Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy
<p>(<b>a</b>–<b>c</b>) Observation of native starch granule stained with Safranin-O: (<b>a</b>) Safranin-O fluorescence signal (green); (<b>b</b>) second harmonic generation (SHG) signal (blue); (<b>c</b>) superposition of SHG and fluorescence signals; (<b>d</b>) comparison SHG/fluo starch granule detection; (<b>e</b>–<b>g</b>) Observation of gelatinized starch granule stained with Safranin-O: (<b>e</b>) Safranin-O fluorescence signal (green); (<b>f</b>) absence of SHG in gelatinized starch; (<b>g</b>) superposition of (<b>d</b>) and (<b>e</b>). Scale bar 25 µm. See <a href="#sensors-19-02024-t002" class="html-table">Table 2</a> for acquisition parameters.</p> "> Figure 2
<p>Observation of starch granules embedded in a matrix: (<b>a</b>) matrix auto fluorescence signal (yellow); (<b>b</b>) SHG signal (blue); (<b>c</b>) superposition of SHG and auto fluorescence matrix signals (530 µm × 530 µm × 112 µm). See <a href="#sensors-19-02024-t002" class="html-table">Table 2</a> for acquisition parameters.</p> "> Figure 3
<p>Observation of emulsion lipid droplets: (<b>a</b>) third harmonic generation (THG) signal (blue) from emulsion without previous staining; (<b>b</b>) endogenous fluorescence; (<b>c</b>) merge of (<b>a</b>) and (<b>b</b>); (<b>d</b>) THG signal (blue) from emulsion with previous staining with Nile red; (<b>e</b>) red fluorescence from oil stained by Nile red; (<b>f</b>) superposition of THG and fluorescence signals. Scale bar 25 µm. See <a href="#sensors-19-02024-t002" class="html-table">Table 2</a> for acquisition parameters.</p> "> Figure 4
<p>Observation of oil in the fried matrix: (<b>a</b>) Nile red fluorescence (red); (<b>b</b>) THG signal (blue); (<b>c</b>) superposition of THG and fluorescence signals (530 µm × 530 µm × 357 µm). See <a href="#sensors-19-02024-t002" class="html-table">Table 2</a> for acquisition parameters.</p> "> Figure 5
<p>Observation of the matrix: (<b>a</b>) THG signal; (<b>b</b>) matrix auto-fluorescence signal; (<b>c</b>) SHG signal; (<b>d</b>) superposition of THG, SHG and matrix auto fluorescence signals; (<b>e</b>) 3D imaging of THG topography (530 µm × 530 µm × 224 µm). See <a href="#sensors-19-02024-t002" class="html-table">Table 2</a> for acquisition parameters.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Multiphoton Microscopy
2.3. Image Analysis
3. Results
3.1. Starch Imaging from Multiphoton Fluorescence and Harmonic Generation Microscopy
3.2. Oil imaging from Fluorescence Staining and Harmonic Signal
3.3. Distribution of Starch Granules and Surface Topography of Label-Free Fried Starchy Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouchon, P.; Pyle, D.L. Studying Oil Absorption in Restructured Potato Chips. J. Food Sci. 2004, 69, FEP115–FEP122. [Google Scholar]
- Pedreschi, F. Frying of Potatoes: Physical, Chemical, and Microstructural Changes. Dry. Technol. 2012, 30, 707–725. [Google Scholar] [CrossRef]
- Bouchon, P.; Aguilera, J.M.; Pyle, D.L. Structure Oil-Absorption Relationships During Deep-Fat Frying. J. Food Sci. 2003, 68, 2711–2716. [Google Scholar] [CrossRef]
- Rubnov, M.; Saguy, I. Fractal Analysis and Crust Water Diffusivity of a Restructured Potato Product During Deep-Fat Frying. J. Food Sci. 1997, 62, 135–137. [Google Scholar] [CrossRef]
- Rahimi, J.; Ngadi, M.O. Structure and irregularities of surface of fried batters studied by fractal dimension and lacunarity analysis. Food Struct. 2016, 9, 13–21. [Google Scholar] [CrossRef]
- Thanatuksorn, P.; Pradistsuwana, C.; Jantawat, P.; Suzuki, T. Effect of surface roughness on post-frying oil absorption in wheat flour and water food model. J. Sci. Food Agric. 2005, 85, 2574–2580. [Google Scholar] [CrossRef]
