergence of our model.

Table 1. Hyperparameters for the selected models.

Epoch Batch Size Learning Rate

50 0.001 400
20 0.001 515
25 0.02 515
20 0.001 512

Moreover, to further explore the effects of different activation functions on the model’s
performance, changes were made to the activation functions used in the convolutional lay-
ers. Specifically, the activation functions Scaled Exponential Linear Unit (SELU), Rectified
Linear Unit (ReLU), and Stochastic Gradient Descent (SGD) allowed us to evaluate their
impact on the model’s ability to learn and generalize.

By combining these tunings, including changes in the number of convolutional lay-
ers and activation functions, we aimed to comprehensively analyze the impact of these
parameters on the model’s convergence, accuracy, and overall performance.

3.5.2. Model Evaluation and Results
Evaluation Metrics

In the field of deep learning, the accurate and precise evaluation of model performance
is critical. Accuracy, precision, and the F1-score [44,45] were utilized to measure the model’s
performance in training and prediction. They were produced using a confusion matrix,
which is a tabular representation made up of four main components:

• True positive (TP): the number of cases accurately classified as positive by the model.
• False positive (FP): cases the model wrongly categorized as positive despite being in

the negative class.
• True negative (TN): the number of cases accurately classified as negative by the model.
• False negative (FN): cases the model mistakenly categorized as negative despite being

in the positive class.

For a given dataset of size n, these metrics are measured as follows [46]:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

Precision =
(TP)

(TP + FP)
(2)

F1 − Score = 2 × (Precision × Recall)
(Precision + Recall)

(3)

Sensors 2024, 24, 6098 10 of 25

By using these metrics, the researchers acquired a thorough insight of the performance
of the CNN models and VGG16. Accuracy is an overall measure of correctness, precision is
concerned with the quality of positive predictions, and the F1-score combines precision
and recall, providing a balanced evaluation. These metrics allow us to evaluate the model’s
capacity to accurately classify images, reduce false positives, and strike a balance between
precision and recall.

Experiments and Results

The researchers performed a thorough comparison of two models, the CNNs with
different layer configurations and VGG16 with and without a fully connected layer. The
results of this analysis are shown in Table 2.

Table 2. Results of the conducted experiments on CNN and VGG16 models.

Model Epoch Learning
Rate

Batch
Size

Train
Loss (%)

Train
Acc. (%)

Valid
Loss (%)

Valid
Acc. (%)

Test Acc.
(%)

Precision
(%)

F1-Score
(%)

CNN 7 layers
without dropout

50 0.001 400 3.53 98.85 11.35 97.03 97.77 97.83 97.82
20 0.001 515 12.46 95.92 16.46 94.70 96.40 96.44 96.43
25 0.02 515 9.81 96.77 14.78 95.37 96.65 96.78 96.72
20 0.001 512 12.13 96.04 18.31 94.00 96.36 96.47 96.41

CNN 7 layers with
dropout

50 0.001 400 22.04 92.85 20.40 93.59 95.73 95.83 95.80
20 0.001 515 34.87 89.10 23.59 92.03 94.41 94.50 94.44
25 0.02 515 26.34 91.69 18.15 93.97 95.98 96.09 96.07
20 0.001 512 28.63 91.11 20.41 94.13 95.94 96.10 96.05

CNN 10 layers
without dropout

50 0.001 400 2.74 99.07 8.60 97.67 98.12 98.23 98.20
20 0.001 515 6.09 97.97 11.65 96.81 97.70 97.59 97.73
25 0.02 515 5.06 98.34 11.57 96.52 97.54 97.59 97.58
20 0.001 512 15.02 95.33 18.49 94.86 96.97 97.12 97.04

VGG16
with fully connected

layer

50 0.001 400 3.84 72.23 11.76 71.87 70.62 71.32 69.10
20 0.001 515 2.76 69.46 12.98 69.77 71.83 70.56 70.18
25 0.02 515 4.98 71.73 10.73 70.63 72.53 72.98 72.65
20 0.001 512 2.32 73.54 9.43 72.39 72.82 71.74 72.70

VGG16
without fully

connected layer

50 0.001 400 61.98 79.08 80.23 75.84 76.24 74.02 75.02
20 0.001 515 95.81 72.75 106.91 70.44 71.17 69.63 70.07
25 0.02 515 72.62 80.60 149.41 75.4 75.08 73.80 73.89
20 0.001 512 72.56 77.00 88.23 74.24 74.28 72.19 73.06

The result of the analysis of various models was insightful when looking at their
performance on the given metrics. For most CNN models, adding layers generally resulted
in higher training and validation accuracy percentages. Dropout layers were introduced
in the CNN models in order to avoid overfitting and to achieve better generalization.
Nevertheless, this addition to the models may not outperform models without dropout in
terms of accuracy.

On the VGG16 models, the actual inclusion of the fully connected layer had a more
subtle effect on the training performance. Without the fully connected layer, the accuracy
percentages dropped to between 72.75% and 80.66%, signifying that this layer is necessary
for accurate feature extraction and classification.

When comparing models, it can be observed that the CNN models clearly scored
better in accuracy with respect to the VGG16 model, along with higher training, testing,
validation accuracies and higher precision and F1-score percentages, which means the CNN
models are better at identifying the positive instances and maintaining a good balance
between true positives and false negatives.

The CNN model with seven layers and without dropout, as seen in Figure 6, performed
better than any other CNN model. This is shown by its impressive training accuracy of
95.92%, validation accuracy of 94.70%, and testing accuracy of 96.40%, reflecting strong
learning and generalization powers. Its training loss was low, amounting to only 12.46%,
while validation loss was 16.46% accurate, leaving no room for overfitting. The seven-layer
CNN model scored higher than the rest; this can be noted from its precision (96.43%) and
F1-score (96.44%).

Sensors 2024, 24, 6098 11 of 25

Sensors 2024, 24, 6098 11 of 27

with fully
connected

layer

20 0.001 515 2.76 69.46 12.98 69.77 71.83 70.56 70.18
25 0.02 515 4.98 71.73 10.73 70.63 72.53 72.98 72.65
20 0.001 512 2.32 73.54 9.43 72.39 72.82 71.74 72.70

VGG16
without

fully con-
nected
layer

50 0.001 400 61.98 79.08 80.23 75.84 76.24 74.02 75.02
20 0.001 515 95.81 72.75 106.91 70.44 71.17 69.63 70.07
25 0.02 515 72.62 80.60 149.41 75.4 75.08 73.80 73.89

20 0.001 512 72.56 77.00 88.23 74.24 74.28 72.19 73.06

The result of the analysis of various models was insightful when looking at their per-
formance on the given metrics. For most CNN models, adding layers generally resulted
in higher training and validation accuracy percentages. Dropout layers were introduced
in the CNN models in order to avoid overfitting and to achieve better generalization. Nev-
ertheless, this addition to the models may not outperform models without dropout in
terms of accuracy.

On the VGG16 models, the actual inclusion of the fully connected layer had a more
subtle effect on the training performance. Without the fully connected layer, the accuracy
percentages dropped to between 72.75% and 80.66%, signifying that this layer is necessary
for accurate feature extraction and classification.

When comparing models, it can be observed that the CNN models clearly scored
better in accuracy with respect to the VGG16 model, along with higher training, testing,
validation accuracies and higher precision and F1-score percentages, which means the
CNN models are better at identifying the positive instances and maintaining a good bal-
ance between true positives and false negatives.

The CNN model with seven layers and without dropout, as seen in Figure 6, per-
formed better than any other CNN model. This is shown by its impressive training accu-
racy of 95.92%, validation accuracy of 94.70%, and testing accuracy of 96.40%, reflecting
strong learning and generalization powers. Its training loss was low, amounting to only
12.46%, while validation loss was 16.46% accurate, leaving no room for overfitting. The
seven-layer CNN model scored higher than the rest; this can be noted from its precision
(96.43%) and F1-score (96.44%).

Figure 6. The architecture of the CNN model used in this study, inspired by [30].

The decision to select the CNN model with seven layers and no dropout, despite not
achieving the highest accuracy, was due to the balance between training accuracy, testing
accuracy, and validation accuracy, as seen in Figure 7. The model can leverage its feature
extraction capabilities to capture the small details of the Arabic alphabet in real-time in-
put. By avoiding overfitting or underfitting, the model can adapt to the variations in the

Figure 6. The architecture of the CNN model used in this study, inspired by [30].

