Solid State Electronic Sensors for Detection of Carbon Dioxide
<p>Gas sensor test set-up.</p> "> Figure 2
<p>Response of a sensor chip to 100, 200, 400, 1000, 3000 and 6000 ppm CO<sub>2</sub>. Each line is an average of full identical channels.</p> "> Figure 3
<p>FE-SEM images for (<b>A</b>) oxidized MWCNTs deposited onto a silicon substrate, (<b>B</b>) iron oxide nanoparticles and (<b>C</b>) oxidized MWCNT/iron oxide composite material.</p> "> Figure 4
<p>FTIR spectrum of the oxidized MWCNT and the oxidized MWNT/iron oxide composite.</p> "> Figure 5
<p>Raman spectra of oxidized MWCNTs and the oxidized MWNT/iron oxide composite.</p> "> Figure 6
<p>(<b>A</b>) Responses (ΔR/R<sub>o</sub>) to 100, 200, 400, 800, 1600, 3800 and 6000 ppm CO<sub>2</sub> with oxidized MWCNT/iron oxide nanocomposite sensors. (<b>B</b>) Comparison of oxidized MWCNT/iron oxide nanocomposite and oxidized MWCNT response to 100, 200, 400, 800, 1600, 3800 and 6000 ppm CO<sub>2</sub>.</p> "> Figure 6 Cont.
<p>(<b>A</b>) Responses (ΔR/R<sub>o</sub>) to 100, 200, 400, 800, 1600, 3800 and 6000 ppm CO<sub>2</sub> with oxidized MWCNT/iron oxide nanocomposite sensors. (<b>B</b>) Comparison of oxidized MWCNT/iron oxide nanocomposite and oxidized MWCNT response to 100, 200, 400, 800, 1600, 3800 and 6000 ppm CO<sub>2</sub>.</p> "> Figure 7
<p>Oxidized MWCNT/iron oxide chemiresistive sensor response along with CA-10 CO<sub>2</sub> analyzer response.</p> "> Figure 8
<p>Four individual oxidized MWCNT/iron oxide composite sensor responses (ΔR/R<sub>o</sub>) to the step input of 100, 200, 400, 1000, 2000 and 4000 ppm CO<sub>2</sub>.</p> "> Figure 9
<p>Composite material-based sensor responses (ΔR/R<sub>o</sub>) to muiltiple exposure of 4000 ppm CO<sub>2</sub>.</p> "> Figure 10
<p>(<b>A</b>) Comparison of the sensor responses of CO<sub>2</sub> and other gases. (<b>B</b>) Sensor response to various concentrations of CO<sub>2</sub> at two different relative humidities (RH).</p> "> Figure 10 Cont.
<p>(<b>A</b>) Comparison of the sensor responses of CO<sub>2</sub> and other gases. (<b>B</b>) Sensor response to various concentrations of CO<sub>2</sub> at two different relative humidities (RH).</p> "> Figure 11
<p>Oxidized MWNT/iron oxide composite sensor responses (ΔR/R<sub>o</sub>) to 100, 200, 400, 1000, 2000, 4000 and 8000 ppm CO<sub>2</sub> on a smartphone device.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimization of Sensing Material
3.2. Characterization of Sensor Elements
3.3. Sensing Results
3.4. CO2 Sensor Selectivity and Humidity Dependence
3.5. CO2 Sensor Intergration with A Smartphone
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Permentier, K.; Vercammen, S.; Soetaert, S.; Schellemans, C. Carbon dioxide poisoning: A literature review of an often forgotten cause of intoxication in the emergency department. Int. J. Emerg. Med. 2017, 10, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Carbon Dioxide as a Fire Suppressant: Examining the Risks, Report EPA430-R-00-002. Available online: https://www.epa.gov (accessed on 4 September 2018).
- Occupational Safety and Health Administration (OSHA). Permissible Exposures Limits. Available online: https://www.osha.gov/dsg/annotated-pels/tablez-1.html (accessed on 11 November 2018).
