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Abstract: The 6TiSCH protocol (IEEE 802.15.4e) is crucial for the Industrial Internet of Things (IIoT),
utilizing a time-slotted channel hopping (TSCH) mode based on node distribution. In this study, we
propose an innovative cell allocation strategy based on node position clustering using the K-means
algorithm, specifically designed to address congestion and optimize resource distribution in the
6TiSCH network. Our mechanism effectively groups nodes into clusters, allowing for dynamic ad-
justment of cell capacities in congested areas by analyzing traffic patterns and the spatial distribution
of nodes. This clustering approach enhances the efficiency of slot frame utilization and minimizes
communication delays by reducing interference and improving routing stability. The proposed
strategy leverages the clustering results to improve cell usage efficiency and reduce communication
latency between nodes. By tailoring cell allocation to the specific traffic needs of each cluster, we
significantly reduce packet loss, manage congestion more effectively, and enhance data transmission
reliability. We evaluated the clustering method using the K-means algorithm through experiments
with the 6TiSCH simulator. Additionally, we considered using objective functions in Routing Pro-
tocol for Low-Power and Lossy Networks (RPL), such as OF0 and MRHOF, to assess clustering
results and their impact on throughput and packet delivery. Our method resulted in significantly
improved average performance metrics. Under the OF0 routing protocol, we achieved a 30.01%
latency reduction, a 15.95% faster joining time, an 8% higher packet delivery ratio, and a 13.82%
throughput increase. Similarly, we observed a 12.34% improvement in packet delivery ratio, 21.06%
latency reduction, 12.68% faster joining time, and 25.97% higher throughput speed with the MRHOF
routing protocol. These findings highlight the effectiveness of the improved cell allocation strategy in
congested 6TiSCH environments, offering a better solution for enhancing network performance in
IIoT applications.

Keywords: 6TiSCH; cell allocation; K-means; node density; wireless sensor network

1. Introduction

The Internet of Things (IoT) connects physical devices, enabling wireless sensor nodes
to share environmental data and facilitate system interaction with the real world. Wireless
sensor networks (WSNs) have gained interest for their diverse applications in analyzing
environmental conditions and guiding appropriate responses [1]. 6TiSCH addresses the
needs of low-power wireless networks by ensuring end-to-end reliability and deterministic
latency. It integrates IPv6 with IEEE802.15.4 time-slotted channel-hopping (TSCH), provid-
ing industrial-grade performance and seamless internet connectivity that are vital for the
Industrial Internet of Things (IIoT) [2]. Therefore, the present work identifies and addresses
the challenges in routing strategies and security management to enhance their efficiency
and effectiveness while striving for greater simplicity in these areas [3,4]. In IEEE 802.15.4’s
TSCH mode, limited broadcast opportunities occur at specific times and channels. Routers
use enhanced beacon (EB) frames to announce the network; these EBs can include critical
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information that allows new or long-sleeping nodes to make the most of these rare broad-
casts, thereby ensuring efficient slot usage [5]. Scheduling techniques in TSCH networks
vary, with some using centralized methods employing root node managing schedules and
cell allocations and others using link-based schemes employing MAC addresses. However,
current TSCH approaches may not meet future IIoT needs. Hence, more lightweight and
energy-efficient scheduling and routing algorithms are necessary [6].

The 6TiSCH architecture is crucial for the IIoT, ensuring reliable communication
through effective cell allocation to prevent packet loss in high-traffic areas. In factories, field
devices and sensors require high reliability and timely information exchange [7]. Efficient
cell allocation based on node position directly influences network performance and power
consumption [8]. Optimizing cell allocation in 6TiSCH-based wireless sensor networks is
essential for reliable data transmission, especially in densely deployed environments [9]
comprising industrial automation, smart city infrastructure, and environmental monitoring
implementations. This work employs the K-means algorithm for label-free clustering to
optimize cell allocation in 6TiSCH networks by clustering nodes based on their spatial
distribution and link performance, which helps to avoid the need for further iterations.
Centroid nodes are designated as cluster heads and other nodes are associated with the
nearest center, resulting in reduced transmission hops, simplified neighbor discovery, and
enhanced scalability. This clustering strategy informs a dynamic cell allocation approach
within the slot frame, which improves communication efficiency and minimizes collisions.
Our proposed method efficiently manages intra-cluster subchannel allocation and inter-
cluster interference through distributed learning, which optimizes cell utilization, reduces
overhead, and enhances overall network efficiency. This optimization is reflected in the net-
work topology, where parent nodes function as cluster heads and sink nodes serve as data
collection centers. Dynamic cell allocation within each cluster is guided by communication
demands and traffic density, thereby minimizing congestion and improving transmission
efficiency. Furthermore, routing paths and network organization are determined by RPL
while considering factors such as OF0 and MRHOF. Network performance is assessed based
on the joining time, packet delivery ratio, end-to-end latency, and throughput. By main-
taining a constant number of nodes, this study prioritizes the evaluation of clustering and
cell allocation strategies while accounting for the static conditions typical of industrial and
IIoT environments [10].