The decision to select the CNN model with seven layers and no dropout, despite
not achieving the highest accuracy, was due to the balance between training accuracy,
testing accuracy, and validation accuracy, as seen in Figure 7. The model can leverage its
feature extraction capabilities to capture the small details of the Arabic alphabet in real-time
input. By avoiding overfitting or underfitting, the model can adapt to the variations in
the air-written alphabet and generalize well to unseen examples. This allows for accurate
classification of the Arabic alphabet based on the real-time input from the webcam.

Sensors 2024, 24, 6098 12 of 27

air-written alphabet and generalize well to unseen examples. This allows for accurate clas-
sification of the Arabic alphabet based on the real-time input from the webcam.

Figure 7. Training and validation accuracy of CNN 7 layers with no dropout model.

An analysis of Figure 8, depicting the confusion matrix for a CNN with seven layers
and no dropout, offers invaluable insights into the model’s proficiency in classifying air-
written letters. These letters are labeled from 0 to 27, representing the 28 letters of the Ar-
abic alphabet. Through examination, the matrix reveals the model’s accuracy, highlight-
ing areas of precision and potential misclassification across the full spectrum of Arabic
letters. By aligning anticipated letter labels with columns and actual letter labels with
rows, the matrix unveils patterns of confusion, aiding in the identification of specific chal-
lenges faced by the model in accurately recognizing each letter. Specifically, the confusion
matrix reveals that the model tends to confuse labels 7 and 8, representing the Arabic let-
ters “ د” (dal) and “ ذ” (thal), respectively, due to their similar shapes.

The resemblance between these two letters’ shapes likely contributes to the model’s
difficulty in distinguishing between them accurately. Similarly, the model also shows con-
fusion between labels 2 and 3, which correspond to the Arabic letters “ ت” (teh) and “ث”
(theh), respectively. These letters have similar shapes, differing only in the number of dots,
which may explain the model’s tendency to misclassify them.

Figure 7. Training and validation accuracy of CNN 7 layers with no dropout model.

An analysis of Figure 8, depicting the confusion matrix for a CNN with seven layers
and no dropout, offers invaluable insights into the model’s proficiency in classifying air-
written letters. These letters are labeled from 0 to 27, representing the 28 letters of the Arabic
alphabet. Through examination, the matrix reveals the model’s accuracy, highlighting areas
of precision and potential misclassification across the full spectrum of Arabic letters. By
aligning anticipated letter labels with columns and actual letter labels with rows, the matrix
unveils patterns of confusion, aiding in the identification of specific challenges faced by the
model in accurately recognizing each letter. Specifically, the confusion matrix reveals that
the model tends to confuse labels 7 and 8, representing the Arabic letters “X” (dal) and “ 	

X”
(thal), respectively, due to their similar shapes.

Sensors 2024, 24, 6098 12 of 25Sensors 2024, 24, 6098 13 of 27

Figure 8. Confusion matrix of CNN 7 layers with no dropout model.

3.5.3. Limitations
During the training for the seven-layer CNN model, we encountered the following

key limitations:
Certain letters are challenging for the model to recognize effectively because they

have similar structures. For example, the model may misclassify the letter ‘أ’ (alef) as ‘ع’
(ain) because of the presence of the ‘ء’ in some images from the dataset, making it appear
like the start of the ‘ع’ letter. To face this, we compare the model’s confidence score for the
 letter to a specific threshold value. If the confidence score reaches or surpasses this ’أ‘
threshold, the model will identify the input image as the ‘أ’ letter. There is still room for
growth in this regard.

The researchers also implemented a confidence score threshold condition for letters
without dots to ensure they are recognized consistently, and the model will not mix them
up with the ones that have a similar structure.

3.6. Backend Development
3.6.1. Air-Writing Recognition in Real-Time

The proposed method involves multiple stages for building the air-writing compo-
nents, specifically (1) air-writing tools, (2) building the air-writing component, and (3) air-
writing samples.

Air-Writing Tools
To implement the air-writing component effectively, a combination of software and

hardware tools is utilized to provide reliable development and testing environments.
Google Colab 3.10.12 [47] is used as an online collaborative platform by Google, de-

signed for writing and running Python code. Access to powerful hardware is offered, and
seamless integration with Google Drive [48] allows for efficient storage and sharing of
work. This tool is particularly useful for experimenting with machine learning models and
sharing results with researchers. Additionally, PyCharm [49], developed by JetBrains, is
employed as a powerful integrated development environment (IDE) tailored specifically

Figure 8. Confusion matrix of CNN 7 layers with no dropout model.

The resemblance between these two letters’ shapes likely contributes to the model’s
difficulty in distinguishing between them accurately. Similarly, the model also shows
confusion between labels 2 and 3, which correspond to the Arabic letters “ �

H” (teh) and

“ �
H” (theh), respectively. These letters have similar shapes, differing only in the number of

dots, which may explain the model’s tendency to misclassify them.

3.5.3. Limitations

During the training for the seven-layer CNN model, we encountered the following
key limitations:

Certain letters are challenging for the model to recognize effectively because they have

similar structures. For example, the model may misclassify the letter ‘

@’ (alef) as ‘¨’ (ain)

because of the presence of the ‘Z’ in some images from the dataset, making it appear like the

start of the ‘¨’ letter. To face this, we compare the model’s confidence score for the ‘

@’ letter

to a specific threshold value. If the confidence score reaches or surpasses this threshold, the

model will identify the input image as the ‘

@’ letter. There is still room for growth in this

regard.
The researchers also implemented a confidence score threshold condition for letters

without dots to ensure they are recognized consistently, and the model will not mix them
up with the ones that have a similar structure.

3.6. Backend Development
3.6.1. Air-Writing Recognition in Real-Time

The proposed method involves multiple stages for building the air-writing compo-
nents, specifically (1) air-writing tools, (2) building the air-writing component, and (3)
air-writing samples.

Sensors 2024, 24, 6098 13 of 25

Air-Writing Tools

To implement the air-writing component effectively, a combination of software and
hardware tools is utilized to provide reliable development and testing environments.

Google Colab 3.10.12 [47] is used as an online collaborative platform by Google,
designed for writing and running Python code. Access to powerful hardware is offered,
and seamless integration with Google Drive [48] allows for efficient storage and sharing of
work. This tool is particularly useful for experimenting with machine learning models and
sharing results with researchers. Additionally, PyCharm [49], developed by JetBrains, is
employed as a powerful integrated development environment (IDE) tailored specifically for
Python development. Comprehensive coding, debugging, and testing functionalities are
provided. PyCharm also facilitates collaboration among developers, making it an essential
tool for complex Python projects.

The hardware setup for the air-writing component involves the use of multiple laptops,
each chosen for its high-performance specifications to ensure smooth and efficient operation.
The Lenovo Legion 5 15ACH6H features an AMD Ryzen 7 5800 H processor with Radeon
Graphics, a 3.20 GHz CPU, and 16.0 GB of RAM. The Vostro 14 5401 is powered by an
Intel(R) Core(TM) i7 processor with a base speed of 1.30 GHz (boost up to 1.50 GHz) and
16.0 GB of RAM. The IdeaPad 5 Pro 16IHU6 is equipped with an 11th Gen Intel(R) Core(TM)
i7-11370H processor running at 3.30 GHz and 16.0 GB of RAM. Lastly, the Alienware m15
r5 features an AMD Ryzen 5800 CPU and 16.0 GB of RAM. Together, these laptops create
a robust environment for developing, testing, and refining the air-writing component,
ensuring optimal performance and collaborative efficiency.

Building Air-Writing Component

The web application was developed using Python 3.9.13, selected for its compatibility
with the essential libraries used in the project, such as Flask 3.0.3, OpenCV 4.9.0, and
MediaPipe 0.10.10. MediaPipe, in particular, requires specific Python versions for optimal
performance and compatibility, with Python 3.9.13 providing the best stability and feature
support for these integrations.

The development occurred in two phases. The first phase focused on hand move-
ment tracking and image capture, enabling functionalities such as writing in the air and
recognizing various gestures. During this phase, the camera was opened, and the hand’s
movements were continuously tracked. These movements were interpreted to support
interactions for writing and recognizing different gestures, such as using the index finger
for writing, two fingers for pausing, and raising the full hand to start recognition. Once
the images were captured, image processing was applied to prepare them for input into
the model.

The second phase centered on real-time recognition of air-writing. This recognition was
achieved by using a pre-trained model capable of understanding air-written letters. Upon
the recognition of the writing, feedback on the correctness of the writing was provided,
ensuring an enjoyable and enhanced learning experience. This process is illustrated in
Figure 9.

