New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration
<p>New target: (<b>a</b>) Target components; (<b>b</b>) upper part of the target, which is used for terrestrial laser scanning (TLS), and lower part of the target, which is used for unmanned aerial vehicle (UAV) surveys, are assembled with the connecting element.</p> "> Figure 2
<p>Diagram of algorithm used to define coordinates of reference point for new target.</p> "> Figure 3
<p>Input point cloud of the target.</p> "> Figure 4
<p>Segmented point cloud of the new target, following primary segmentation.</p> "> Figure 5
<p>Elongated distances to the points on the black part of the horizontal plane.</p> "> Figure 6
<p>Segmented point cloud of the new target, following secondary segmentation. Reference target point is marked by “×”.</p> "> Figure 7
<p>Targets for georeferencing TLS and UAV point clouds: (<b>a</b>) Cylindrical retroreflector for the registration of individual scanner stations’ point clouds; (<b>b</b>) Tilt & Turn target for georeferencing TLS point clouds; (<b>c</b>) photogrammetric ground control point (GCP); (<b>d</b>) retroreflective target that was used as a check point.</p> "> Figure 8
<p>Volume targets for registering TLS and UAV point clouds: (<b>a</b>) Small sphere; (<b>b</b>) large sphere; (<b>c</b>) cone; (<b>d</b>) new target.</p> "> Figure 9
<p>Distribution of targets, TLS scanner stations, and MS50 station throughout the test area.</p> "> Figure 10
<p>Group of targets in the test area.</p> "> Figure 11
<p>Photogrammetric survey: (<b>a</b>) Photogrammetric block UAV40 (oriented images and dense point cloud); (<b>b</b>) image sample (colored in red in (<b>a</b>)).</p> "> Figure 12
<p>Segment taken from a dense point cloud, created from a UAV40 photogrammetric block.</p> "> Figure 13
<p>The <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mrow> <mn>2</mn> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> on check points, following the registration of UAV and TLS point clouds, taking into account the used tie point, given in cm. “Georef” represents the <span class="html-italic">RMSE</span> prior to the registration of the TLS and UAV point clouds.</p> "> Figure 14
<p>The <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mrow> <mn>3</mn> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> on check points, following the registration of UAV and TLS point clouds, taking into account the used tie point, given in cm. “Georef” represents the <span class="html-italic">RMSE</span> prior to the registration of the TLS and UAV point clouds.</p> "> Figure 15
<p>The TLS (blue color) and UAV40 (grayscale) point clouds: (<b>a</b>) Before registration; (<b>b</b>) after registration with the new target.</p> "> Figure 16
<p>The <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mrow> <mn>2</mn> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> of the check points following the UAV and TLS point cloud registration into the referential measurements performed with MS50.</p> "> Figure 17
<p>The <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mrow> <mn>3</mn> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> of the check points following the UAV and TLS point cloud registration into the referential measurements performed with MS50.</p> "> Figure 18
<p>(<b>a</b>) Cone in the TLS point cloud (left) and noise-distorted cone in the UAV point cloud (right); (<b>b</b>) large sphere in the TLS point cloud (left) and flattened large sphere in the UAV point cloud (right).</p> ">
Abstract
:1. Introduction
1.1. Overview of Point Cloud Registration Methods
1.2. Target-Based Registration
1.3. Feature-Based Registration
1.4. A New Target for TLS and UAV Image Point Cloud Registration
2. Materials and Methods
2.1. New Target
2.2. Determining the Coordinates of the Reference Target Points
2.2.1. Determining the Coordinates of the Reference Point for the New Target
2.2.2. Determining the Coordinates of the Reference Target Points on the Remaining Used Targets
2.3. Point Cloud Registration
- 3 translations in the directions of the coordinate axes: , , and ;
- 3 rotations around the coordinate axes: , , and ;
- a change in the scale: .
- Transformation of the UAV point cloud into the TLS point cloud;
- Transformation of the UAV point cloud into referential data, measured with MS50;
- Transformation of the TLS point cloud into referential data, measured with MS50.