Our goal is to enhance resource utilization in 6TiSCH networks and to reduce packet
loss based on the node distribution. K-means clustering is applied to nodes based on
nearby communication needs to optimize packet routes, minimize packet loss and latency,
and ensure reliable data communication by division based on nodes’ distance in a grid
area. This method also prevents slot collisions and maintains efficient cell placement by
ensuring that cells from the same communication node do not occupy the same slot frame.
The proposed system allocates additional slots in the next available frame if the available
slots are insufficient.

The contribution of this study can be summarized as follows:

• We improve cell allocation in the 6TiSCH network, optimizing resource utilization,
reducing packet loss, and ensuring reliable communication.

• We utilize K-means clustering to group nodes based on nearby communication needs,
which minimizes packet loss and latency, improves delivery ratio and throughput,
and prevents slot collisions by maintaining efficient cell placement.

• We enhance network performance and scalability for IIoT applications by providing
insights into node distribution, communication patterns, and resource allocation,
enabling better management of network resources and avoiding slot clashes through
dynamic cell allocation.

The structure of this paper is as follows: Section 2 provides an overview of the simula-
tor and tools, and discusses the problem of clustering techniques; Section 3 reviews related
works for comparison; Section 4 outlines the proposed density clustering mechanism for
node-centric cell allocation in the 6TiSCH network; Section 5 presents the performance
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evaluation, covering metrics such as packet delivery ratio, latency, time allocation for every
node to join the network, and throughput; finally, Section 6 concludes the paper with a
summary of the findings.

2. Related Work

This section provides an overview of studies on clustering techniques in wireless
sensor networks and related research. Our method employs group nodes for administration
and distributed job execution, including management of resources such as the congestion
level of neighboring nodes. Although the primary benefit of clustering systems is lower
energy consumption, clustering also addresses network heterogeneity and mobility, load
balancing, and energy conservation.

One application of cluster formation in WSN, as demonstrated by [11], employs
particle swarm optimization and Tabu algorithm techniques. These methods improve
energy efficiency, network longevity, and protocol performance by rotating cluster head
roles based on energy levels, utilizing multi-hop routing algorithms, and incorporating
fault tolerance mechanisms. However, the selection of cluster heads remains constrained by
the parameter settings, which can result in elevated energy consumption. Space partition in
K-means clustering using optimal K-means was employed in [12] to address area partition
by forming space partitions in a wireless sensor network, although the node issuance
algorithm remains unclear. A modified grid-based wireless sensor network utilizing the
K-means approach [13] has been tested to enhance energy efficiency and extend the lifespan
of large-scale wireless sensor networks. This method reduces overall energy consumption
and improves network longevity by dividing the network area into grids and applying
K-means clustering within each grid cell; however, it may impose limitations on deploying
heterogeneous sensor networks that rely on a static parent node.

Hierarchical protocols such as Low-Energy Adaptive Clustering Hierarchy (LEACH)
reduce the amount of data transmitted across the network by dividing it into clusters
with cluster heads responsible for data aggregation and relaying. This protocol conserves
energy and improves scalability. Modifying LEACH, as proposed by [14], combines the
midpoint algorithm with the K-means approach to enhance network lifespan in wireless
sensor networks, aiming to create balanced clusters and reduce cluster head load. Further
optimization of this method could improve overall network efficiency and prolong network
lifespan, addressing the minor declines in the packet delivery ratio observed in initial tests.
As mentioned earlier, LEACH can be adapted to anticipate reduced data transmission, as
suggested by [15], where an algorithm was developed to select a primary and secondary
cluster head in order to maintain network performance and efficiency while ensuring
data flow continuity even in the event of node failure. Another method [16] focuses on
improving the average energy consumption per node in each round and the number
of surviving nodes per round, although routing algorithms still need to address high
latency issues.