Sensors 2024, 24, 6098 14 of 27

for Python development. Comprehensive coding, debugging, and testing functionalities
are provided. PyCharm also facilitates collaboration among developers, making it an es-
sential tool for complex Python projects.

The hardware setup for the air-writing component involves the use of multiple lap-
tops, each chosen for its high-performance specifications to ensure smooth and efficient
operation. The Lenovo Legion 5 15ACH6H features an AMD Ryzen 7 5800 H processor
with Radeon Graphics, a 3.20 GHz CPU, and 16.0 GB of RAM. The Vostro 14 5401 is pow-
ered by an Intel(R) Core(TM) i7 processor with a base speed of 1.30 GHz (boost up to 1.50
GHz) and 16.0 GB of RAM. The IdeaPad 5 Pro 16IHU6 is equipped with an 11th Gen In-
tel(R) Core(TM) i7-11370H processor running at 3.30 GHz and 16.0 GB of RAM. Lastly,
the Alienware m15 r5 features an AMD Ryzen 5800 CPU and 16.0 GB of RAM. Together,
these laptops create a robust environment for developing, testing, and refining the air-
writing component, ensuring optimal performance and collaborative efficiency.

Building Air-Writing Component
The web application was developed using Python 3.9.13, selected for its compatibility

with the essential libraries used in the project, such as Flask 3.0.3, OpenCV 4.9.0, and Me-
diaPipe 0.10.10. MediaPipe, in particular, requires specific Python versions for optimal
performance and compatibility, with Python 3.9.13 providing the best stability and feature
support for these integrations.

The development occurred in two phases. The first phase focused on hand movement
tracking and image capture, enabling functionalities such as writing in the air and recog-
nizing various gestures. During this phase, the camera was opened, and the hand’s move-
ments were continuously tracked. These movements were interpreted to support interac-
tions for writing and recognizing different gestures, such as using the index finger for
writing, two fingers for pausing, and raising the full hand to start recognition. Once the
images were captured, image processing was applied to prepare them for input into the
model.

The second phase centered on real-time recognition of air-writing. This recognition
was achieved by using a pre-trained model capable of understanding air-written letters.
Upon the recognition of the writing, feedback on the correctness of the writing was pro-
vided, ensuring an enjoyable and enhanced learning experience. This process is illustrated
in Figure 9.

Figure 9. The flow for the backend system.

3.6.2. Adjust Front Camera
The camera functionality is central to the operation of the web application, enabling

real-time interaction with the user. The webcam is accessed by the web application using
OpenCV, a library specifically designed for computer vision tasks. OpenCV allows for the
capture and processing of video frames in real time, which are essential for subsequent
analysis and interaction within the web application.

Figure 9. The flow for the backend system.

Sensors 2024, 24, 6098 14 of 25

3.6.2. Adjust Front Camera

The camera functionality is central to the operation of the web application, enabling
real-time interaction with the user. The webcam is accessed by the web application using
OpenCV, a library specifically designed for computer vision tasks. OpenCV allows for the
capture and processing of video frames in real time, which are essential for subsequent
analysis and interaction within the web application.

3.6.3. Hand Tracking

Hand tracking is applied in the air-writing component, implemented by using Medi-
aPipe, a cross-platform framework from Google for building machine learning pipelines
that support multiple input modalities. As part of the developed air-writing component,
MediaPipe enabled a real-time hand-tracking process that relied on a pre-trained machine
learning model to predict the location of specific hand landmarks in each video frame.

The process of hand tracking starts by examining each video frame to specify if the
hand is apparent. For the visible hand, the component identifies specific points on the hand,
known as landmarks. Landmarks serve as reference points for identifying hand gestures.
Based on these analyses, the backend generates appropriate responses from one of the three
responses: enabling drawing in the air, pausing air-writing temporarily, or starting the
recognition process.

Within the air-writing component, specific gestures are used to control the way of
the writing and start the recognition process. Identifying these gestures using MediaPipe
involved analyzing the positions of specific landmarks on hand. A set of predefined hand
landmarks, such as the tips of the fingers and the base of the palm, supported by MediaPipe,
can be used to track the hands’ poses and movements.

The core interaction begins by raising the index finger—the index (fingertip 8). As
shown in Figure 10, the component can track the movement of the index fingertip landmark.
As the index finger moves in the air, the trajectory of the fingertip is recorded. Through
continuous tracking and analysis of the index fingertip’s position, the path of the finger’s
movement can be reconstructed and represented as a line on the camera, simulating writing
in the air.

Sensors 2024, 24, 6098 15 of 27

3.6.3. Hand Tracking
Hand tracking is applied in the air-writing component, implemented by using Medi-

aPipe, a cross-platform framework from Google for building machine learning pipelines
that support multiple input modalities. As part of the developed air-writing component,
MediaPipe enabled a real-time hand-tracking process that relied on a pre-trained machine
learning model to predict the location of specific hand landmarks in each video frame.

The process of hand tracking starts by examining each video frame to specify if the
hand is apparent. For the visible hand, the component identifies specific points on the
hand, known as landmarks. Landmarks serve as reference points for identifying hand
gestures. Based on these analyses, the backend generates appropriate responses from one
of the three responses: enabling drawing in the air, pausing air-writing temporarily, or
starting the recognition process.

Within the air-writing component, specific gestures are used to control the way of the
writing and start the recognition process. Identifying these gestures using MediaPipe in-
volved analyzing the positions of specific landmarks on hand. A set of predefined hand
landmarks, such as the tips of the fingers and the base of the palm, supported by Medi-
aPipe, can be used to track the hands’ poses and movements.

The core interaction begins by raising the index finger—the index (fingertip 8). As
shown in Figure 10, the component can track the movement of the index fingertip land-
mark. As the index finger moves in the air, the trajectory of the fingertip is recorded.
Through continuous tracking and analysis of the index fingertip’s position, the path of the
finger’s movement can be reconstructed and represented as a line on the camera, simulat-
ing writing in the air.

Figure 10. Hand landmarks for fingertips, adopted from [50].

To add diacritical marks (such as dots) common in Arabic letters or to temporarily
pause the writing, the user raises two fingers, the index (fingertip 8) and middle (fingertip
12) fingers, as illustrated in Figure 10. The system detects this two-finger gesture by ana-
lyzing the relative positions of the fingertips and lower finger joints.

Finally, to signal the completion of a written letter and start the recognition process,
the user fully raises their hand, as depicted in Figure 10. This prompts the system to ana-
lyze the captured finger movements and interpret the written content.

Figure 11 illustrates the steps for writing the letter ‘shen’ (ش) in the air. Begin by
raising your index finger. Next, use two fingers to determine the positioning of each dot
(.). Finally, employ your full hand to enable letter recognition and provide appropriate
feedback.

Figure 10. Hand landmarks for fingertips, adopted from [50].

To add diacritical marks (such as dots) common in Arabic letters or to temporarily
pause the writing, the user raises two fingers, the index (fingertip 8) and middle (fingertip
12) fingers, as illustrated in Figure 10. The system detects this two-finger gesture by
analyzing the relative positions of the fingertips and lower finger joints.

Finally, to signal the completion of a written letter and start the recognition process,
the user fully raises their hand, as depicted in Figure 10. This prompts the system to analyze
the captured finger movements and interpret the written content.

Figure 11 illustrates the steps for writing the letter ‘shen’ (�
�) in the air. Begin by

raising your index finger. Next, use two fingers to determine the positioning of each dot

Sensors 2024, 24, 6098 15 of 25

(.). Finally, employ your full hand to enable letter recognition and provide appropriate
feedback.

Sensors 2024, 24, 6098 16 of 27

Figure 11. Steps of writing a letter in the air.

The algorithm used in the air-writing component to identify hand gestures is shown
in Algorithm 1.

Algorithm 1. Algorithm for detecting hand gestures
FUNCTION are_all_fingers_up(hand_landmarks):施 DEFINE fingertip_indices as a list
of indices for the fingertip landmarks 施 DEFINE lower_joint_indices as a list of indices
for the lower joint landmarks 施 INITIALIZE finger_status as a list of False values, one
for each finger 施# Check index finger separately 施 GET index_finger_tip and index_fin-
ger_lower_joint landmarks from hand_landmarks 施 IF index_finger_tip.y < index_fin-
ger_lower_joint.y:施 SET finger_status [1] to True # Index finger is up 施# Check the re-
maining fingers 施 FOR each finger (starting from the middle finger):施 GET the finger-
tip and lower joint landmarks 施 IF fingertip.y < lower_joint.y:施 SET the corresponding
finger_status to True # Finger is up 施# Check if all fingers are up 施 IF finger_status [1]
AND finger_status [2] AND finger_status [3] AND finger_status [4] are all True:施 RE-
TURN True, finger_status 施 ELSE:施 RETURN False, finger_status

3.6.4. Image Processing
Our study investigated the processing of camera input and canvas images to prepare

data for a pre-trained deep learning model. During the writing process, the camera input
and the canvas image are combined and synchronized. This synchronization ensures that
any content present in the camera is accurately reflected in the canvas, and vice versa. As
a result, to prepare the input for the pre-trained model, it is necessary to work with a copy
of the original canvas.