2.4. Quality of Data Registration
2.5. Experimental Setup
- Riegl cylindrical retroreflector with a diameter of 10 cm for registering TLS point clouds from different scanner stations;
- Leica HDS 6′’ Tilt & Turn target used as a GCP for georeferencing TLS point clouds;
- Photogrammetric GCP (a black circle with a diameter of 27 cm on a white background) for georeferencing UAV aerial images.
- Small sphere, diameter of 15 cm;
- Large sphere, diameter of 20 cm;
- Right circular cone, diameter of 40 cm;
- New target.
2.5.1. Field Measurements and Initial Data Processing
- Tie points (small and large sphere, cone, and new target);
- Photogrammetric GCP;
- Cylindrical retroreflector for registering TLS point clouds;
- Retroreflective check point target.
2.5.2. Referential Measurements
2.5.3. Terrestrial Laser Scanning and Processing of the TLS Point Cloud
2.5.4. Photogrammetric Surveying and the Creation of UAV Point Clouds
3. Results
3.1. Precision of Coordinates of Reference Target Points
3.2. Quality of Registration
3.2.1. Discrepancies of TLS and UAV Point Clouds on the Check Points Prior to Registration
3.2.2. Discrepancies of the TLS and UAV Point Clouds on the Check Points after the Registration
3.2.3. Registration of TLS and UAV Point Clouds on Referential Measurements
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, F.; Habib, A. A Closed-Form Solution for Coarse Registration of Point Clouds Using Linear Features. J. Surv. Eng. 2016, 142, 04016006. [Google Scholar] [CrossRef]
- Kraus, K. Photogrammetry, Geometry from Images and Laser Scans, 2nd ed.; Walter de Gruyter: Berlin, Germany, 2007; ISBN 978-3-11-019007-6. [Google Scholar] [CrossRef]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F. State of the art in high density image matching. Photogramm. Rec. 2014, 29, 144–166. [Google Scholar] [CrossRef] [Green Version]
- Dahl, A.L.; Aanæs, H.; Pedersen, K.S. Finding the Best Feature Detector-Descriptor Combination. In Proceedings of the 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, Hangzhou, China, 16–19 May 2011; pp. 318–325. [Google Scholar] [CrossRef]
- Urban, S.; Weinmann, M. Finding a good feature detector-descriptor combination for the 2D keypoint-based registration of TLS point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W5, 121–128. [Google Scholar] [CrossRef]
- Gerke, M.; Nex, F.; Jende, P. Co-registration of terrestrial and UAV-based images—Experimental results. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XL-3/W4, 11–18. [Google Scholar] [CrossRef]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Structure from motion (SFM) photogrammetry. In Geomorphological Techniques (Online Edition); Clarke, L.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2015; Chapter 2, Section 2.2; ISBN 2047-0371. [Google Scholar]
- Piermattei, L.; Carturan, L.; De Blasi, F.; Tarolli, P.; Dalla Fontana, G.; Vettore, A.; Pfeifer, N. Suitability of ground-based SfM–MVS for monitoring glacial and periglacial processes. Earth Surf. Dyn. 2016, 4, 425–443. [Google Scholar] [CrossRef]
- Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sens. 2017, 9, 172. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Gerke, M.; Wang, R.; Yang, H. Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images. ISPRS J. Photogramm. Remote Sens. 2016, 121, 113–127. [Google Scholar] [CrossRef]
