Sensor Network Attack Synthesis against Fault Diagnosis of Discrete Event Systems †
<p>Fault diagnosis architecture under attack. To make the architecture more illustrative, different components are represented by different colors.</p> "> Figure 2
<p>(<b>a</b>) A plant <span class="html-italic">G</span> and (<b>b</b>) its diagnoser <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>A fault diagnosis system under attack.</p> "> Figure 4
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>i</mi> <mi>a</mi> <msub> <mi>g</mi> <mrow> <mi>a</mi> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>i</mi> <mi>a</mi> <msub> <mi>g</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <span class="html-italic">G</span> in <a href="#sensors-24-04445-f002" class="html-fig">Figure 2</a>a.</p> "> Figure 5
<p><span class="html-italic">J</span>-<math display="inline"><semantics> <mrow> <mi>D</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics></math> in Example 2.</p> "> Figure 6
<p><math display="inline"><semantics> <mrow> <mi>S</mi> <mi>J</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>D</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics></math> in Example 3.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Preliminaries
3.1. Finite-State Automata
3.2. Fault Diagnosis
4. Sensor Network Attacks
5. Problem Statement
6. Stealthy Joint Diagnoser
6.1. Attacker Diagnoser and Operator Diagnoser
- Attacker Diagnoser through self-looping each state with all events in and then adding in parallel to each event the corresponding event .
- Operator Diagnoser through self-looping each state with all events in , then adding in parallel to each event the corresponding event , and finally adding a dump state that is reached by all undefined transitions.
6.2. Joint Diagnoser and Its Refining
6.3. Synthesis of Attackers
Algorithm 1 Synthesis of the corrupting function |
Require: and - Ensure: corrupting function
|
7. Fault Diagnoisis under Attack
7.1. Verification of Successful Attackers
7.2. Synthesis of Successful Attackers
Algorithm 2 Synthesis of the successful corrupting function |
Require: and - Ensure: successful corrupting function
|
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DES | Discrete event system |
CPS | Cyber–physical system |
JD | Joint diagnoser |
SJD | Stealthy joint diagnoser |
G | Plant automaton |
Diagnoser | |
Attacker diagnoser | |
Operator diagnoser | |
Diagnosis function | |
Attacker diagnosis function | |
Operator diagnosis function | |
r | Diagnosis pair function |
P | Natural projection |
Attack function | |
Operator mask |
References
- Chen, J.; Liu, B.; Li, T.; Hu, Y. Multiplicative Attacks with Essential Stealthiness in Sensor and Actuator Loops against Cyber-Physical Systems. Sensors 2023, 23, 1957. [Google Scholar] [CrossRef] [PubMed]
- Suprabhath Koduru, S.; Machina, V.S.P.; Madichetty, S. Cyber attacks in cyber-physical microgrid systems: A comprehensive review. Energies 2023, 16, 4573. [Google Scholar] [CrossRef]
- He, Z.; Tang, B.; Luan, F. An improved African vulture optimization algorithm for dual-resource constrained multi-objective flexible job shop scheduling problems. Sensors 2022, 23, 90. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gao, H.; Cong, X.; Wu, N.; Song, H.H. A Survey on Cyber-Physical Systems Security. IEEE Internet Things J. 2023, 10, 21670–21686. [Google Scholar] [CrossRef]
- Goetz, C.; Humm, B. Decentralized real-time anomaly detection in cyber-physical production systems under industry constraints. Sensors 2023, 23, 4207. [Google Scholar] [CrossRef]
- Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems; Springer: New York, NY, USA, 2019. [Google Scholar]
- Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 1995, 40, 1555–1575. [Google Scholar] [CrossRef]
- Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Failure diagnosis using discrete event models. IEEE Trans. Control Syst. Technol. 1996, 44, 105–124. [Google Scholar] [CrossRef]