The procedures for processing the canvas images involved the following:

Handling White Writing
As depicted in Figure 12, when white letters were presented on a black background

canvas, letter contours were first identified, creating a bounding box around them. These
bounding boxes were then combined into a larger box enclosing the entire written letter.
Ultimately, image preprocessing was applied to the resulting canvas image containing the
letter within the larger box to ensure compatibility with the model’s expected input for-
mat.

Figure 11. Steps of writing a letter in the air.

The algorithm used in the air-writing component to identify hand gestures is shown
in Algorithm 1.

Algorithm 1. Algorithm for detecting hand gestures

FUNCTION are_all_fingers_up(hand_landmarks):
DEFINE fingertip_indices as a list of indices for the fingertip landmarks
DEFINE lower_joint_indices as a list of indices for the lower joint landmarks
INITIALIZE finger_status as a list of False values, one for each finger
Check index finger separately
GET index_finger_tip and index_finger_lower_joint landmarks from hand_landmarks
IF index_finger_tip.y < index_finger_lower_joint.y:
SET finger_status [1] to True # Index finger is up
Check the remaining fingers
FOR each finger (starting from the middle finger):
GET the fingertip and lower joint landmarks
IF fingertip.y < lower_joint.y:
SET the corresponding finger_status to True # Finger is up
Check if all fingers are up
IF finger_status [1] AND finger_status [2] AND finger_status [3] AND finger_status [4] are all True:
RETURN True, finger_status
ELSE:
RETURN False, finger_status

3.6.4. Image Processing

Our study investigated the processing of camera input and canvas images to prepare
data for a pre-trained deep learning model. During the writing process, the camera input
and the canvas image are combined and synchronized. This synchronization ensures that
any content present in the camera is accurately reflected in the canvas, and vice versa. As a
result, to prepare the input for the pre-trained model, it is necessary to work with a copy of
the original canvas.

The procedures for processing the canvas images involved the following:

Handling White Writing

As depicted in Figure 12, when white letters were presented on a black background
canvas, letter contours were first identified, creating a bounding box around them. These
bounding boxes were then combined into a larger box enclosing the entire written letter.
Ultimately, image preprocessing was applied to the resulting canvas image containing the
letter within the larger box to ensure compatibility with the model’s expected input format.

Handling Colored Writing

For a canvas with colored writing, as illustrated in Figure 13, a distinctive approach
was carried out. The colors taken individually were thresholded on their own to generate
binary masks, which were then combined into a single mask representing the presence of
any color. This combined mask was inverted to identify regions without writing, which
were then filled with white color. The prescribed process resulted in a canvas with a white
background and colored writing. To obtain a black background with white writing, the

Sensors 2024, 24, 6098 16 of 25

canvas was converted to grayscale by using an increased threshold value, and the colors
of the grayscale image were inverted. In the end, adaptive thresholding was utilized for
the inverted grayscale image to achieve a binary image featuring a black background and
white writing.

Sensors 2024, 24, 6098 17 of 27

(a) Letter “jeem” (ج) written with white in

the air.
(b) Letter “jeem” (ج) within the original can-

vas.

Figure 12. Creating a bounding box around the letter.

Handling Colored Writing
For a canvas with colored writing, as illustrated in Figure 13, a distinctive approach

was carried out. The colors taken individually were thresholded on their own to generate
binary masks, which were then combined into a single mask representing the presence of
any color. This combined mask was inverted to identify regions without writing, which
were then filled with white color. The prescribed process resulted in a canvas with a white
background and colored writing. To obtain a black background with white writing, the
canvas was converted to grayscale by using an increased threshold value, and the colors
of the grayscale image were inverted. In the end, adaptive thresholding was utilized for
the inverted grayscale image to achieve a binary image featuring a black background and
white writing.

(a) Letter “jeem” (ج) written with red in the

air.
(b) Letter “jeem” (ج) within the original can-

vas.

(c) Combined mask with white fill. (d) Grayscale conversion.

Figure 13. Image processing on the canvas.

In our study, the image processing work on the canvas encountered several chal-
lenges that significantly impacted the model’s recognition accuracy. One primary consid-
eration was distinguishing between white writing and colored writing (red, green, or
blue). For the white writing on a black background, the model’s expected input format
was straightforward. However, processing colored writing required a different approach.

Figure 12. Creating a bounding box around the letter.

Sensors 2024, 24, 6098 17 of 27

(a) Letter “jeem” (ج) written with white in

the air.
(b) Letter “jeem” (ج) within the original can-

vas.

Figure 12. Creating a bounding box around the letter.

Handling Colored Writing
For a canvas with colored writing, as illustrated in Figure 13, a distinctive approach

was carried out. The colors taken individually were thresholded on their own to generate
binary masks, which were then combined into a single mask representing the presence of
any color. This combined mask was inverted to identify regions without writing, which
were then filled with white color. The prescribed process resulted in a canvas with a white
background and colored writing. To obtain a black background with white writing, the
canvas was converted to grayscale by using an increased threshold value, and the colors
of the grayscale image were inverted. In the end, adaptive thresholding was utilized for
the inverted grayscale image to achieve a binary image featuring a black background and
white writing.

(a) Letter “jeem” (ج) written with red in the

air.
(b) Letter “jeem” (ج) within the original can-

vas.

(c) Combined mask with white fill. (d) Grayscale conversion.

Figure 13. Image processing on the canvas.

In our study, the image processing work on the canvas encountered several chal-
lenges that significantly impacted the model’s recognition accuracy. One primary consid-
eration was distinguishing between white writing and colored writing (red, green, or
blue). For the white writing on a black background, the model’s expected input format
was straightforward. However, processing colored writing required a different approach.

Figure 13. Image processing on the canvas.

In our study, the image processing work on the canvas encountered several challenges
that significantly impacted the model’s recognition accuracy. One primary consideration
was distinguishing between white writing and colored writing (red, green, or blue). For
the white writing on a black background, the model’s expected input format was straight-
forward. However, processing colored writing required a different approach. Various
image-processing techniques needed to be applied to the canvas to achieve the desired
outcome of black-and-white writing.

When the writing was colored, a multi-step process was required to reach the final
desired canvas. Initially, the canvas with colored writing needed to be transformed into a
canvas with a white background and colored writing. This was accomplished by converting
the image to grayscale, carefully selecting the grayscale intensity to ensure the writing
appeared white. Determining the appropriate grayscale intensity was a challenge, as it
needed to work effectively with all three colors (red, green, and blue).

Sensors 2024, 24, 6098 17 of 25

Another key challenge was the complex structure of Arabic letters, which often consist
of multiple parts like dots and hamza. As depicted in Figure 14, the initial cropping process
did not include all of the necessary letter components, which problematically impacted the
recognition results. To address this, as shown in Figure 15, a modified cropping process
was implemented based on identifying the letter contours and enclosing them in a larger
bounding box to represent the full letter.

Sensors 2024, 24, 6098 18 of 27

Various image-processing techniques needed to be applied to the canvas to achieve the
desired outcome of black-and-white writing.

When the writing was colored, a multi-step process was required to reach the final
desired canvas. Initially, the canvas with colored writing needed to be transformed into a
canvas with a white background and colored writing. This was accomplished by convert-
ing the image to grayscale, carefully selecting the grayscale intensity to ensure the writing
appeared white. Determining the appropriate grayscale intensity was a challenge, as it
needed to work effectively with all three colors (red, green, and blue).

Another key challenge was the complex structure of Arabic letters, which often con-
sist of multiple parts like dots and hamza. As depicted in Figure 14, the initial cropping
process did not include all of the necessary letter components, which problematically im-
pacted the recognition results. To address this, as shown in Figure 15, a modified cropping
process was implemented based on identifying the letter contours and enclosing them in
a larger bounding box to represent the full letter.