To minimize frequent reclustering and associated energy overhead, [17] introduced
a multi-hop routing algorithm to optimize energy use across the network, incorporating
a fault-tolerant mechanism to address CH and relay node failures. However, this exper-
iment’s routing process emphasized close transmission distances without considering
the need for nodes to be utilized, aiming to minimize energy consumption even if the
receiver node remains inactive without any expected packet reception. In [18], the authors
employed a joint optimization strategy using the A3C learning algorithm to minimize
the system energy consumption of the NOMA cluster while ensuring safe and low-delay
computational loading in dynamic vehicle networks.

Our research focuses on cell allocation and its impact on wireless sensor network
implementation, unlike previous works that typically concentrate on node localization.
We examine how node grouping performance affects each cell allocation, particularly in
TSCH, as well as its indirect relation to the cell allocation system in WSN, while considering
node location, energy efficiency, and network performance. Unlike earlier studies, we
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investigate how group node positioning influences cell operation in TSCH, focusing on
scalability, throughput delay, and reliable communication. Furthermore, we propose a
dynamic allocation method for enhancing network efficiency that makes adjustments based
on node mobility and network responsiveness during data transmission.

3. Background
3.1. TSCH

IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) is an amendment to the IEEE
802.15.4 standard outlining the physical (PHY) and medium access control (MAC) layers for
low-rate wireless personal area networks (WPANs). Designed for industrial and automation
applications, TSCH offers synchronized time-based communication, making it dependable
and energy-efficient. It is ideal for applications that require precise timing and coordination,
such as industrial control systems or environmental sensor networks [19]. While TSCH
specifies functionality, its implementation depends on network architecture and application
needs. Channels are managed by dividing time into fixed time slots and periodically
changing frequency channels, with each node assigned specific times for data transmission
or reception and synchronized with neighboring nodes, thereby minimizing channel access
conflicts [20].

TSCH is a MAC mode in the IEEE 802.15.4e standard that allocates time slots for data
transmission or reception. These allocations can be static or dynamic based on network
requirements. Time slots are organized into slot frames, which define cycles of time slots
that repeat according to the slot frame size [21]. Nodes communicate within these time slots,
where they are synchronized through a shared channel hopping schedule that periodically
changes the frequency channels to reduce interference. This ensures precise communication
and time synchronization between nodes, with the slot frame length being adjustable
based on network and application needs. TSCH operation utilizes about 16 available
channels, which allows for high coordination within the network and reduced channel
access conflicts [22].

3.2. 6TiSCH Minimal Scheduling Function

6TiSCH (IPv6 over IEEE 802.15.4e TSCH mode) is an IETF standard for facilitating IPv6
communications over IEEE 802.15.4e TSCH mode [3]. It defines control plane protocols to
align link-layer resources with application needs and integrates CoAP with link-layer security
[23]. The 6TiSCH architecture combines IPv6 with IEEE 802.15.4e TSCH MAC, organizing
time into slots within slot frames in which each slot is a distinct time interval for node
functions [24,25]. Cells representing communications capability are controlled by the 6TiSCH
Operational Sublayer Protocol (6P), which manages cell allocations and time slot usage to
ensure reliable communication and resource efficiency in IIoT environments [25,26].

The Minimal Scheduling Function (MSF) in 6TiSCH networks adjusts cell allocation
based on utilization metrics to meet dynamic bandwidth requirements [27]. Using TSCH at
the MAC layer, MSF operates with minimal cells for network initialization, autonomous
cells for default communication and negotiated cells for managing communication load [28].
MSF coordinates time slot and cell distributions, synchronizes node transmission schedules,
and assigns specific roles to nodes [29]. This protocol ensures efficient bandwidth use, low
latency, and high dependability, making it suitable for real-time control and monitoring
systems [25].

3.3. Routing Protocol for Low-Power and Lossy Networks (RPL)

The Routing Protocol for Low-Power and Lossy Networks (RPL) is designed for
resource-constrained environments such as wireless sensor network. RPL offers efficient
and reliable routing by addressing challenges such as node mobility, dynamic topologies,
and unpredictable conditions. It supports hierarchical structures and uses the Destination-
Oriented Directed Acyclic Graph (DODAG) to establish optimal paths toward specific
destinations while considering topology and delivery needs [30]. RPL also dynamically
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reorganizes paths in response to network changes, making it ideal for WSN and IoT
applications thanks to its efficiency, reliability, and ability to manage control overhead and
memory constraints [31].