- Persad, R.A.; Armenakis, C. Automatic co-registration of 3D multi-sensor point clouds. ISPRS J. Photogramm. Remote Sens. 2017, 130, 162–186. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Yang, B.; Li, J.; Guan, H. An Accurate TLS and UAV Image Point Clouds Registration Method for Deformation Detection of Chaotic Hillside Areas. Remote Sens. 2019, 11, 647. [Google Scholar] [CrossRef]
- Bosché, F. Plane-based registration of construction laser scans with 3D/4D building models. Adv. Eng. Inform. 2012, 26, 90–102. [Google Scholar] [CrossRef]
- Habib, A.; Ghanma, M.; Morgan, M.; Al-Ruzouq, R. Photogrammetric and Lidar Data Registration Using Linear Features. Photogramm. Eng. Remote Sens. 2005, 71, 699–707. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Yao, J.; Ruggeri, M.R.; Taddei, P.; Sequeira, V. Automatic scan registration using 3D linear and planar features. 3D Res. 2011, 1, 6. [Google Scholar] [CrossRef]
- Al-Durgham, K.; Habib, A. Association-Matrix-Based Sample Consensus Approach for Automated Registration of Terrestrial Laser Scans Using Linear Features. Photogramm. Eng. Remote Sens. 2014, 80, 1029–1039. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Li, H.; Liu, L.; Wu, M. A G-Super4PCS Registration Method for Photogrammetric and TLS Data in Geology. ISPRS Int. J. Geo-Inf. 2017, 6, 129. [Google Scholar] [CrossRef]
- Fugazza, D.; Scaioni, M.; Corti, M.; D’Agata, C.; Azzoni, R.S.; Cernuschi, M.; Smiraglia, C.; Diolaiuti, G.A. Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Nat. Hazards Earth Syst. Sci. 2018, 18, 1055–1071. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Li, W.; Lai, S.; Zhu, L.; Jiang, W.; Zhang, Q. The integration of terrestrial laser scanning and terrestrial and unmanned aerial vehicle digital photogrammetry for the documentation of Chinese classical gardens—A case study of Huanxiu Shanzhuang, Suzhou, China. J. Cult. Herit. 2018, 33, 222–230. [Google Scholar] [CrossRef]
- Jo, H.Y.; Hong, S. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS Int. J. Geo-Inf. 2019, 8, 53. [Google Scholar] [CrossRef]
- Moon, D.; Chung, S.; Kwon, S.; Seo, J.; Shin, J. Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Autom. Constr. 2019, 98, 322–331. [Google Scholar] [CrossRef]
- Park, J.; Kim, P.; Cho, Y.K.; Kang, J. Framework for automated registration of UAV and UGV point clouds using local features in images. Autom. Constr. 2019, 98, 175–182. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Liang, F.; Liu, Y. Automatic registration of large-scale urban scene point clouds based on semantic feature points. ISPRS J. Photogramm. Remote Sens. 2016, 113, 43–58. [Google Scholar] [CrossRef]
- Lichti, D.; Skaloud, J. Registration and calibration. In Airborne and Terrestrial Laser Scanning, 1st ed.; Vosselman, G., Mass, H.G., Eds.; Whittles Publishing: Dunbeath, UK, 2010; pp. 97–98, 111–113. [Google Scholar]
- Lichti, D.D.; Harvey, B.R. The effects of reflecting surface properties on time-of-flight laser scanner measurements. In Proceedings of the ISPRS Commision IV Symposium 2002 on Geospatial Theory, Processing and Applications, Ottawa, ON, Canada, 9–12 July 2002; Volume 34. [Google Scholar]
- Voegtle, T.; Wakaluk, S. Effects on the measurements of the terrestrial laser scanner HDS 6000 (Leica) caused by different object materials. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, XXXVIII-3/W8, 68–74. [Google Scholar]
- Lichti, D.D.; Stewart, M.P.; Tsakiri, M.; Snow, A.J. Calibration and testing of a terrestrial laser scanner. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2000, XXXIII-B5, 485–492. [Google Scholar]