(a) Letter “bah” (ب) in original canvas. (b) Letter “bah” (ب) not fully extracted from
canvas.

Figure 14. Initial cropping process.

(a) Letter “bah” (ب) in original canvas.
(b) Letter “bah” (ب) fully extracted from

canvas.

Figure 15. Modified cropping process.

3.6.5. Model’s Recognition
Once the image has been processed, the handwritten Arabic letter is ready to be rec-

ognized by the optimal CNN architecture, which is the seven-layer CNN without drop-
out.

Here are nine captured samples of air-written letters shown in Figure 16.

Figure 14. Initial cropping process.

Sensors 2024, 24, 6098 18 of 27

Various image-processing techniques needed to be applied to the canvas to achieve the
desired outcome of black-and-white writing.

When the writing was colored, a multi-step process was required to reach the final
desired canvas. Initially, the canvas with colored writing needed to be transformed into a
canvas with a white background and colored writing. This was accomplished by convert-
ing the image to grayscale, carefully selecting the grayscale intensity to ensure the writing
appeared white. Determining the appropriate grayscale intensity was a challenge, as it
needed to work effectively with all three colors (red, green, and blue).

Another key challenge was the complex structure of Arabic letters, which often con-
sist of multiple parts like dots and hamza. As depicted in Figure 14, the initial cropping
process did not include all of the necessary letter components, which problematically im-
pacted the recognition results. To address this, as shown in Figure 15, a modified cropping
process was implemented based on identifying the letter contours and enclosing them in
a larger bounding box to represent the full letter.

(a) Letter “bah” (ب) in original canvas. (b) Letter “bah” (ب) not fully extracted from
canvas.

Figure 14. Initial cropping process.

(a) Letter “bah” (ب) in original canvas.
(b) Letter “bah” (ب) fully extracted from

canvas.

Figure 15. Modified cropping process.

3.6.5. Model’s Recognition
Once the image has been processed, the handwritten Arabic letter is ready to be rec-

ognized by the optimal CNN architecture, which is the seven-layer CNN without drop-
out.

Here are nine captured samples of air-written letters shown in Figure 16.

Figure 15. Modified cropping process.

3.6.5. Model’s Recognition

Once the image has been processed, the handwritten Arabic letter is ready to be
recognized by the optimal CNN architecture, which is the seven-layer CNN without
dropout.

Here are nine captured samples of air-written letters shown in Figure 16.
Sensors 2024, 24, 6098 19 of 27

Figure 16. Samples of nine air-written Arabic letters.

3.7. Frontend Development
The SamAbjd web application was thoughtfully designed to provide a remarkably

user-friendly interface for the air-writing component, tailored specifically for children
aged 5 to 7 years old. The application’s structure consists of three distinct HTML pages—
a welcoming start page, a writing preference selection page, and the central air-writing
page itself (Figure 17). These interactive pages were meticulously crafted using Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript, all developed
within the robust PyCharm coding environment.

Significantly, the SamAbjd web app incorporates voice-based instructions through-
out and video tutorials of each letter [51,52], ensuring an intuitive and accessible experi-
ence for its young users. This thoughtful integration [53] of auditory guidance seamlessly
complements the visually engaging interface, empowering even the youngest patrons to
confidently explore and utilize the air-writing functionality.

Figure 16. Samples of nine air-written Arabic letters.

Sensors 2024, 24, 6098 18 of 25

3.7. Frontend Development

The SamAbjd web application was thoughtfully designed to provide a remarkably
user-friendly interface for the air-writing component, tailored specifically for children aged
5 to 7 years old. The application’s structure consists of three distinct HTML pages—a
welcoming start page, a writing preference selection page, and the central air-writing
page itself (Figure 17). These interactive pages were meticulously crafted using Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript, all developed
within the robust PyCharm coding environment.

Sensors 2024, 24, 6098 20 of 27

(a) Start page.

(b) Air-writing preference selection page.

(c) Air-writing page.

Figure 17. User interface of the SamAbjd web application.

4. Testing
Testing played a crucial role in the development of the SamAbjd web application,

ensuring that it effectively met the needs of its target audience. Our testing approach in-
cluded a detailed user testing phase and a satisfaction survey, both designed to assess the
application’s usability, effectiveness, and overall user experience. These efforts provided
valuable insights that guided the refinement of SamAbjd, making it a more user-friendly
and efficient tool for children learning Arabic.

4.1. User Testing
The user testing phase of the SamAbjd application was a crucial step in evaluating

the product’s usability, effectiveness, and overall user experience. This process involved
real users, including children, mothers, and teachers, who interacted with the application
to perform specific tasks. The testing aimed to identify any usability issues, gather valua-
ble feedback, and assess how well the application meets the needs of its target audience.

A total of 15 participants were involved in user testing, consisting of 5 children, 5
mothers, and 5 teachers. These participants were selected based on the Nielsen Norman
Group’s five-user rule, which states that “testing with 5 people lets you find almost as
many usability problems as you’d find using many more test participants” [54]. The par-
ticipants were asked to read and sign the consent form, which clarified that they partici-
pated voluntarily and that they could withdraw anytime. The consent form assured them

Figure 17. User interface of the SamAbjd web application.

Significantly, the SamAbjd web app incorporates voice-based instructions throughout
and video tutorials of each letter [51,52], ensuring an intuitive and accessible experience
for its young users. This thoughtful integration [53] of auditory guidance seamlessly
complements the visually engaging interface, empowering even the youngest patrons to
confidently explore and utilize the air-writing functionality.

4. Testing

Testing played a crucial role in the development of the SamAbjd web application,
ensuring that it effectively met the needs of its target audience. Our testing approach
included a detailed user testing phase and a satisfaction survey, both designed to assess the
application’s usability, effectiveness, and overall user experience. These efforts provided

Sensors 2024, 24, 6098 19 of 25

valuable insights that guided the refinement of SamAbjd, making it a more user-friendly
and efficient tool for children learning Arabic.

4.1. User Testing

The user testing phase of the SamAbjd application was a crucial step in evaluating the
product’s usability, effectiveness, and overall user experience. This process involved real
users, including children, mothers, and teachers, who interacted with the application to
perform specific tasks. The testing aimed to identify any usability issues, gather valuable
feedback, and assess how well the application meets the needs of its target audience.

A total of 15 participants were involved in user testing, consisting of 5 children,
5 mothers, and 5 teachers. These participants were selected based on the Nielsen Norman
Group’s five-user rule, which states that “testing with 5 people lets you find almost as many
usability problems as you’d find using many more test participants” [54]. The participants
were asked to read and sign the consent form, which clarified that they participated
voluntarily and that they could withdraw anytime. The consent form assured them that the
collected data were anonymous and used for research purposes only. The guardians signed
on behalf of their children who took part in this study. Each participant was assigned
a series of tasks designed to mimic real-world usage of the SamAbjd application. The
tasks included writing in the air using their index finger, pausing the writing, finishing
the writing, changing the color of the writing, and clearing the writing. The participant’s
performance was documented, focusing on completion time, the number of errors, and the
number of attempts required to successfully complete each task.

In the first task, participants were required to lift their index finger and write letters
or numbers in the air. Children took varying amounts of time to complete this task,
ranging from 1 to 5 min, with some requiring multiple attempts. Despite the challenges,
all participants successfully completed the task, demonstrating the application’s ability to
recognize air-writing. The second task involved pausing the writing by lifting two fingers.
This task proved more challenging, particularly for the children, with some taking up to
10 min to master the gesture. Teachers and mothers completed the task more quickly, with
minimal errors, highlighting the need for improved gesture recognition for younger users.

To finish the writing, participants needed to open their full hands. Children again
varied in their performance, with completion times ranging from 2 to 10 min. Teachers and
mothers completed the task with ease, indicating that the gesture was generally intuitive
but might require more practice for children.

Changing the color of the writing was a straightforward task that all participants
completed quickly and without errors. The consistent success across all user groups
suggests that this feature is well designed and easy to use.

Finally, participants were tasked with clearing the writing they had just completed.
Like the previous task, this was performed quickly and without errors by all participants,
confirming the effectiveness of the gesture.

The user testing results provided valuable insights into the performance and usability
of the SamAbjd web application. While certain tasks posed challenges for younger users,
particularly in terms of learning new gestures, the overall success rate was high. The
feedback gathered from this testing phase will be instrumental in refining the application’s
features and ensuring it meets the needs of its target audience effectively.

4.2. Real-Time Air-Writing Recognition Performance

The real-time performance from the end of the air-writing to recognition completion
developed in this study reached milliseconds, which meets the target for usability, especially
for applications targeting children. This high-quality real-time performance is a key strength
of the proposed approach.