3.3.1. Objective Function Zero (OF0)

The Objective Function Zero (OF0) in the RPL guides nodes in selecting and optimizing
routes within an RPL instance by using available information objects. Instead of providing
specific instructions, OF0 offers a general concept to calculate a node’s rank by adding
a normalized scalar to the rank of its preferred parent Rp. OF0 encodes rank in units of
256, allowing for hop ranges from 28 (worst) to 255 (best). In RPL, all parents are feasible
successors for upward traffic, and nodes can consider parents in subsequent DODAG
versions as potential successors. To compute the current node’s rank RN , the step of
rank Sp is multiplied by the rank factor R f and adjusted with a stretch factor Sr that is
constrained by the configured rank stretch. This rank is then added to the preferred parent’s
rank to determine the node’s overall rank. By calculating the rank, OF0 enables a node to
participate in a DODAG version that provides satisfactory connectivity, with the minimal
hop rank increase defining the lowest rank increase to any potential parent. OF0 does not
guarantee optimization according to any specific metric; connectivity validation is specific
to implementation and link type, which falls outside OF0’s scope [32].

3.3.2. Minimum Rank with Hysteresis Objective Function (MRHOF)

Another RPL protocol, Minimum Rank with Hysteresis Objective Function (MRHOF),
looks for the best path between source and destination nodes in resource-constrained
wireless networks with changeable conditions. MRHOF aims to minimize routing overhead
while balancing path quality and network stability. MRHOF evaluates each node’s rank
value to find the shortest path using the minimum rank algorithm. MRHOF uses hysteresis
to prevent frequent changes and preserve path stability in the face of varying network
conditions. Additive metrics are compatible with this protocol because they use metrics to
minimize path costs [33].

3.4. Unsupervised Learning and K-Means Clustering

Unsupervised learning aims to uncover patterns in unlabeled data by discovering
hidden structures without predefined labels. Unlike supervised learning, which uses
labeled datasets, unsupervised learning focuses on clustering, identifying correlations, and
reducing data dimensionality. The clustering process relies on similarity metrics, with the
Euclidean distance being the most common [34]. Other metrics, such as the correlation
coefficient, may be used as well. Cluster analysis identifies high-density groups with
similar observations within clusters. The number of clusters and similarity metric both
have significant impacts on the results [35]. The K-means algorithm is a widely used
unsupervised technique for clustering data into predefined clusters [36]. It partitions
a dataset of N observations into k clusters by iteratively assigning observations to the
nearest centroid, calculated as the mean of the points in a cluster. Starting with random
centroids, the algorithm alternates between assigning observations based on the Euclidean
distance and recalculating the centroids until reaching either convergence or a set number
of iterations [37]. Using the Euclidean distance, K-means clustering seeks to minimize the
within-cluster sum of squares (WCSS). Challenges include handling non-spherical clusters,
outliers, and empty clusters, which are often resolved by reassignment or adjusting the
number of clusters k. The elbow method determines the optimal k by plotting the WCSS
against various values of k to find the ‘elbow’ point. Silhouette analysis assesses cluster
compactness and separation, aiding in the selection of an appropriate k value.

Silhouette Score and Elbow Method

The Silhouette Score measures how well an object fits within its cluster compared
to other clusters, ranging from −1 to 1. Positive values indicate that objects are more
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similar to their cluster members than those in other clusters, while negative values suggest
the opposite [38]. For an object i, the cluster B with the minimum distance to i (i.e.,
d(i, B) = b(i)) is considered the closest alternative if i cannot be assigned to cluster A.
Determining b(i) requires considering clusters other than A; hence, k must be greater than
1. The Silhouette Score s(i) combines a(i) and b(i) to evaluate cluster quality [38].

In K-means clustering, the elbow method identifies the optimal number of clusters
k by plotting the distortion (inertia value) against k. The distortion measures the total
distance between points and their cluster center. As k increases, points become closer to
their centers, reducing the distortion. The rate of decrease slows, forming an elbow in the
plot. The k at this elbow is optimal, as further increases in k yield minimal improvements
in the explained variance [39].

4. Node Clustering
4.1. Cluster Initialization and Parameter Enhancement

Initially, cluster centers are determined based on their coordinates in the random mote
connectivity matrix. The central node of each cluster Ci randomly initializes the centers
within the data space, with the boundaries defined by the k values. A random integer
generator within a specified range, represented by the coordinates (xN , yN), determines each
cluster center. The algorithm in Figure 1 details the initialization and update procedures for
the K-means cluster center. The process starts by randomly selecting the first cluster center
from the given range for each coordinate (x, y). The mechanism then iteratively updates
the cluster center for each cluster using the average coordinates of the nodes within that
cluster. This process continues until convergence, ensuring that the cluster center stabilizes
and does not change significantly with subsequent iterations, achieving a new_center of
the coordinate.

