Kinematical Effects of a Mandibular Advancement Occlusal Splint on Running until Exhaustion at Severe Intensity
<p>Implemented setup for the three experimental sessions.</p> "> Figure 2
<p>Landmarks and camera-specific positions adopted for the square wave transition exercise trials.</p> "> Figure 3
<p>Running temporal and knee angular variables (panels (<b>A</b>,<b>B</b>), respectively) analyzed in Kinovea software while running until exhaustion at severe intensity.</p> "> Figure 4
<p>Running spatiotemporal variables during running until exhaustion at severe intensity for both tested occlusal splints (green and red for conditions without and with mandibular advancement, respectively). * <span class="html-italic">p</span> ≤ 0.05 indicates differences within laps.</p> "> Figure 5
<p>Contact time for each foot (solid and striped for right and left foot, respectively) during running until exhaustion at severe intensity for both tested occlusal splints (green and red for conditions without and with mandibular advancement, respectively. * <span class="html-italic">p</span> ≤ 0.05 indicates differences between feet.</p> "> Figure 6
<p>Knee angular kinematics during running until exhaustion at severe intensity for both tested occlusal splints (green and red for conditions without and with mandibular advancement, respectively). * <span class="html-italic">p</span> ≤ 0.05 indicates differences within laps.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derrick, T.R.; Dereu, D.; McLean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sports Exerc. 2002, 34, 998–1002. [Google Scholar] [CrossRef]
- Winter, S.; Gordon, S.; Watt, K. Effects of fatigue on kinematics and kinetics during overground running: A systematic review. J. Sports Med. Phys. Fit. 2017, 57, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Hayes, P.R.; Caplan, N. Leg stiffness decreases during a run to exhaustion at the speed at VO2max. Eur. J. Sport Sci. 2014, 14, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Encarnación-Martínez, A.; Pérez-Soriano, P.; Sanchis-Sanchis, R.; Berenguer-Vidal, R.; García-Gallart, A. Modification of angular kinematics and spatiotemporal parameters during running after central and peripheral fatigue. Appl. Sci. 2021, 11, 6610. [Google Scholar] [CrossRef]
- Hunter, I.; Smith, G.A. Preferred and optimal stride frequency, stiffness and economy: Changes with fatigue during a 1-h high-intensity run. Eur. J. Appl. Physiol. 2007, 100, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Dierks, T.A.; Davis, I.S.; Hamill, J. The effects of running in an exerted state on lower extremity kinematics and joint timing. J. Biomech. 2010, 43, 2993–2998. [Google Scholar] [CrossRef]
- Le Bris, R.; Billat, V.; Auvinet, B.; Chaleil, D.; Hamard, L.; Barrey, E. Effect of fatigue on stride pattern continuously measured by an accelerometric gait recorder in middle distance runners. J. Sports Med. Phys. Fitness 2006, 46, 227–231. [Google Scholar]
- Luo, Z.; Zhang, X.; Wang, J.; Yang, Y.; Xu, Y.; Fu, W. Changes in ground reaction forces, joint mechanics, and stiffness during treadmill running to fatigue. Appl. Sci. 2019, 9, 5493. [Google Scholar] [CrossRef]
- Billat, V.; Koralsztein, J.P. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med. 1996, 22, 90–108. [Google Scholar] [CrossRef]
- Demarie, S.; Koralsztein, J.P.; Billat, V. Time limit and time at VO2max’ during a continuous and an intermittent run. J. Sports Med. Phys. Fitness 2000, 40, 96–102. [Google Scholar]