- Moreno, M.C.; Brown, C.A.; Bouchon, P. Effect of food surface roughness on oil uptake by deep-fat fried products. J. Food Eng. 2010, 101, 179–186. [Google Scholar] [CrossRef]
- Lisińska, G.; Gołubowska, G. Structural changes of potato tissue during French fries production. Food Chem. 2005, 93, 681–687. [Google Scholar] [CrossRef]
- Pedreschi, F.; Aguilera, J.M. Some Changes in Potato Chips During Frying Observed by Confocal Laser Scanning Microscopy (CLSM). Food Sci. Technol. Int. 2002, 8, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Vauvre, J.-M.; Kesteloot, R.; Patsioura, A.; Vitrac, O. Microscopic oil uptake mechanisms in fried products. Eur. J. Lipid Sci. Technol. 2014, 116, 741–755. [Google Scholar] [CrossRef]
- Vitrac, O.; Dominique, D.; Trystram, G.; Raoult-Wack, A.-L. Characterization of heat and mass transfer during deep-fat frying and its effect on cassava chip quality. J. Food Eng. 2002, 53, 161–176. [Google Scholar] [CrossRef]
- Ghiasi, K.; Hoseney, R.; Varriano Marston, E. Gelatinization of wheat starch. III. Comparison by differential scanning calorimetry and light microscopy. Cereal Chem. 1982, 60, 58–61. [Google Scholar]
- Oginni, O.C.; Sobukola, O.P.; Henshaw, F.O.; Afolabi, W.A.O.; Munoz, L. Effect of starch gelatinization and vacuum frying conditions on structure development and associated quality attributes of cassava-gluten based snack. Food Struct. 2015, 3, 12–20. [Google Scholar] [CrossRef]
- Primo-Martín, C. Cross-linking of wheat starch improves the crispness of deep-fried battered food. Food Hydrocoll. 2012, 28, 53–58. [Google Scholar] [CrossRef]
- Villada, J.A.; Sánchez-Sinencio, F.; Zelaya-Ángel, O.; Gutiérrez-Cortez, E.; Rodríguez-García, M.E. Study of the morphological, structural, thermal, and pasting corn transformation during the traditional nixtamalization process: From corn to tortilla. J. Food Eng. 2017, 212, 242–251. [Google Scholar] [CrossRef]
- Romano, A.; D’Amelia, V.; Gallo, V.; Palomba, S.; Carputo, D.; Masi, P. Relationships between composition, microstructure and cooking performances of six potato varieties. Food Res. Int. 2018, 114, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Primo-Martín, C.; van Deventer, H. Deep-fat fried battered snacks prepared using super-heated steam (SHS): Crispness and low oil content. Food Res. Int. 2011, 44, 442–448. [Google Scholar] [CrossRef]
- Isik, B.; Sahin, S.; Sumnu, G. Pore Development, Oil and Moisture Distribution in Crust and Core Regions of Potatoes During Frying. Food Bioprocess Technol. 2016, 9, 1653–1660. [Google Scholar] [CrossRef]
- Achir, N.; Vitrac, O.; Trystram, G. Direct observation of the surface structure of French fries by UV–VIS confocal laser scanning microscopy. Food Res. Int. 2010, 43, 307–314. [Google Scholar] [CrossRef]
- Cox, G. Biological applications of second harmonic imaging. Biophys. Rev. 2011, 3, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Débarre, D.; Supatto, W.; Pena, A.-M.; Fabre, A.; Tordjmann, T.; Combettes, L.; Schanne-Klein, M.-C.; Beaurepaire, E. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 2005, 3, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Dubreil, L.; Ledevin, M.; Lovo, C.; Larcher, T.; Fleurisson, R.; Guigand, L.; Rouger, K. Multiphoton and Harmonic generation microscopy: An attractive label free imaging and non-destructive observation of collagenic and adipose tissues in pathological muscle context. Microsc. Imaging Sci. 2017, 293–299. Available online: http://www.microscopy7.org/book/293-299.pdf (accessed on 29 April 2019).