When comparing the real-time performance to related work, the researchers found
that no prior papers had explored real-time air-writing recognition. To find a relevant
benchmark, the team looked at a recent study [54] that introduced a real-time air-writing

Sensors 2024, 24, 6098 20 of 25

recognition system for Bengali characters using supervised machine learning. This prior
work extensively evaluated the classification model by testing it 100 times on 10 randomly
selected Bengali characters from their air-writing dataset.

Following the same evaluation of the performance methodology, the current study
applied the trained classification model and achieved an accuracy of 84% in real-time
recognition by using the following equation:

Accuracy = CorrectAttempts × 100 (4)

which is higher than the 81% accuracy reported in the related work. This improvement
in real-time performance demonstrates the efficacy of the proposed approach. Table 3
summarizes the real-time performance results.

Table 3. Real-time performance of the model in recognition of Arabic air-writing letters.

Character No. of Attempts * Accuracy

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

(

@) Alef ¨ ¨ ¨ ¨ ¨ ¨ ✔ ✔ ¨ ¨ 20%

(
	

¬) Feh ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100%

(ø

) Yeh ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100%

(¼) Kaf ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100%

(�
�) Qaf ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100%

(H.) Beh ✔ ✔ �
H

�
H ✔ �

H ✔ �
H ✔ ✔ 60%

(P) Zeh ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100%

(X) Dal ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 100%

(�) Sad ✔ ✔ ✔ � ✔ ✔ ✔ � � ✔ 70%

(X) Thal ✔ ✔ ✔ ✔ ✔ 	P ✔ ✔ ✔ ✔ 90%

Overall Accuracy 84%

* The ✔ symbol indicates a correct prediction, while a letter represents the incorrect prediction made by the
model.

4.3. Satisfaction Survey

Following the testing phase, the same group of participants was surveyed to assess
their satisfaction with the SamAbjd web application. The survey focused on the ease of
learning gestures, the suitability of the interface for children, and the overall usability of
the application.

Responses were measured on a scale from 1 to 5, with 1 indicating “strongly disagree”
and 5 indicating “strongly agree”. The results, summarized in Table 4, show high levels of
satisfaction across all user groups, particularly in terms of the application’s child-friendly
design and intuitive gesture learning.

Table 4. Results of the satisfaction survey responses.

User
Type

Is the Web Application Easy
for the Child to Use?

Are the Colors and Interfaces
Suitable for Children?

Was It Easy to Learn and
Perform the Gestures in the Air? Average

Children

5 5 4

13.4
4 5 3
4 5 5
3 5 4
5 5 5

Sensors 2024, 24, 6098 21 of 25

Table 4. Cont.

User
Type

Is the Web Application Easy
for the Child to Use?

Are the Colors and Interfaces
Suitable for Children?

Was It Easy to Learn and
Perform the Gestures in the Air? Average

Mothers

5 5 4

14.2
5 5 5
4 5 4
5 5 5
5 5 4

Teachers

5 5 5

14.6
5 5 5
5 4 5
5 5 5
5 5 4

The feedback was overwhelmingly positive, with most users finding the application
enjoyable, helpful, and suitable for children. These promising results demonstrate that the
SamAbjd application has been well received and is effective in its purpose. The positive
responses also provide motivation to continue improving and enhancing the application,
ensuring it remains an advanced and engaging tool for children to learn and practice Arabic.

5. Discussion and Comparison with Existing Work

With a shared focus on air-writing recognition, related papers provide valuable in-
sights and analysis, albeit through different lenses and methodologies. We are going to
compare our study with a paper titled “Recognition of Arabic Air-Written Letters: Machine
Learning, Convolutional Neural Networks, and OCR Techniques” by Nahar et al. [30],
which explores the recognition of Arabic letters written in the air.

Our paper takes a different approach to air-writing recognition. The motivation behind
our study is to enhance children’s cognitive development by teaching them to write the
Arabic alphabet. We observed a lack of Arabic language educational applications, which
led us to develop an interactive web application called SamAbjd. This application leverages
deep learning techniques, including air-writing recognition, to facilitate the learning of
Arabic letters.

S. Nahar et al. [30] used one dataset, and they gathered from it 9000 images of Arabic
alphabets, focusing only on 18 letters in positions within words, such as the beginning,
middle, or end.

Regarding data preprocessing, both papers applied image denoising. However, in our
study, we additionally used data augmentation and grayscale conversion, while Nahar
et al. [30] employed feature extraction, dimensionality reduction, and data normalization.

In terms of methodology, we used deep learning models, specifically CNNs and
VGG16. We conducted a series of adjustments on the training parameters to evaluate
their effectiveness in recognizing handwritten Arabic letters. On the other hand, Nahar
et al. [30] used a hybrid model combining feature extraction, deep learning models, machine
learning methods, and OCR techniques. They applied various machine learning algorithms,
including neural networks (NNs), random forest (RF), KNN, and support vector machine
(SVM). Deep features extracted from CNNs such as VGG16, VGG19, and SqueezeNet were
fed into the machine learning models.

In terms of results, we achieved a high accuracy of 96.40% using a seven-layer CNN
model without dropout. In comparison, Nahar et al. [30] achieved an accuracy of 88.8%
using an NN with VGG16.

Furthermore, our study includes a practical implementation of the proposed system,
an actual web application with a frontend interface, while Nahar et al. [30] did not mention
the existence of an application.

Our approach stands out due to several key factors that collectively contribute to its
superior performance. Firstly, we focused primarily on deep learning, utilizing CNNs.

Sensors 2024, 24, 6098 22 of 25

This deliberate choice was driven by the remarkable results achieved using CNNs. They
offered superior performance, faster processing speeds, reduced computational load, and
minimized complexity compared to other approaches. Moreover, the size of our dataset
played a pivotal role in enhancing our approach. By utilizing a larger number of images,
we were able to significantly improve the accuracy of our model.

Table 5 highlights the key differences between our study and the work conducted by
Nahar et al. [30].

Table 5. Summary of comparison between our study and Nahar et al.’s study [30].

Our Study Nahar et al. [30]

Motivation

The motivation behind our study is to enhance
children’s cognitive development by teaching them
to write the Arabic alphabet. We observed a lack of
Arabic language educational applications.

This study aimed to develop and evaluate an
air-writing recognition system for the Arabic
language, addressing the lack of research in this
area compared to English and Chinese.

Dataset
We gathered data from three different sources,
resulting in 31,349 annotated images of all 28 Arabic
letters.

The study utilized the AHAWP dataset, a
comprehensive collection of letters, words, and
paragraphs written in Arabic, containing
18 letters. The dataset was gathered from
82 individuals, comprising a total of 9000 images
of the Arabic alphabet in various positions
within words.

Data Preprocessing Image denoising, data augmentation, and grayscale
conversion.

Feature extraction, dimensionality reduction,
data normalization, and image denoising.

Methodology Deep learning Deep learning and machine learning

Models CNN and VGG16
Machine learning: NNs, RF, KNN, SVM.

Deep learning: CNN, VGG16, VGG19, and
SqueezeNet.

Best Model 7-layer CNN model without dropout NN with VGG16.

Accuracy 96.40% 88.80%

Practical
Implementation

Our study includes a practical implementation of the
proposed system, an actual web application with a
frontend interface. Did not mention the existence of an application.

Additionally, we devoted considerable effort to studying and implementing effective
preprocessing techniques for our dataset. One notable technique involved converting all
images to grayscale, which proved beneficial in aiding the training process of our model.
Furthermore, we included data augmentation techniques, such as rotating, zooming, and
shifting the Arabic letter images. This ensured that a wide range of variations were
generated in the dataset. We believe this data augmentation approach is a key advantage
of our study compared to prior work, as the increased dataset diversity will be particularly
beneficial for recognizing the air-writing of the target audience—young children using the
SamAbjd air-writing web application.

6. Conclusions and Future Work

The study was developed to teach children how to write Arabic letters in a novel
and captivating way using deep learning techniques, specifically air-writing recognition.
The data for this study were sourced from three publicly available datasets, yielding a
substantial collection of 31,349 annotated images of handwritten Arabic letters. To enhance
the dataset quality, various preprocessing techniques were implemented, including image
denoising, grayscale conversion, and data augmentation. These steps were essential for
preparing the data for training the recognition model.