- Billat, V.; Renoux, J.C.; Pinoteau, J.; Petit, B.; Koralsztein, J.P. Reproducibility of running time to exhaustion at VO2max in subelite runners. Med. Sci. Sports Exerc. 1994, 26, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; Sutherland, K.; Schwab, R.J.; Zeng, B.; Petocz, P.; Lee, R.W.; Darendeliler, M.A.; Cistulli, P.A. The effect of mandibular advancement on upper airway structure in obstructive sleep apnoea. Thorax 2010, 65, 726–732. [Google Scholar] [CrossRef]
- Cardoso, F.; Coelho, E.P.; Gay, A.; Vilas-Boas, J.P.; Pinho, J.C.; Pyne, D.B.; Fernandes, R.J. Case study: A jaw-protruding dental splint improves running physiology and kinematics. Int. J. Sports Physiol. Perform. 2022, 17, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Monteiro, A.S.; Vilas-Boas, J.P.; Pinho, J.C.; Pyne, D.B.; Fernandes, R.J. Effects of wearing a 50% lower jaw advancement splint on biophysical and perceptual responses at low to severe running intensities. Life 2022, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Schultz Martins, R.; Girouard, P.; Elliott, E.; Mekary, S. Physiological responses of a jaw-repositioning custom-made mouthguard on airway and their effects on athletic performance. J. Strength Cond. Res. 2020, 34, 422–429. [Google Scholar] [CrossRef]
- Cardoso, F.; Lima, J.P.; Cardoso, R.; Vilas-Boas, J.P.; Pinho, J.C.; Pyne, D.B.; Fernandes, R.J. Is running kinematics affected by wearing a lower jaw repositioning splint? In Proceedings of the SCS 4th Annual Conference: Strength and Conditioning for Human Performance, Porto, Portugal, 12–13 November 2022; pp. 5–7. [Google Scholar]
- Maurer, C.; Stief, F.; Jonas, A.; Kovac, A.; Groneberg, D.A.; Meurer, A.; Ohlendorf, D. Influence of the lower jaw position on the running pattern. PLoS ONE 2015, 10, e0135712. [Google Scholar] [CrossRef]
- Dias, A.; Redinha, L.; Rodrigues, M.J.; Silva, L.; Pezarat-Correia, P. A kinematic analysis on the immediate effects of occlusal splints in gait and running body sway patterns. Cranio 2022, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Hayakawa, L.; Hirano, S.; Watanabe, I. Changes in gait stability induced by alteration of mandibular position. J. Med. Dent. Sci. 2001, 48, 131–136. [Google Scholar]
- Sousa, A.; Figueiredo, P.; Zamparo, P.; Pyne, D.B.; Vilas-Boas, J.P.; Fernandes, R.J. Exercise modality effect on bioenergetical performance at V O2max intensity. Med. Sci. Sports Exerc.. 2015, 47, 1705–1713. [Google Scholar] [CrossRef]
- Billat, V.; Bernard, O.; Pinoteau, J.; Petit, B.; Koralsztein, J.P. Time to exhaustion at VO2max and lactate steady state velocity in sub elite long-distance runners. Arch. Int. Physiol. Biochim. Biophys. 1994, 102, 215–219. [Google Scholar] [CrossRef]
- Sousa, A.C.; Fernandes, R.J.; Boas, J.P.V.; Figueiredo, P. High-intensity interval training in different exercise modes: Lessons from time to exhaustion. Int. J. Sports Med. 2018, 39, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Patoz, A.; Lussiana, T.; Breine, B.; Gindre, C.; Malatesta, D. Duty factor and foot-strike pattern do not represent similar running pattern at the individual level. Sci. Rep. 2022, 12, 13061. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Williams, K.R. The effect of stride length variation on oxygen uptake during distance running. Med. Sci. Sports Exerc. 1982, 14, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Morin, J.B.; Degache, F.; Edouard, P.; Feasson, L.; Verney, J.; Oullion, R. Running from Paris to Beijing: Biomechanical and physiological consequences. Eur. J. Appl. Physiol. 2009, 107, 731–738. [Google Scholar] [CrossRef]