Figure 1. Pseudocode for K-means cluster center initialization and updating.

4.2. Clustering Parameter Enhancement

The coordinates of the cluster centers (x′Ci
, y′Ci

) are iteratively updated using the K-
means optimization method based on the average coordinates of the nodes within each
cluster Ci. To assign nodes to their nearest clusters, the algorithm computes the Euclidean
distance d(N, Ci) between each node N and the updated cluster centers (x′Ci

, y′Ci
) as shown

in Equation (1), starting from the previous centers (xCi , yCi ). This process establishes
proximity-based clusters with each node’s coordinates denoted by xN and yN , contributing
to the calculation of the updated cluster centers.
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d(N, Ci) =

√(
xN − xCi

)2
+

(
yN − yCi

)2 (1)

Equations (2) and (3) ensure that the cluster centers (x′ci,y′ci) consistently improve to
accurately reflect the spatial distribution of nodes within each cluster Ci after the initial
assignment, as represented by

∣∣NCi

∣∣. Additionally, our method employs the elbow method
and Silhouette Score in Equation (4) to determine the optimal number of clusters k. The el-
bow method identifies the ideal number of node clusters by detecting the point where the
reduction rate in the within-cluster sum of squares (WCSS) significantly changes. Similarly,
the Silhouette Score measures the compactness and separation of clusters, with higher
scores indicating more distinct clusters. The algorithm illustrated in Figure 2, outlines the
procedures involved in the optimization process, including node assignment and optimal
k selection.

Figure 2. Pseudocode for node granting and optimal K selection: Coordinate clustering.

The algorithm begins by randomly initializing cluster centers and assigning nodes to
the nearest cluster based on Euclidean distance. For each k value in the specified range, the
algorithm computes the WCSS using Equation (4), with x and y coordinate points and (µi)
centroids used to evaluate the clustering quality and iteratively update the cluster centers.
Consequently, the algorithm shown in Figure 3, determines the optimal number of clusters
for the final K-means clustering phase.

x′ci =
1∣∣NCi

∣∣ ∑
N∈NCi

xN (2)

y′ci =
1∣∣NCi

∣∣ ∑
N∈NCi

yN (3)
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Figure 3. Pseudocode for node granting and optimal K selection: Clustering algorithm.

5. Scheduling of TSCH

The MSF organizes these slot frames into TX and RX cells for each node, considering
communication requirements and network grouping; parent nodes in the MSF coordinate
slot frame allocations, while child nodes receive these allocations to enable communication.
Typically, nodes send packets to a parent node, but if the parent node is unavailable, a
child node can act as a hop node to forward packets to the sink node. Slot and channel
availability are considered during cell allocation; hop nodes select the slot offset, channel,
and TX and RX cells for communication between child nodes. Simultaneously, the root or
sink node applies the same algorithm to determine the optimal cell configuration. Custom
cell allocation involves determining the specific cell configuration allocated exclusively to
each child node. The hop node assigns a slot offset to each child node based on the number
of allocated cells (Ncells), ensuring that each cell has a distinct offset. The root or sink node
employs the same algorithm to determine exclusive cell allocations for each child node
through the predetermined cluster head.

In the slot frame, which is a crucial component of the data transmission process,
multiple nodes (such as Node A and Node B) may attempt to occupy the same cell allocation.
This inherent allocation process can lead to conflicts and interference, reducing the packet
delivery ratio and increasing latency. In addition, the latency can increase significantly for
every 0.1 second delay per packet. In the absence of node clustering, nodes compete for
optimal cell allocation within the slot frame. As network density increases, this competition
becomes more intense, complicating the allocation process and reducing efficiency. The high
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volume of nodes vying for limited slots can disrupt allocation and lead to significant delays
in data delivery. Additional cell allocations may be required to manage traffic spikes and
meet strict latency requirements in order to ensure smooth and timely communication, as
illustrated in Figure 4.

Figure 4. TSCH scheduling based on period traffic.

As shown in Figure 5, the cell allocation process at each node begins by connecting
multiple nodes back to the central point, which is the parent node, in order to obtain
available cells. If cell availability is low due to high density, nodes must wait or request
an alternative cell, leading to delays and packet loss. When cells are available, data can be
sent with low latency; however, conflicts and inefficiency can still arise, especially when
node density is low.

Figure 5. As-is diagram of default cell allocation in TSCH.