Two models, a CNN and VGG16, were evaluated for their performance in recognizing
handwritten Arabic characters. Among the CNN models tested, a seven-layer model

Sensors 2024, 24, 6098 23 of 25

without dropout demonstrated superior performance, achieving high training and testing
accuracies of 95.92% and 96.40%, respectively. This indicates a successful fit of the model
without overfitting. The model also achieved high precision and an F1-score of 96.43%.

To provide a user-friendly interface, a web application was developed in associa-
tion with the recognition model using Flask and PyCharm. This development ensures a
robust and efficient platform for children to engage with and learn the Arabic alphabet
and numbers.

A limitation of our current work is the camera’s performance, as we aim for it to
function consistently across various weather conditions and different devices.

Future work will focus on expanding the system’s capabilities by incorporating a
number recognition model and developing a mobile application. Additionally, we plan to
create a plugin that can be integrated into educational platforms, significantly benefiting
online learning. We also plan to experiment with more advanced architectures and hybrid
models to enhance the accuracy of capturing air-writing.

Author Contributions: Conceptualization, A.Q., A.A. (Aldanh AlMatrafy), A.A.-S., A.S. and A.A.
(Asmaa Alayed); data curation, A.Q., A.A. (Aldanh AlMatrafy), A.A.-S. and A.S.; formal analysis,
A.Q., A.A. (Aldanh AlMatrafy), A.A.-S. and A.S.; investigation, A.Q., A.A. (Aldanh AlMatrafy),
A.A.-S. and A.S.; methodology, A.Q., A.A. (Aldanh AlMatrafy), A.A.-S., A.S. and A.A. (Asmaa
Alayed); project administration, A.A. (Asmaa Alayed); resources, A.Q., A.A. (Aldanh AlMatrafy),
A.A.-S. and A.S.; software, A.Q., A.A. (Aldanh AlMatrafy), A.A.-S. and A.S.; supervision, A.A.
(Asmaa Alayed); validation, A.Q., A.A. (Aldanh AlMatrafy), A.A.-S. and A.S.; visualization, A.Q.,
A.A. (Aldanh AlMatrafy), A.A.-S. and A.S.; writing—original draft, A.Q., A.A. (Aldanh AlMatrafy),
A.A.-S., A.S. and A.A. (Asmaa Alayed); writing—review and editing, A.Q., A.A. (Aldanh AlMatrafy),
A.A.-S., A.S. and A.A. (Asmaa Alayed). All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shaban, A. Difficulties of Reading Arabic as a Foreign Language. J. Orient. Stud. 2023, 105, 4–10. [CrossRef]
2. Dajani, B.A.S.; Mubaideen, S.; Omari, F.M.A. Difficulties of Learning Arabic for Non-Native Speakers. Procedia Soc. Behav. Sci.

2014, 114, 919–926. [CrossRef]
3. Arabic Fourth Most Popular Language. Available online: https://www.arabnews.com/node/744791/amp (accessed on 31

January 2024).
4. Al-Huri, I. Arabic Language: Historic and Sociolinguistic Characteristics. Engl. Lit. Lang. Rev. 2015, 1, 28–36.
5. Vaidya, V.; Pravanth, T.; Viji, D. Air Writing Recognition Application for Dyslexic People. In Proceedings of the 2022 International

Mobile and Embedded Technology Conference (MECON), Noida, India, 10–11 March 2022; IEEE: Toulouse, France, 2022; pp.
553–558.

6. Raja, R.; Nagasubramani, P.C. Impact of modern technology in education. J. Appl. Adv. Res. 2018, 3, S33–S35. [CrossRef]
7. Asem, A.; Abdullah Y, O.R.A.G.; Mohammad, A.A.; Ziyad, I.A. Navigating Digital Transformation in Alignment with Vision

2030: A Review of Organizational Strategies, Innovations, and Implications in Saudi Arabia. J. Knowl. Learn. Sci. Technol. 2024, 3,
21–29. [CrossRef]

8. Oke, S. A Literature Review on Artificial Intelligence. Int. J. Inf. Manag. Sci. 2008, 19, 535–570.
9. Brynjolfsson, E.; Mcafee, A. Artificial Intelligence, for Real, 3rd ed.; HBR.ORG: Brighton, MI, USA, 2017; pp. 20–31.
10. Minsky, M. Steps toward Artificial Intelligence. Proc. IRE 1961, 49, 8–30. [CrossRef]
11. Sharifani, K.; Amini, M. Machine Learning and Deep Learning A Review of Methods and Applications. World Inf. Technol. Eng.

2023, 10, 3897–3904.
12. Itaguchi, Y.; Yamada, C.; Fukuzawa, K. Writing in the Air: Contributions of Finger Movement to Cognitive Processing. PLoS ONE

2015, 10, e0128419. [CrossRef]
13. Zhang, X.; Ye, Z.; Jin, L.; Feng, Z.; Xu, S. A New Writing Experience: Finger Writing in the Air Using a Kinect Sensor. IEEE

MultiMedia 2013, 20, 85–93. [CrossRef]

https://doi.org/10.26577/JOS.2023.v105.i2.01
https://doi.org/10.1016/j.sbspro.2013.12.808
https://www.arabnews.com/node/744791/amp
https://doi.org/10.21839/jaar.2018.v3iS1.165
https://doi.org/10.60087/jklst.vol3.n2.p29
https://doi.org/10.1109/JRPROC.1961.287775
https://doi.org/10.1371/journal.pone.0128419
https://doi.org/10.1109/MMUL.2013.50

Sensors 2024, 24, 6098 24 of 25

14. Xu, N.; Wang, W.; Qu, X. A Discriminative Classifier for In-Air Handwritten Chinese Characters Recognition. In Proceedings
of the ACM International Conference Proceeding Series; Association for Computing Machinery, New York, NY, USA, 15–18
November 2015; pp. 71–74.

15. Mohammadi, S.; Maleki, R. Air-Writing Recognition System for Persian Numbers with a Novel Classifier. Vis. Comput. 2020, 36,
1001–1015. [CrossRef]

16. Arsalan, M.; Santra, A. Character Recognition in Air-Writing Based on Network of Radars for Human-Machine Interface. IEEE
Sens. J. 2019, 19, 8855–8864. [CrossRef]

17. Ahmed, S.; Kim, W.; Park, J.; Cho, S.H. Radar-Based Air-Writing Gesture Recognition Using a Novel Multistream CNN Approach.
IEEE Internet Things 2022, 9, 23869–23880. [CrossRef]

18. Scharfenberg, G. Person Authentication by Handwriting in Airusing a Biometric SmartPen Device; Springer: Berlin/Heidelberg,
Germany, 2011; Volume 15, pp. 4–8.

19. Agrawal, S.; Gaonkar, S.; Choudhury, R.R.; Caves, K.; Deruyter, F. Using Mobile Phones to Write in Air. ACM 2011, 20, 15–28.
20. Chen, M.; AlRegib, G.; Juang, B.-H. Air-Writing Recognition—Part I: Modeling and Recognition of Characters, Words, and

Connecting Motions. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 589–599. [CrossRef]
21. Yanay, T.; Shmueli, E. Air-Writing Recognition Using Smart-Bands. Pervasive Mob. Comput. 2020, 66, 10–20. [CrossRef]
22. Baig, F.; Fahad Khan, M.; Beg, S. Text Writing in the Air. J. Inf. Disp. 2013, 14, 137–148. [CrossRef]
23. Islam, R.; Mahmud, H.; Hasan, M.K.; Rubaiyeat, H. Alphabet Recognition in Air Writing Using Depth Information. In Proceedings

of the Ninth International Conference on Advances in Computer-Human Interactions, Venice, Italy, 24–28 April 2016.
24. Roy, P.; Ghosh, S.; Pal, U. A CNN Based Framework for Unistroke Numeral Recognition in Air-Writing. In Proceedings of the

2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018.
25. Mukherjee, S.; Ahmed, A.; Dogra, D.P.; Kar, S.; Roy, P.P. Fingertip Detection and Tracking for Recognition of Air-Writing in Videos.