- Lafortune, S.; Lin, F.; Hadjicostis, C.N. On the history of diagnosability and opacity in discrete event systems. Annu. Rev. Control. 2018, 45, 257–266. [Google Scholar] [CrossRef]
- Basile, F.; Chiacchio, P.; De Tommasi, G. An efficient approach for online diagnosis of discrete event systems. IEEE Trans. Autom. Control 2009, 54, 748–759. [Google Scholar] [CrossRef]
- Basile, F.; Cabasino, M.P.; Seatzu, C. Diagnosability analysis of labeled time Petri net systems. IEEE Trans. Autom. Control 2016, 62, 1384–1396. [Google Scholar] [CrossRef]
- Cong, X.; Fanti, M.P.; Mangini, A.M.; Li, Z. Decentralized diagnosis by Petri nets and integer linear programming. IEEE Trans. Syst. Man Cybern. 2017, 48, 1689–1700. [Google Scholar] [CrossRef]
- Yu, Z.; Qi, Y.; Cong, X. Decentralized Marking Fault Diagnosis of Labeled Petri Nets. IEEE Access 2023, 11, 99168–99177. [Google Scholar] [CrossRef]
- Zaytoon, J.; Lafortune, S. Overview of fault diagnosis methods for discrete event systems. Annu. Rev. Control. 2013, 37, 308–320. [Google Scholar] [CrossRef]
- Carvalho, L.K.; Basilio, J.C.; Moreira, M.V. Robust diagnosis of discrete event systems against intermittent loss of observations. Automatica 2012, 48, 2068–2078. [Google Scholar] [CrossRef]
- Carvalho, L.K.; Moreira, M.V.; Basilio, J.C.; Lafortune, S. Robust diagnosis of discrete-event systems against permanent loss of observations. Automatica 2013, 49, 223–231. [Google Scholar] [CrossRef]
- Takai, S. A general framework for diagnosis of discrete event systems subject to sensor failures. Automatica 2021, 129, 109669. [Google Scholar] [CrossRef]
- Carvalho, L.K.; Wu, Y.C.; Kwong, R.; Lafortune, S. Detection and mitigation of classes of attacks in supervisory control systems. Automatica 2018, 97, 121–133. [Google Scholar] [CrossRef]
- Yu, Z.; Duan, X.; Cong, X.; Li, X.; Zheng, L. Detection of actuator enablement attacks by Petri nets in supervisory control systems. Mathematics 2023, 11, 943. [Google Scholar] [CrossRef]
- Zhang, Q.; Seatzu, C.; Li, Z.; Giua, A. Joint state estimation under attack of discrete event systems. IEEE Access 2021, 9, 168068–168079. [Google Scholar] [CrossRef]
- Zhang, Q.; Seatzu, C.; Li, Z.; Giua, A. Selection of a successful attack function in discrete event systems. Sci. Rep. 2022, 12, 16302. [Google Scholar] [CrossRef]
- Meira-Góes, R.; Kang, E.; Kwong, R.H.; Lafortune, S. Synthesis of sensor deception attacks at the supervisory layer of Cyber-Physical Systems. Automatica 2020, 121, 109172. [Google Scholar] [CrossRef]
- Meira-Góes, R.; Marchand, H.; Lafortune, S. Synthesis of supervisors robust against sensor deception attacks. IEEE Trans. Autom. Control 2021, 66, 4990–4997. [Google Scholar] [CrossRef]
- Kang, T.; Seatzu, C.; Li, Z.; Giua, A. Fault Diagnosis of Discrete Event Systems Under Attack. In Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, 13–15 December 2023; pp. 7923–7929. [Google Scholar]
- Li, Y.; Hadjicostis, C.N.; Wu, N. Tamper-tolerant diagnosability under bounded or unbounded attacks. IFAC-Paper 2022, 55, 52–57. [Google Scholar] [CrossRef]
- Hadjicostis, C.N.; Lafortune, S.; Lin, F.; Su, R. Cybersecurity and Supervisory Control: A Tutorial on Robust State Estimation, Attack Synthesis, and Resilient Control. In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancún, Mexico, 6–9 December 2022; pp. 3020–3040. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.; Hou, Y.; Liu, D. Sensor Network Attack Synthesis against Fault Diagnosis of Discrete Event Systems. Sensors 2024, 24, 4445. https://doi.org/10.3390/s24144445
Kang T, Hou Y, Liu D. Sensor Network Attack Synthesis against Fault Diagnosis of Discrete Event Systems. Sensors. 2024; 24(14):4445. https://doi.org/10.3390/s24144445
Chicago/Turabian StyleKang, Tenglong, Yifan Hou, and Ding Liu. 2024. "Sensor Network Attack Synthesis against Fault Diagnosis of Discrete Event Systems" Sensors 24, no. 14: 4445. https://doi.org/10.3390/s24144445
APA StyleKang, T., Hou, Y., & Liu, D. (2024). Sensor Network Attack Synthesis against Fault Diagnosis of Discrete Event Systems. Sensors, 24(14), 4445. https://doi.org/10.3390/s24144445