In contrast, Figure 6 illustrates an advanced method that utilizes K-means algorithm-
based clustering to partition nodes based on their spatial positions and designates an
optimized parent node, called the sink node. The resulting clusters inform a more efficient
cell allocation process by assessing the cell requirements for each allocated frame slot.
This method ensures that the allocation can continue seamlessly to the subsequent frame
slot with minimal delay, even in the absence of an available cell. This approach effectively
reduces node competition to maintain a high packet delivery ratio.
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Figure 6. To-be diagram of cell allocation through clustering approach.

6. Cell Allocation Implication of Nodes

As illustrated by the algorithm in Figure 7, the improved cell allocation method
optimizes communication cell allocation in the TSCH network. The algorithm begins
with inputs such as S, representing the number of slot frames used by cells in a cluster,
and current_cluster, indicating the network’s current clustering status. It then compares
a node’s current cluster association with its neighbors using GetCluster and evaluates
each slot frame in S to collect cluster details of neighboring nodes by calculating the
number of slot frames utilized during a given period for each cell involved. Each randomly
determined node location result is selected by looking at the distance between the modes to
be determined in the inter-cluster or intra-cluster category, which is then used as a reference
when determining the sink node. The main execution phase continuously processes cell
assignments until termination conditions are met, with the node acting as a child node
performing the scheduling function through 6p transactions. This phase aims to divide the
determination of each cell for the allocation of frame slots that have been determined based
on the shared cells available for each frame slot used, in which case the cell is updated.

Information such as time slots and available channels is submitted to each clustered
cell list. If the current node and its neighbors belong to the same cluster (as identified by
GetCluster), then the intra-cluster strategy focuses on nearby nodes. Cluster formation
enhances communication efficiency and improves time slot utilization. During this phase,
active TX cells are added when the number of used slot frames exceeds the cluster capacity.
When demand decreases, TX cells are reallocated to areas with higher user density, thereby
optimizing resource usage and increasing throughput.

An inter-cluster strategy is proposed for nodes in different clusters using gateway or
router nodes to facilitate communication between clusters, allowing the network to expand
and adapt without disrupting operations. To prevent resource wastage, active TX cells
are removed if fewer slot frames are available or are relocate to meet inter-cluster needs.
Effective node clustering improves packet transmission efficiency by assigning specific cells
based on a predetermined schedule. We consolidate resources by removing unnecessary
cells, which reduces packet queuing and enables efficient communication between parent
and child nodes. The 6P transaction processing minimizes signaling overhead and the
nodes intelligently control cell usage, reducing 6P requests and acknowledgments while
maintaining reliable connections.
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Figure 7. Pseudocode for enhanced TSCH cell allocation based on clustering.

The proposed scheme, depicted in Figure 8, introduces innovative clustering-based
cell allocation and dynamic reallocation strategies that enhance slot frame utilization and
reduce signaling overhead, significantly improving network performance, as previously
discussed regarding the K-means implementation. The K-means clustering process here
has a complexity of approximately O(n × k × i), where n is the number of nodes, k is the
number of clusters, and i is the number of iterations until convergence is achieved. The cell
allocation process in the slot frames involves evaluating and assigning cells to each node
in the cluster, with an estimated complexity around O(s × n), where s is the number of
slot frames and n is the number of nodes. The optimized 6P transaction algorithm also
considers cell usage based on dynamic demand, with the complexity being generally linear
with the number of nodes.
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Figure 8. Scheme of the proposed clustering for cell allocation.

7. Performance Evaluation

This section explains the simulators and parameters used in the experiments and
our methods for comparing the routing protocols. It also explains how each RPL affects
packet data transmission and how the node coordinate clustering results affect the tested
performance metrics, including the packet delivery ratio, throughput, latency, and joining
time of every node.

Experimental Setup

To evaluate the effectiveness of our proposed K-means clustering approach, we com-
pared it with other clustering methods, including GRID-based K-means (GBK) [13], ECRP
clustering [17], and the default MSF [27]. All procedures were implemented on the same
network layer in TSCH using the standard 6TiSCH simulator, with each node having a
battery level of 2821.5 mAh on the same minimal scheduling function. The evaluation
involved randomly placing nodes in an area for four scenarios involving 100, 150, 200, and
300 nodes, with each node positioned at specific coordinates. The number of nodes was
chosen based on related works to ensure consistency. The optimal value for each parameter
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k was determined using the Silhouette Score and elbow method. Within the controlled
environment of the 6TiSCH simulator, we carefully assessed the performance using the RPL.
The assessment process included uniformly adjusting the packet transmission intervals up
to 0.1 percent. Each network node produced 120 packets with 80 bytes of data, leading to a
standardized transmission packet size of 1016 bits. This experiment was conducted using
two different routing protocols. The first protocol was OF0 [32], which prioritizes paths
with the highest packet delivery ratio among potential next-hop neighbors on the route to
the root or parent node. The second routing protocol was MRHOF [33], which integrates
metrics such as rank, which indicates link quality, and incorporates hysteresis to prevent
excessive path changes, thereby minimizing latency and overhead.