- Mizutani, G.; Sonoda, Y.; Sano, H.; Sakamoto, M.; Takahashi, T.; Ushioda, S. Detection of starch granules in a living plant by optical second harmonic microscopy. J. Lumin. 2000, 87–89, 824–826. [Google Scholar] [CrossRef]
- Cisek, R.; Tokarz, D.; Krouglov, S.; Steup, M.; Emes, M.J.; Tetlow, I.J.; Barzda, V. Second Harmonic Generation Mediated by Aligned Water in Starch Granules. J. Phys. Chem. B 2014, 118, 14785–14794. [Google Scholar] [CrossRef]
- Cisek, V.R.; Tokarz, D.; Steup, M.; Tetlow, I.J.; Emes, M.J.; Hebelstrup, K.H.; Blennow, A.; Barzda, V. Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration. Biomed. Opt. Express 2015, 6, 3694–3700. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.-W.; Chen, I.-H.; Liu, T.-M.; Sun, C.-K.; Lee, S.-P.; Lin, B.-L.; Cheng, P.-C.; Kuo, M.-X.; Lin, D.-J.; Liu, H.-L. Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. J. Microsc. 2002, 208, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Lu, H.; Liu, X.; Gong, Y.; Mao, D. Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes. JOSA B 2010, 27, 2405–2409. [Google Scholar] [CrossRef]
- Psilodimitrakopoulos, S.; Amat-Roldan, I.; Loza-Alvarez, P.; Artigas, D. Effect of molecular organization on the image histograms of polarization SHG microscopy. Biomed. Opt. Express 2012, 3, 2681. [Google Scholar] [CrossRef]
- Oron, D.; Yelin, D.; Tal, E.; Raz, S.; Fachima, R.; Silberberg, Y. Depth-resolved structural imaging by third-harmonic generation microscopy. J. Struct. Biol. 2004, 147, 3–11. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lee, S.-Y.; Wu, Y.; Brink, K.; Shieh, D.-B.; Huang, T.D.; Reisz, R.R.; Sun, C.-K. Third-harmonic generation microscopy reveals dental anatomy in ancient fossils. Opt. Lett. 2015, 40, 1354–1357. [Google Scholar] [CrossRef]
- Barad, Y.; Eisenberg, H.; Horowitz, M.; Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 1997, 70, 922. [Google Scholar] [CrossRef]
- Genthial, R.; Beaurepaire, E.; Schanne-Klein, M.-C.; Peyrin, F.; Farlay, D.; Olivier, C.; Bala, Y.; Boivin, G.; Vial, J.C.; Débarre, D.; et al. Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy. Sci. Rep. 2017, 7, 3419. [Google Scholar] [CrossRef] [Green Version]
- Rehberg, M.; Krombach, F.; Pohl, U.; Dietzel, S. Label-Free 3D Visualization of Cellular and Tissue Structures in Intact Muscle with Second and Third Harmonic Generation Microscopy. PLoS ONE 2011, 6, e28237. [Google Scholar] [CrossRef]
- Dürrenberger, M.B.; Handschin, S.; Conde-Petit, B.; Escher, F. Visualization of Food Structure by Confocal Laser Scanning Microscopy (CLSM). LWT—Food Sci. Technol. 2001, 34, 11–17. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Dhital, S.; López-Rubio, A.; Gidley, M.J. Dietary polyphenols bind to potato cells and cellular components. J. Funct. Foods 2017, 37, 283–292. [Google Scholar] [CrossRef]
- Cox, G.; Moreno, N.; Feijó, J. Second-harmonic imaging of plant polysaccharides. J. Biomed. Opt. 2005, 10, 034013. [Google Scholar] [CrossRef]