J. Vis. Commun. Image Represent. 2019, 136, 217–229. [CrossRef]
26. Alam, M.S.; Kwon, K.C.; Alam, M.A.; Abbass, M.Y.; Imtiaz, S.M.; Kim, N. Trajectory-Based Air-Writing Recognition Using Deep

Neural Network and Depth Sensor. Sensors 2020, 20, 376. [CrossRef]
27. Al Abir, F.; Al Siam, M.; Sayeed, A.; Hasan, M.A.M.; Shin, J. Deep Learning Based Air-Writing Recognition with the Choice of

Proper Interpolation Technique. Sensors 2021, 21, 8407. [CrossRef]
28. Hsieh, C.H.; Lo, Y.S.; Chen, J.Y.; Tang, S.K. Air-Writing Recognition Based on Deep Convolutional Neural Networks. IEEE Access

2021, 9, 142827–142836. [CrossRef]
29. Watanabe, T.; Maniruzzaman, M.; Hasan, M.A.M.; Lee, H.S.; Jang, S.W.; Shin, J. 2D Camera-Based Air-Writing Recognition Using

Hand Pose Estimation and Hybrid Deep Learning Model. Electronics 2023, 12, 995. [CrossRef]
30. Nahar, K.M.O.; Alsmadi, I.; Al Mamlook, R.E.; Nasayreh, A.; Gharaibeh, H.; Almuflih, A.S.; Alasim, F. Recognition of Arabic

Air-Written Letters: Machine Learning, Convolutional Neural Networks, and Optical Character Recognition (OCR) Techniques.
Sensors 2023, 23, 9475. [CrossRef] [PubMed]

31. Zabulis, X.; Baltzakis, H.; Argyros, A. Vision-Based Hand Gesture Recognition for Human-Computer Interaction. In The Universal
Access Handbook; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–56.

32. Liu, H.; Wang, L. Gesture Recognition for Human-Robot Collaboration: A Review. Int. J. Ind. Ergon. 2018, 68, 355–367. [CrossRef]
33. Arabic Handwritten Characters Dataset. Available online: https://www.kaggle.com/datasets/mloey1/ahcd1 (accessed on 18

May 2024).
34. HMBD-v1/Dataset Template v1.pdf at Master · HossamBalaha/HMBD-v1 GitHub. Available online: https://github.com/

HossamBalaha/HMBD-v1/blob/master/Dataset%20Template%20v1.pdf (accessed on 19 May 2024).
35. Swamy, S. A Basic Overview on Image Denoising Techniques. Int. Res. J. Eng. Technol. 2020, 7, 850–857.
36. Lefkimmiatis, S. Non-Local Color Image De-noising with Convolutional Neural Networks. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
37. Wu, H.; Gu, X. Introduction to Convolutional Neural Networks. Neural Netw. 2015, 71, 1–31. [CrossRef]
38. Understanding VGG16: A Powerful Deep Learning Model for Image Recognition. Available online: https://smuhabdullah.

medium.com/understanding-vgg16-a-powerful-deep-learning-model-for-image-recognition-d40b074fd01c (accessed on 18 May
2024).

39. Hou, F. Fire Image Detection and Classification Analysis Based on VGG16 Image Processing Model. Appl. Comput. Eng. 2024, 48,
225–231. [CrossRef]

40. Hassaballah, M.; Awad, A.I. Deep Learning in Computer Vision. In Deep Learning in Computer Vision; CRC Press: Boca Raton, FL,
USA, 2020.

41. Sakib, S.; Ahmed, N.; Kabir, A.J.; Ahmed, H. An Overview of Convolutional Neural Network: Its Architecture and Applications.
Preprints 2018, 2018110546. [CrossRef]

42. VGG-16|CNN Model. Available online: https://www.geeksforgeeks.org/vgg-16-cnn-model/ (accessed on 18 May 2024).
43. Juba, B.; Le, H.S. Precision-Recall versus Accuracy and the Role of Large Data Sets. In Proceedings of the AAAI Conference on

Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4039–4048.
44. F-Score: What are Accuracy, Precision, Recall, and F1 Score? Available online: https://klu.ai/glossary/accuracy-precision-recall-

f1 (accessed on 18 May 2024).

https://doi.org/10.1007/s00371-019-01717-3
https://doi.org/10.1109/JSEN.2019.2922395
https://doi.org/10.1109/JIOT.2022.3189395
https://doi.org/10.1109/THMS.2015.2492598
https://doi.org/10.1016/j.pmcj.2020.101183
https://doi.org/10.1080/15980316.2013.860928
https://doi.org/10.1016/j.eswa.2019.06.034
https://doi.org/10.3390/s20020376
https://doi.org/10.3390/s21248407
https://doi.org/10.1109/ACCESS.2021.3121093
https://doi.org/10.3390/electronics12040995
https://doi.org/10.3390/s23239475
https://www.ncbi.nlm.nih.gov/pubmed/38067848
https://doi.org/10.1016/j.ergon.2017.02.004
https://www.kaggle.com/datasets/mloey1/ahcd1
https://github.com/HossamBalaha/HMBD-v1/blob/master/Dataset%20Template%20v1.pdf
https://github.com/HossamBalaha/HMBD-v1/blob/master/Dataset%20Template%20v1.pdf
https://doi.org/10.1016/j.neunet.2015.07.007
https://smuhabdullah.medium.com/understanding-vgg16-a-powerful-deep-learning-model-for-image-recognition-d40b074fd01c
https://smuhabdullah.medium.com/understanding-vgg16-a-powerful-deep-learning-model-for-image-recognition-d40b074fd01c
https://doi.org/10.54254/2755-2721/48/20241529
https://doi.org/10.20944/preprints201811.0546.v4
https://www.geeksforgeeks.org/vgg-16-cnn-model/
https://klu.ai/glossary/accuracy-precision-recall-f1
https://klu.ai/glossary/accuracy-precision-recall-f1

Sensors 2024, 24, 6098 25 of 25

45. Formula Generator: Generate LaTeX Formulae and Equations that Can Be Copied to Microsoft Word. Available online: http:
//formula-generator.com/ (accessed on 20 May 2024).

46. Welcome to Colab. Available online: https://colab.research.google.com/ (accessed on 27 August 2024).
47. Personal Cloud Storage & File Sharing Platform. Available online: https://www.google.com/intl/en/drive/ (accessed on 27

August 2024).
48. PyCharm: The Python IDE for Data Science and Web Development. Available online: https://www.jetbrains.com/pycharm/

(accessed on 27 August 2024).
49. Marais, M.; Brown, D.; Connan, J.; Boby, A. An Evaluation of Hand-Based Algorithms for Sign Language Recognition. In

Proceedings of the 2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication
Systems (icABCD), Durban, South Africa, 4–5 August 2022.

50. Zad Alhorof School—YouTube. Available online: https://www.youtube.com/@zadalhorofschool (accessed on 18 May 2024).
51. Teaching Children How to Write Arabic Letters and Pronounce Them in an Easy Way. Available online: https://www.youtube.

com/watch?v=aNNUdNhpSB8&t=6s (accessed on 18 May 2024).
52. How to Make a Web Application Using Flask in Python 3. Available online: https://www.digitalocean.com/community/

tutorials/how-to-make-a-web-application-using-flask-in-python-3 (accessed on 18 May 2024).
53. Nielsen Norman Group: UX Training, Consulting, & Research. Available online: https://www.nngroup.com/ (accessed on 27

August 2024).
54. Kader, M.A.; Ullah, M.A.; Islam, M.S.; Sánchez, F.F.; Samad, M.A.; Ashraf, I. A Real-Time Air-Writing Model to Recognize Bengali

Characters. AIMS Math. 2024, 9, 6668–6698. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://formula-generator.com/
http://formula-generator.com/
https://colab.research.google.com/
https://www.google.com/intl/en/drive/
https://www.jetbrains.com/pycharm/
https://www.youtube.com/@zadalhorofschool
https://www.youtube.com/watch?v=aNNUdNhpSB8&t=6s
https://www.youtube.com/watch?v=aNNUdNhpSB8&t=6s
https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
https://www.nngroup.com/
https://doi.org/10.3934/math.2024325

	Introduction
	Related Work
	Air-Writing Recognition with Sensor-Based Recognition
	Air-Writing with Radar-Based Recognition
	Air-Writing with Devices

	Air-Writing with Vision-Based Recognition

	Methodology
	Data Gathering
	Dataset Splitting
	Data Preprocessing
	Image Denoising
	Grayscale Conversion
	Data Augmentation

	Searching for Suitable Neural Network Algorithms
	The CNN Model
	The VGG16 Model

	Build and Train the Model
	Training Hyperparameters
	Model Evaluation and Results
	Limitations

	Backend Development
	Air-Writing Recognition in Real-Time
	Adjust Front Camera
	Hand Tracking
	Image Processing
	Model’s Recognition

	Frontend Development

	Testing
	User Testing
	Real-Time Air-Writing Recognition Performance
	Satisfaction Survey

	Discussion and Comparison with Existing Work
	Conclusions and Future Work
	References