Throughput (kbps) =
Received packet × Packet size

Simulation time allocation
(4)

Our work illustrates how a node-based clustering strategy can improve the 6TiSCH
network’s scalability and performance. Network performance was measured using reli-
ability indicators such as PDR, joining time, end-to-end latency, and throughput. PDR
measures the percentage of successfully delivered packets among all transmitted packets
to determine how reliable the network is at providing data. Measuring the time required
for a packet to travel from its source to its destination provides the end-to-end latency,
indicating how responsive the network is. The joining time indicates how quickly a new
node integrates into the network. Throughput, as assessed by Equation (4), measures the
data rate successfully sent from one node to another within a certain period or the num-
ber of packets sent from each source node to the destination node while considering the
packet size, and is measured in kilobits per second (kbps). Table 1 displays the parameter
simulations along with our suggested approach.

Table 1. Simulation parameters.

Parameter Value

Simulation area (grid size) 2 km × 2 km
Simulation platform 6TiSCH

Battery level 2821.5 mAh
Number of nodes 100, 150, 200, 300
RPL extensions Unicast

RPL DAO interval 60 s
RPL objective function OF0, MRHOF

Traffic period Periodic
Node distribution Random

TSCH number of channels 16
TSCH TX queue size 12 frames
TSCH timeslot length 10 ms

K maximum value 10
K-means maximum iterations 120

K-means features 3
Slot frame per run 4800

Packet size 1016
Silhouette score −1

Silhouette cluster 3

8. Results
8.1. Objective Function Zero (OF0) Routing Protocol

We initially conducted a performance test using the Objective Function Zero (OF0)
routing protocol. This test compared our proposed clustering method with other methods
and the MSF, as shown in Figure 9. Our method maintained a consistent delivery ratio
across varying node counts. However, ECRP clustering slightly surpassed it at 150 nodes
due to its cluster head selection based on node energy, as this value may be slightly higher
due to the previously described clustering process affecting the scheduling process for each
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frame slot. The minimum hop count process in OF0 also affects inter-cluster communica-
tion. Despite this, our method’s iterative clustering and scheduling processes effectively
predicted packet arrival, outperforming the grid-based clustering method. Overall, our
clustering process yielded positive results. Figure 9 also demonstrates that the end-to-end
latency with the OF0 routing protocol remained under 100 s even with 300 nodes, which
can be attributed to the effective distribution of slot frames and time slots. The end-to-end
latency for clustering on cell allocation also showed critical improvements compared to
grid-based K-means. Noteworthy here is that slot frame distribution slightly affects latency,
as the node coordinates used in slot frame distribution are divided appropriately for slot
frames and individual time slots.

Figure 9. Graphs showing results for the Objective Function Zero (OF0) routing protocol: (a) Packet
Delivery Ratio (PDR), (b) end-to-end latency, (c) joining time, and (d) throughput.

Figure 9 highlights the consistent joining time across different node counts, with
K-means clustering reducing the time needed for new nodes to receive advertisements
from the sink node. Energy efficiency in clustering remains high, mainly due to residual
energy considerations for each node group. This allows our method to optimize how the
sink node manages packet delivery for reserved nodes. The energy efficiency of clustering
tends to be high in the following moments, as it heavily relies on the residual energy of
each group of nodes; thus, our proposed method could determine how the sink node might
accept and deliver some packets for reserved nodes. Figure 9 shows favorable throughput
results, with each packet’s transmission speed enhanced by OF0’s low-overhead path
selection. We believe that the throughput value will still be high through packet sending, as
it might barge the transmission cells. Energy efficiency clustering reduces the throughput
margin to 8.89 kbps at 300 nodes, yet overall throughput stays high due to effective packet
transmission. In summary, our proposed method excels in packet delivery ratio and
throughput, showing an 8% increase in delivery ratio, a 30.01% reduction in latency, a
15.95% decrease in joining time, and a 13.82% increase in throughput compared to the MSF
under the OF0 routing protocol.
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8.2. Minimum Rank with Hysteresis Routing Protocol