- Pesci, A.; Teza, G. Terrestrial laser scanner and retro-reflective targets: An experiment for anomalous effects investigation. Int. J. Remote Sens. 2008, 29, 5749–5765. [Google Scholar] [CrossRef]
- Schmitz, B.; Holst, C.; Medic, T.; Lichti, D.D.; Kuhlmann, H. How to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners. Sensors 2019, 19, 1466. [Google Scholar] [CrossRef]
- Pfeifer, N.; Dorninger, P.; Haring, A.; Fan, H. Investigating Terrestrial Laser Scanning Intensity Data: Quality and Functional Relations. In Proceedings of the 8th International Conference on Optical 3D Measurement Techniques, Zurich, Switzerland, 9–13 July 2007; pp. 328–337. [Google Scholar]
- Zámečníková, M.; Wieser, A.; Woschitz, H.; Ressl, C. Influence of surface reflectivity on reflectorless electronic distance measurement and terrestrial laser scanning. J. Appl. Geod. 2014, 8, 311–326. [Google Scholar] [CrossRef]
- Ge, X.; Wunderlich, T. Target identification in terrestrial laser scanning. Surv. Rev. 2015, 47, 129–140. [Google Scholar] [CrossRef]
- Akca, D. Full automatic registration of laser scanner point clouds. In ETH Zurich Research Collection; ETH Zurich: Zurich, Switzerland, 2003. [Google Scholar]
- Artese, G.; Achilli, V.; Salemi, G.; Trecroci, A. Automatic Orientation and Merging of Laser Scanner Acquisitions Through Volumetric Targets: Procedure Description and Test Results. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, XXXV-B5, 210–215. [Google Scholar]
- Rabbani, T.; Dijkman, S.; Van den Heuvel, F.; Vosselman, G. An integrated approach for modelling and global registration of point clouds. ISPRS J. Photogramm. Remote Sens. 2007, 61, 355–370. [Google Scholar] [CrossRef]
- Franaszek, M.; Cheok, G.S.; Witzgall, C. Fast automatic registration of range images from 3D imaging systems using sphere targets. Autom. Constr. 2009, 18, 265–274. [Google Scholar] [CrossRef]
- Yun, D.; Kim, S.; Heo, H.; Ko, K.H. Automated registration of multi-view point clouds using sphere targets. Adv. Eng. Inform. 2015, 29, 930–939. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Gao, J.; Huang, Y.; Towers, D.P. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints. Sensors 2017, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, T.; Van den Heuvel, E. Automatic point cloud registration using constrained search for corresponding objects. In Proceedings of the 7th Conference on Optical 3-D Measurement Techniques, Vienna, Austria, 3–5 October 2005; pp. 177–186. [Google Scholar]
- Vezočnik, R. Analysis of Terrestrial Laser Scanning Technology for Structural Deformation Monitoring. Ph.D. Thesis, University of Ljubljana, Ljubljana, Slovenia, 2011. [Google Scholar]
- Von Hansen, W.; Gross, H.; Thoennesen, U. Line-based registration of terrestrial and airborne LiDAR data. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII-B3a, 161–166. [Google Scholar]
- Yang, B.; Zang, Y. Automated registration of dense terrestrial laser-scanning point clouds using curves. ISPRS J. Photogramm. Remote Sens. 2014, 95, 109–121. [Google Scholar] [CrossRef]
- Theiler, P.W.; Schindler, K. Automatic registration of terrestrial laser scanner point clouds using natural planar surfaces. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 3, 173–178. [Google Scholar] [CrossRef]
- Maalek, R.; Lichti, D.D.; Ruwanpura, J.Y. Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites. Sensors 2018, 18, 819. [Google Scholar] [CrossRef]
- Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U. Automated coarse registration of point clouds in 3D urban scenes using voxel based plane constraint. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W4, 185–191. [Google Scholar] [CrossRef]
