A Hybrid Spectrum Access Strategy with Channel Bonding and Classified Secondary User Mechanism in Multichannel Cognitive Radio Networks
<p>System behavior of SU1 and SU2 packets.</p> "> Figure 2
<p>Markov state-transition diagram of number of SU2 packets.</p> "> Figure 3
<p>Markov state-transition diagram for primary user (PU) and the secondary user (SU1) packets’ channel-occupying condition.</p> "> Figure 4
<p>Average delay <math display="inline"><semantics> <mi>δ</mi> </semantics></math> change trends with increase of buffer capacity <span class="html-italic">K</span> of SU2 packets under different conditions (<math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>22</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.03</mn> <mo>,</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>μ</mi> <mn>21</mn> </msub> <mo>=</mo> <mi>M</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 5
<p>Throughput <math display="inline"><semantics> <mi>θ</mi> </semantics></math> change trends with the increase of buffer capacity <span class="html-italic">K</span> of SU2 packets under different conditions (<math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>22</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.03</mn> <mo>,</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>μ</mi> <mn>21</mn> </msub> <mo>=</mo> <mi>M</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 6
<p>Average delay change trends comparison between three access modes under different high-priority user arrival rates (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>λ</mi> <mn>22</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.03</mn> <mo>,</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>μ</mi> <mn>21</mn> </msub> <mo>=</mo> <mi>M</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 7
<p>Throughput-change-trend comparison between three access modes with higher arrival rates for PU and SU1 packets (<math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msub> <mi>λ</mi> <mn>21</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>λ</mi> <mn>22</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.03</mn> <mo>,</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>μ</mi> <mn>21</mn> </msub> <mo>=</mo> <mi>M</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> "> Figure 8
<p>Throughput-change-trend comparison between three access modes with lower arrival rates for PU and SU1 packets (<math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <msub> <mi>λ</mi> <mn>21</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>λ</mi> <mn>22</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.03</mn> <mo>,</mo> <msub> <mi>μ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>μ</mi> <mn>21</mn> </msub> <mo>=</mo> <mi>M</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>H</mi> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. System Model
2.1. Model Assumption
2.2. Model Analysis
3. Performance Measures
4. Numerical Experiments
4.1. Change Trends of SU2 Performance Measures
4.2. Numerical Result Comparison between Three Modes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Federal Communications Commission. Spectrum Policy Task Force; ET Docket No. 02-135; Federal Communications Commission: Washington, DC, USA, 2002.
- Haykin, S. Cognitive Radio: Brain-Empowered Wireless Communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Kumar, B.; Dhurandher, S.K.; Woungang, I. A Survey of Overlay and Underlay Paradigms in Cognitive Radio Networks. Int. J. Commun. Syst. 2018, 31, 1–20. [Google Scholar] [CrossRef]
- Fakhrudeen, A.; Alani, O.Y. Comprehensive Survey on Quality of Service Provisioning Approaches in Cognitive Radio Networks: Part One. Int. J. Wirel. Inf. Netw. 2017, 24, 356–388. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Hu, J. Capacity maximisation of the secondary link in cognitive radio networks with hybrid spectrum access strategy. IET Commun. 2014, 8, 689–696. [Google Scholar] [CrossRef]
- Oh, J.; Choi, W. A Hybrid Cognitive Radio System: A Combination of Underlay and Overlay Approaches. In Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference, Ottawa, ON, Canada, 6–9 September 2010; pp. 1–5. [Google Scholar]