- Delgado-Alonso, J.; Phillips, S.; Berry, D.; DiCarmine, P.; Chullen, C.; Quinn, G. Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Wang, Y.; Nakayama, M.; Yagi, M.; Nishikawa, M.; Fukunaga, M.; Watanabe, K. The NDIR CO2 monitor with smart interface for global networking. IEEE Trans. Instrum. Meas. 2005, 54, 1634–1639. [Google Scholar] [CrossRef]
- Naama, S.; Hardjersi, T.; Keffous, A.; Nezzal, G. CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater. Sci. Semicond. Process. 2015, 38, 367–372. [Google Scholar] [CrossRef]
- Michel, C.; Martinez-Preciado, A.; Parra, R.; Aldao, C.; Ponce, M. Novel CO2 and CO gas sensor based on nanostructured Sm2O3 hollow microspheres. Sens. Actuators Chem. 2014, 202, 1220–1228. [Google Scholar] [CrossRef]
- Srinives, S.; Sarkar, T.; Hernandez, R.; Mulchandani, A. A miniature chemiresistor for carbon dioxide. Anal. Chim. Acta 2015, 874, 54–58. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yeow, J.T.W. A Review of Carbon Nanotubes-Based Gas Sensors. J. Sens. 2009, 2009, 1–24. [Google Scholar] [CrossRef]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon Nanotube-Based Chemiresistive Sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Bunes, B.R.; Wu, N.; Gross, D.E.; Moore, J.S.; Zang, L. Oligomer-Coated Carbon Nanotube Chemiresistive Sensors for Selective Detection of Nitroaromatic Explosives. ACS Appl. Mater. Interfaces 2015, 7, 7471–7475. [Google Scholar] [CrossRef]
- Penza, M.; Rossi, R.; Alvisi, M.; Cassano, G.; Signore, M.A.; Serra, E.; Giorgi, R. Pt-and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sens. Actuators B Chem. 2008, 135, 289–297. [Google Scholar] [CrossRef]
- Marliere, C.; Poncharal, P.; Vaccarini, L.; Zahab, A. Effect of Gas Adsorption on the electrical properties of single walled carbon nanotubes, mats. Mater. Res. Soc. Symp. Proc. 2000, 593, 173–178. [Google Scholar] [CrossRef]
- Rahmawati, R.; Melati, A.; Taufiq, A.; Diantoro, M.; Yuliarto, B.; Suyatman, S.; Nugraha, N.; Kurniadi, D. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 202. [Google Scholar]
- Aroutiounian, V.M.; Arakelyan, V.M.; Shahnazaryan, G.E.; Aleksanyan, M.S.; Hernadi, K.; Nemeth, Z.; Berki, P.; Papa, Z.; Toth, Z.; Forro, L. Ethanol sensors made from α-Fe2O3 decorated with multiwall carbon nanotubes. Adv. Nano Res. 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Mitroova, Z.; Tomasovicova, N.; Lancz, G.; Kovac, J.; Vavra, I.; Kopcansky, P. Preparation and characterization of carbon nanotubes functionalized by magnetite nanoparticles. In Proceedings of the Nanocon2010, Olomouc, Czech Republic, 12–14 October 2010. [Google Scholar]
- Cunha, C.; Panseri, S.; Iannazzo, D.; Piperno, A.; Pistone, A.; Fazio, M.; Russo, A.; Marcacci, M.; Galvagno, S. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 2012, 23, 465102. [Google Scholar] [CrossRef] [PubMed]
- Panta, P.C.; Bergmann, C.P. Raman Spectroscopy of Iron Oxide of Nanoparticles (Fe3O4). J. Mater. Sci. Eng. 2015, 5, 217. [Google Scholar] [CrossRef]
- Wan, Y.; Shi, X.; Xia, H.; Xie, J. Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries. Mater. Res. Bull. 2013, 48, 4791–4796. [Google Scholar] [CrossRef]
- Yang, L.; Hu, J.; Dong, A.; Yang, D. Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance. Electrochim. Acta 2014, 144, 235–242. [Google Scholar] [CrossRef]
- He, Y.; Huang, L.; Cai, J.; Zheng, X.; Sun, S. Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochim. Acta 2010, 55, 1140–1144. [Google Scholar] [CrossRef]
- Hua, C.; Shang, Y.; Wang, Y.; Xu, J.; Zhang, Y.; Li, X.; Cao, A. A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Appl. Surf. Sci. 2017, 405, 405–411. [Google Scholar] [CrossRef]
- Gupta, V.K.; Saleh, T.A. Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation. In Carbon Nanotubes-From Research to Applications, 1st ed.; Bianco, S.B., Ed.; EdsIntechOpen: London, UK, 2011; Volume 17, pp. 295–312. [Google Scholar]
- Ghaddab, B.; Berger, F.; Sanchez, J.B.; Mavon, C. Detection of O3 and NH3 using tin dioxide/carbon nanotubes based sensors: Influence of carbon nanotubes properties onto sensor’s sensitivity. Procedia Eng. 2010, 5, 115–118. [Google Scholar] [CrossRef]
- Wongchoosuk, C.; Wisitsoraat, A.; Tuantranont, A.; Kerdcharoen, T. Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys. Sens. Actuators B Chem. 2010, 147, 392–399. [Google Scholar] [CrossRef]
- Wongchoosuk, C.; Wisitsoraat, A.; Phokharatkul, D.; Tuantranont, A.; Kerdcharoen, T. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing. Sensors 2010, 10, 7705–7715. [Google Scholar] [CrossRef] [PubMed]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Kerdcharoen, T.; Wongchoosuk, C. Carbon nanotube and metal oxide hybrid materials for gas sensing. In Semiconductor Gas Sensors, 1st ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 386–407. ISBN 9780857092366. [Google Scholar]
- Li, J.; Hannon, A.; Lu, Y.; Kim, B.; Jesus, E.C.; Chen, J. A Phone-Sensor for Trace Chemical Detection. In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013. [Google Scholar]
- Hannon, A.; Lu, Y.; Li, J.; Meyyappan, M. A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases. Sensors 2016, 16, 1163. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannon, A.; Li, J. Solid State Electronic Sensors for Detection of Carbon Dioxide. Sensors 2019, 19, 3848. https://doi.org/10.3390/s19183848
Hannon A, Li J. Solid State Electronic Sensors for Detection of Carbon Dioxide. Sensors. 2019; 19(18):3848. https://doi.org/10.3390/s19183848
Chicago/Turabian StyleHannon, Ami, and Jing Li. 2019. "Solid State Electronic Sensors for Detection of Carbon Dioxide" Sensors 19, no. 18: 3848. https://doi.org/10.3390/s19183848
APA StyleHannon, A., & Li, J. (2019). Solid State Electronic Sensors for Detection of Carbon Dioxide. Sensors, 19(18), 3848. https://doi.org/10.3390/s19183848