- Wujanz, D.; Schaller, S.; Gielsdorf, F.; Gründig, L. Plane-based registration of several thousand laser scans on standard hardware. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 1207–1212. [Google Scholar] [CrossRef]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Jaw, J.J.; Chuang, T.Y. Feature-based registration of terrestrial LiDAR point clouds. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII-B3b, 303–308. [Google Scholar]
- Han, J.Y. A Noniterative Approach for the Quick Alignment of Multistation Unregistered LiDAR Point Clouds. IEEE Geosci. Remote Sens. Lett. 2010, 7, 727–730. [Google Scholar] [CrossRef]
- Jende, P.; Nex, F.; Gerke, M.; Vosselman, G. A fully automatic approach to register mobile mapping and airborne imagery to support the correction of platform trajectories in GNSS-denied urban areas. ISPRS J. Photogramm. Remote Sens. 2018, 141, 86–99. [Google Scholar] [CrossRef]
- Jende, P.; Nex, F.; Gerke, M.; Vosselman, G. A guided registration strategy employing virtual planes to overcome non-standard geometries—Using the example of mobile mapping and aerial oblique imagery. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 471–477. [Google Scholar] [CrossRef]
- Thapa, A.; Pu, S.; Gerke, M. Semantic feature based registration of terrestrial point clouds. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, XXXVIII-3/W8, 230–235. [Google Scholar]
- Zieher, T.; Toschi, I.; Remondino, F.; Rutzinger, M.; Kofler, C.; Mejia-Aguilar, A.; Schlögel, R. Sensor- and scene-guided integration of TLS and photogrammetric point clouds for landslide monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 1243–1250. [Google Scholar] [CrossRef]
- Aicardi, I.; Nex, F.; Gerke, M.; Lingua, A.M. An Image-Based Approach for the Co-Registration of Multi-Temporal UAV Image Datasets. Remote Sens. 2016, 8, 779. [Google Scholar] [CrossRef]
- Huang, R.; Zheng, S.; Hu, K. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations. Sensors 2018, 18, 1770. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.; et al. Integration of UAV-Based Photogrammetry and Terrestrial Laser Scanning for the Three-Dimensional Mapping and Monitoring of Open-Pit Mine Areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Seier, G.; Stangl, J.; Schöttl, S.; Sulzer, W.; Sass, O. UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria. Int. J. Remote Sens. 2017, 38, 2903–2920. [Google Scholar] [CrossRef]
- Li, W.; Wang, C.; Zai, D.; Huang, P.; Liu, W.; Wen, C.; Li, J. A Volumetric Fusing Method for TLS and SFM Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3349–3357. [Google Scholar] [CrossRef]
- Vasilakos, C.; Chatzistamatis, S.; Roussou, O.; Soulakellis, N. Comparison of Terrestrial Photogrammetry and Terrestrial Laser Scanning for Earthquake Response Management. In Intelligent Systems for Crisis Management; Altan, O., Chandra, M., Sunar, F., Tanzi, T.J., Eds.; Springer International Publishing: Basel, Switzerland, 2019; pp. 33–57. [Google Scholar]
- Dold, C.; Brenner, C. Registration of terrestrial laser scanning data using planar patches and image data. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, XXXVI-5, 78–83. [Google Scholar] [CrossRef]
- Gruen, A.W. Adaptive least squares correlation: A powerful image matching technique. S. Afr. J. Photogramm. Remote Sens. Cartogr. 1985, 14, 175–187. [Google Scholar]
- Agisoft PhotoScan. Available online: https://www.agisoft.com (accessed on 21 June 2018).