- Zhuo, Z.-Y.; Liao, C.-S.; Huang, C.-H.; Yu, J.-Y.; Tzeng, Y.-Y.; Lo, W.; Dong, C.-Y.; Chui, H.-C.; Huang, Y.-C.; Lai, H.-M. Second harmonic generation imaging – A new method for unraveling molecular information of starch. J. Struct. Biol. 2010, 171, 88–94. [Google Scholar] [CrossRef]
- Kalogianni, E.P.; Papastergiadis, E. Crust pore characteristics and their development during frying of French-fries. J. Food Eng. 2014, 120, 175–182. [Google Scholar] [CrossRef]
- Rahimi, J.; Ngadi, M.O. Surface ruptures of fried batters as influenced by batter formulations. J. Food Eng. 2015, 152, 50–56. [Google Scholar] [CrossRef]
- Moreno, M.C.; Bouchon, P.; Brown, C.A. Evaluating the ability of different characterization parameters to describe the surface of fried foods. Scanning 2010, 32, 212–218. [Google Scholar] [CrossRef]
- Omidiran, A.T.; Sobukola, O.P.; Sanni, A.; Adebowale, A.-R.A.; Obadina, O.A.; Sanni, L.O.; Tomlins, K.; Wolfgang, T. Optimization of some processing parameters and quality attributes of fried snacks from blends of wheat flour and brewers’ spent cassava flour. Food Sci. Nutr. 2016, 4, 80–88. [Google Scholar] [CrossRef]
Constituent | Excitation (nm) | Detection Channel Emission (nm) | Depth (µm) | Number of Images (Step) | Nyquist in Depth | |||
---|---|---|---|---|---|---|---|---|
Blue | Green | Yellow | Red | |||||
Starch granule (Figure 1) | 820 | SHG | 26.5 | 53 (0.5 µm) | Yes | |||
(49.68 mW) | (FF01-415/10-25) | |||||||
1040 | Safranin | |||||||
(84 mW) | (FF03-525/50−25) | |||||||
Matrix Starch (Figure 2) | 820 | SHG | 112.5 | 225 (0.5µm) | Yes | |||
(86.4 mW) | (FF01-415/10−25) | |||||||
1040 | Auto fluo. | |||||||
(135 mW) | (FF03-575/25−25) | |||||||
Oil emulsion (Figure 3) | 1240 | THG | 39 | 39 (1µm) | No | |||
(539.5 mW) | (FF01-415/10−25) | |||||||
1040 | Nile Red | |||||||
(34.5mW) | (FF01-629/56−25) | |||||||
Matrix Oil (Figure 4) | 1240 | THG | 357 | 357 (1 µm) | No | |||
(539.5 mW) | (FF01-415/10−25) | |||||||
1040 | Nile Red | |||||||
(30 mW) | (FF01-629/56−25) | |||||||
Matrix: starch, topography (Figure 5) | 1240 | THG | SHG | 224 | 224 (1 µm) | No | ||
(380.14 mW) | (FF01-415/10−25) | (FF01-629/56−25) | ||||||
1040 | SHG | Auto fluo. | ||||||
(150 mW) | (FF03-525/50−25) | (FF03-575/25−25) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouët, A.; Chevallier, S.; Fleurisson, R.; Loisel, C.; Dubreil, L. Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy. Sensors 2019, 19, 2024. https://doi.org/10.3390/s19092024
Chouët A, Chevallier S, Fleurisson R, Loisel C, Dubreil L. Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy. Sensors. 2019; 19(9):2024. https://doi.org/10.3390/s19092024
Chicago/Turabian StyleChouët, Agathe, Sylvie Chevallier, Romain Fleurisson, Catherine Loisel, and Laurence Dubreil. 2019. "Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy" Sensors 19, no. 9: 2024. https://doi.org/10.3390/s19092024
APA StyleChouët, A., Chevallier, S., Fleurisson, R., Loisel, C., & Dubreil, L. (2019). Label-Free Fried Starchy Matrix: Investigation by Harmonic Generation Microscopy. Sensors, 19(9), 2024. https://doi.org/10.3390/s19092024