Our next experiment utilized the Minimum Rank with Hysteresis Objective Function
(MRHOF) routing protocol. We used the same parameters as for OF0 and comparing the
results with the default MSF. Our proposed clustering method directly allocates cells to
each slot frame, facilitating packet retransmission to the destination node, especially in
high-density clusters. This method achieved slightly better PDR percentage results than
other clustering techniques; unlike OF0, it also supports multi-path routing. Clustering
improves PDR by allocating cells directly. The clustering result improves the PDR value
by directly determining the cells to be used. The highest PDR, observed with 100 nodes,
reached 98.15%. This decreased to 93.35% with 300 nodes, reflecting the increased traffic
load on network resources. The end-to-end latency performance metric remained stable
despite a slight increase compared to grid-based K-means, reaching 112.91 s for 300 nodes
due to fewer retransmissions.

The joining time was consistent with other K-means clustering methods, achieving
55,219 slots compared to 55,394 slots for ECRP clustering. Congestion at the cluster head
delays the transmission queue when transmitting to other slot frames, as depicted in
Figure 8. Increased data traffic or competition for cluster resources likely caused congestion
between cluster heads, delaying the transmission queue. Figure 10 also shows the through-
put values for the data transmission speed, which differ from the OF0 RPL. Throughput,
which is closely related to PDR, decreased from 17.12 kbps to 9 kbps as the number of
nodes increased from 100 to 300, likely due to higher message transmission during the
6p transaction in grid-based K-means; the throughput decreases linearly as the number
of nodes increases. Figure 10 highlights an anomaly in which fewer nodes encountered
difficulties due to clustering on low nodes in top-6 protocol cell allocation, resulting in
performance similar to MSF without clustering. Compared to MSF, our method showed a
12.34% increase in average PDR, a 21.06% reduction in latency, a 12.68% decrease in joining
time, and a 25.97% increase in throughput speed.

Figure 10. Graph results of the Minimum Rank with Hysteresis (MRHOF) routing protocol: (a) Packet
Delivery Ratio (PDR), (b) end-to-end Latency, (c) joining time, and (d) throughput.
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9. Conclusions

This paper demonstrates the application of node clustering results using the K-means
method for cell allocation in the 6TiSCH network utilizing node position data and segment-
ing based on OF0 and MRHOF, which influences routing paths and network organization.
Our method involves positioning nodes, clustering node coordinates, determining cluster
centers, designating centroids as cluster heads, and associating other points with the nearest
centers without repeated iterations. The goal is to minimize packet hops in packet routing
and reduce neighbor discovery, improving performance efficiency and network traffic
stability in the 6TiSCH network. RX and TX cells are essential for creating an efficient slot
schedule in a slot frame, while the system allocates each node a time slot for receiving
RX cells and transmitting TX cells. Performance can vary while adhering to the standard
scheduling function in the 6TiSCH network. Utilizing node position patterns allows K-
means clustering to optimize resource allocation in order to manage resources based on
cluster density. The clustering results determine the number of slots arranged in a time
frame, while cell operations are adjusted through 6p transactions using K-means. The al-
gorithm forms clusters of nodes based on proximity, optimizing specific cell allocation.
In high-density scenarios, it adds dedicated cells to accommodate increased demand and
removes redundant cells in low-density situations. At the same time, the strategy prioritizes
allocating unicast cells immediately after the receiving cell, which is intended to minimize
latency. Our performance results regarding packet delivery ratio, packet latency, node
joining time, throughput, and data transmission success are promising. Evaluations across
different node scenarios and comparisons with other clustering methods show significant
improvements in average performance metrics. Under the Objective Function Zero (OF0)
routing protocol, we achieved a 30.01% decrease in latency, a 15.95% reduction in joining
time, an 8% increase in packet delivery ratio, and a 13.82% increase in throughput. Using
the Minimum Rank with Hysteresis Objective Function (MRHOF) routing protocol, the av-
erage packet delivery ratio increased by 12.34%, latency decreased by 21.06%, joining time
decreased by 12.68%, and throughput speed increased by 25.97%. The number of nodes
in the network was assumed to be constant in order to maintain the focus on optimizing
cell allocation and clustering techniques. In real-world scenarios, node loss from hardware
failure, signal weakening, or environmental shadowing can alter network topology. Future
research could incorporate models that address dynamic conditions and varying network
sizes, or explore hybrid systems that combine multiple clustering techniques involving
multi-objective allocation. These advancements could enhance algorithm performance by
achieving energy savings through optimal time slot selection and improving scalability for
faster response times with the alignment of other objective functions.
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