- De Lucca, L.; Iberes, S. Relationship between running kinematic changes and time limit at vVO2max. Braz. J. Kinanthropometry Hum. Perform. 2012, 14, 428–438. [Google Scholar] [CrossRef]
- Folland, J.P.; Allen, S.J.; Black, M.I.; Handsaker, J.C.; Forrester, S.E. Running technique is an important component of running economy and performance. Med. Sci. Sports Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef]
- Gazeau, F.; Koralsztein, J.P.; Billat, V. Biomechanical events in the time to exhaustion at maximum aerobic speed. Arch. Physiol. Biochem. 1997, 105, 583–590. [Google Scholar] [CrossRef]
- Girard, O.; Millet, G.P.; Micallef, J.P. Mechanical Alterations during 800-m Self-Paced Track Running. Int. J. Sports Med. 2017, 38, 314–321. [Google Scholar] [CrossRef]
- Girard, O.; Millet, G.P.; Slawinski, J.; Racinais, S.; Micallef, J.P. Changes in running mechanics and spring-mass behaviour during a 5-km time trial. Int. J. Sports Med. 2013, 34, 832–840. [Google Scholar] [CrossRef]
- Gerlach, K.E.; White, S.C.; Burton, H.W.; Dorn, J.M.; Leddy, J.J.; Horvath, P.J. Kinetic changes with fatigue and relationship to injury in female runners. Med. Sci. Sports Exerc. 2005, 37, 657–663. [Google Scholar] [CrossRef]
- Avogadro, P.; Dolenec, A.; Belli, A. Changes in mechanical work during severe exhausting running. Eur. J. Appl. Physiol. 2003, 90, 165–170. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Cartón-Llorente, A.; Jaén-Carrillo, D.; Delgado-Floody, P.; Carrasco-Alarcón, V.; Martínez, C.; Roche-Seruendo, L.E. Does fatigue alter step characteristics and stiffness during running? Gait. Posture 2020, 76, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Patoz, A.; Blokker, T.; Pedrani, N.; Spicher, R.; Borrani, F.; Malatesta, D. Biomechanical adaptations during exhaustive runs at 90 to 120% of peak aerobic speed. Sci. Rep. 2023, 13, 8236. [Google Scholar] [CrossRef] [PubMed]
- Beck, O.N.; Azua, E.N.; Grabowski, A.M. Step time asymmetry increases metabolic energy expenditure during running. Eur. J. Appl. Physiol. 2018, 118, 2147–2154. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, J.; Verbitsky, O.; Isakov, E. Fatigue-induced changes in decline running. Clin. Biomech. 2001, 16, 207–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, F.; Costa, M.J.; Rios, M.; Vilas-Boas, J.P.; Pinho, J.C.; Pyne, D.B.; Fernandes, R.J. Kinematical Effects of a Mandibular Advancement Occlusal Splint on Running until Exhaustion at Severe Intensity. Sensors 2024, 24, 6032. https://doi.org/10.3390/s24186032
Cardoso F, Costa MJ, Rios M, Vilas-Boas JP, Pinho JC, Pyne DB, Fernandes RJ. Kinematical Effects of a Mandibular Advancement Occlusal Splint on Running until Exhaustion at Severe Intensity. Sensors. 2024; 24(18):6032. https://doi.org/10.3390/s24186032
Chicago/Turabian StyleCardoso, Filipa, Mário J. Costa, Manoel Rios, João Paulo Vilas-Boas, João Carlos Pinho, David B. Pyne, and Ricardo J. Fernandes. 2024. "Kinematical Effects of a Mandibular Advancement Occlusal Splint on Running until Exhaustion at Severe Intensity" Sensors 24, no. 18: 6032. https://doi.org/10.3390/s24186032
APA StyleCardoso, F., Costa, M. J., Rios, M., Vilas-Boas, J. P., Pinho, J. C., Pyne, D. B., & Fernandes, R. J. (2024). Kinematical Effects of a Mandibular Advancement Occlusal Splint on Running until Exhaustion at Severe Intensity. Sensors, 24(18), 6032. https://doi.org/10.3390/s24186032