- Song, H.; Hong, J.P.; Choi, W. On the Optimal Switching Probability for a Hybrid Cognitive Radio System. IEEE Trans. Wirel. Commun. 2013, 12, 1594–1605. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, P.; Gao, F.; Su, Z. A Hybrid Underlay/Overlay Transmission Mode for Cognitive Radio Networks with Statistical Quality-of-Service Provisioning. IEEE Trans. Wirel. Commun. 2013, 13, 1482–1498. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Y.; Niu, K.; Lin, J. Transmission Capacity of Secondary Networks in Hybrid Overlaid/Underlaid Cognitive Radio Systems. In Proceedings of the 2012 IEEE 14th International Conference on Communication Technology, Chengdu, China, 9–11 November 2012; pp. 397–401. [Google Scholar]
- Liu, J.; Jin, S.; Wang, B. Study on Optimization Strategy for Hybrid Underlay/Overlay Spectrum Sharing Based on Queuing Model. J. Commun. 2017, 38, 55–64. [Google Scholar]
- Lee, Y.; Park, C.G.; Sim, D.B. Cognitive Radio Spectrum Access with Prioritized Secondary Users. Appl. Math. Inf. Sci. 2012, 6, 595S–601S. [Google Scholar]
- Zhang, Y.; Jiang, T.; Zhang, L.; Qu, D.; Peng, W. Analysis on the Transmission Delay of Priority-Based Secondary Users in Cognitive Radio Networks. In Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 24–26 October 2013; pp. 1–6. [Google Scholar]
- Zhao, Y.; Yue, W. Cognitive Radio Networks with Multiple Secondary Users Under Two Kinds of Priority Schemes: Performance Comparison and Optimization. J. Ind. Manag. Optim. 2017, 13, 1449–1466. [Google Scholar] [CrossRef]
- Zou, J.; Xiong, H.; Wang, D.; Chen, C. Optimal Power Allocation for Hybrid Overlay/Underlay Spectrum Sharing in Multiband Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2013, 62, 1827–1837. [Google Scholar] [CrossRef]
- Huo, Z.; Sun, Y.; Jin, S. A Hybrid Underlay/Overlay Spectrum Allocation Strategy in Cognitive Radio Networks: Multi-Channel Based Performance Optimization. ICIC Express Lett. 2017, 11, 127–134. [Google Scholar]
- Bukhari, S.H.R.; Rehmani, M.H.; Siraj, S. A Survey of Channel Bonding for Wireless Networks and Guidelines of Channel Bonding for Futuristic Cognitive Radio Sensor Networks. IEEE Commun. Surv. Tutor. 2016, 18, 924–948. [Google Scholar]
- Yuan, G.; Zhang, X.; Wang, W. Carrier aggregation for LTE-advanced mobile communication systems. IEEE Commun. Mag. 2010, 48, 88–93. [Google Scholar] [CrossRef]
- Anand, S.; Hong, K.; Sengupta, S.; Chandramouli, R. Is Channel Fragmentation/Bonding in IEEE 802.22 Networks Secure? In Proceedings of the 2011 IEEE International Conference on Communications, Kyoto, Japan, 5–9 June 2011; pp. 1–5. [Google Scholar]
- Rehmani, M.H.; Lohier, S.; Rachedi, A. Channel Bonding in Cognitive Radio Wireless Sensor Networks. In Proceedings of the 2012 International Conference on Selected Topics in Mobile and Wireless Networking, Avignon, France, 2–4 July 2012; pp. 72–76. [Google Scholar]
- Haruki, K.; Hiroyuki, M.; Shoji, K.; Takahashi, Y. Effect of Spectrum Sensing Overhead on Performance for Cognitive Radio Networks with Channel Bonding. J. Ind. Manag. Optim. 2014, 10, 21–40. [Google Scholar]
- Saleem, Y.; Rehmani, M.H. Primary Radio User Activity Models for Cognitive Radio Networks: A Survey. J. Netw. Comput. Appl. 2014, 43, 1–16. [Google Scholar] [CrossRef]
- Alfa, A.S. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System; Springer: New York, NY, USA, 2010. [Google Scholar]
- Zhao, Y.; Yue, W. Performance Analysis and Optimization of Cognitive Radio Networks with Retransmission Control. Optim. Lett. 2018, 12, 1281–1300. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Peng, M.; Liu, J. A Hybrid Spectrum Access Strategy with Channel Bonding and Classified Secondary User Mechanism in Multichannel Cognitive Radio Networks. Sensors 2019, 19, 4398. https://doi.org/10.3390/s19204398
Zhao Y, Peng M, Liu J. A Hybrid Spectrum Access Strategy with Channel Bonding and Classified Secondary User Mechanism in Multichannel Cognitive Radio Networks. Sensors. 2019; 19(20):4398. https://doi.org/10.3390/s19204398
Chicago/Turabian StyleZhao, Yuan, Minglei Peng, and Jiemin Liu. 2019. "A Hybrid Spectrum Access Strategy with Channel Bonding and Classified Secondary User Mechanism in Multichannel Cognitive Radio Networks" Sensors 19, no. 20: 4398. https://doi.org/10.3390/s19204398
APA StyleZhao, Y., Peng, M., & Liu, J. (2019). A Hybrid Spectrum Access Strategy with Channel Bonding and Classified Secondary User Mechanism in Multichannel Cognitive Radio Networks. Sensors, 19(20), 4398. https://doi.org/10.3390/s19204398