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Tan, K.; Zhang, W.; Shen, F.; Cheng, X. Investigation of TLS Intensity Data and Distance Measurement Errors from Target Specular Reflections. Remote Sens. 2018, 10, 1077. [Google Scholar] [CrossRef]
- Zámečníková, M.; Neuner, H.; Pegritz, S.; Sonnleitner, R. Investigation on the influence of the incidence angle on the reflectorless distance measurement of a terrestrial laser scanner. Iulia Dana Negula Violeta Poenaru 2015, 103, 208–218. [Google Scholar]
- Kregar, K. Optimizacija Postopkov Terestričnega Laserskega Skeniranja za Meritve Visoke Natančnosti—Optimization of Terrestrial Laser Scanning for High Precision Measurements. Ph.D. Thesis, University of Ljubljana, Ljubljana, Slovenia, 2016. [Google Scholar]
- Mikhail, E.M.; Ackermann, F.E. Observations and Least Squares, 1st ed.; Thomas, Y., Ed.; Crowell Company, Inc.: New York, NY, USA, 1976; ISBN 0-7002-2481-5. [Google Scholar]
- Kregar, K.; Grigillo, D.; Kogoj, D. High precision target center determination from a point cloud. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W2, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Urbančič, T.; Vrečko, A.; Kregar, K. The reliability of RANSAC method when estimating the parameters of geometric object. Geodetski Vestnik 2016, 60, 69–83. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? —Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Cramer, M.; Przybilla, H.J.; Zurhorst, A. UAV cameras: Overview and geometric calibration benchmark. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6, 85–92. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. J. Surv. Eng. 2017, 143, 04016025. [Google Scholar] [CrossRef]
- Lichti, D.D. Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS J. Photogramm. Remote Sens. 2007, 61, 307–324. [Google Scholar] [CrossRef]
- Hebert, M.; Krotkov, E. 3D measurements from imaging laser radars: How good are they? Image Vis. Comput. 1992, 10, 170–178. [Google Scholar] [CrossRef]
Scanner Station | σ3D (mm) |
---|---|
S1 | 1.0 |
S2 | 1.3 |
S3 | 1.7 |
S4 | 2.2 |
Block | Flight Altitude (m) | Number of Images | GSD (cm) |
---|---|---|---|
UAV20 | 20 | 112 | 0.49 |
UAV40 | Transversal 40, longitudinal 46 | 175 | 1.09 |
UAV70 | Transversal 75, longitudinal 83 | 50 | 2.06 |
Point Type | ||||||
---|---|---|---|---|---|---|
GCP | 0.58 | 1.03 | 0.87 | 2.01 | 0.39 | 1.38 |
check | 0.54 | 1.14 | 0.85 | 1.93 | 0.43 | 1.77 |
Point Type | MS50 | TLS | UAV20 | UAV40 | UAV75 |
---|---|---|---|---|---|
sSph | 0.004 | 0.004 | 0.22 | 0.71 | / |
LSph | 0.003 | 0.003 | 0.07 | 0.21 | 0.45 |
Cone | 0.02 | 0.01 | 0.15 | 0.39 | 0.70 |
newT | 0.17 | 0.29 | 0.50 | 0.84 | 0.39 |
rRef | 0.15 | 0.38 | 0.57 | 0.87 | 0.46 |
Point Type | MS50 | TLS | UAV20 | UAV40 | UAV75 |
---|---|---|---|---|---|
sSph | 0.005 | 0.005 | 0.24 | 0.76 | / |
LSph | 0.004 | 0.003 | 0.08 | 0.26 | 0.55 |
Cone | 0.12 | 0.14 | 0.65 | 2.40 | 5.23 |
newT | 0.17 | 0.43 | 1.15 | 2.03 | 1.76 |
rRef | 0.15 | 0.45 | 1.14 | 1.82 | 1.79 |
RMSE (cm) | UAV20 | UAV40 | UAV75 |
---|---|---|---|
2D | 0.82 | 0.98 | 0.82 |
3D | 1.36 | 1.90 | 1.94 |
Tie Point | UAV20 | UAV40 | UAV75 |
---|---|---|---|
sSph | 0.92 | 0.64 | / |
LSph | 0.96 | 0.92 | 1.66 |
Cone | 0.81 | 0.75 | 0.66 |
newt | 0.59 | 0.56 | 0.67 |
Tie Point | UAV20 | UAV40 | UAV75 |
---|---|---|---|
sSph | 7.36 | 2.97 | / |
LSph | 1.82 | 2.43 | 4.70 |
Cone | 6.03 | 1.50 | 3.74 |
newt | 1.03 | 0.68 | 1.00 |
Tie Point | UAV20 | UAV40 | UAV75 | TLS |
---|---|---|---|---|
sSph | 0.62 | 0.99 | / | 0.42 |
LSph | 0.44 | 0.50 | 1.70 | 0.45 |
Cone | 0.89 | 0.70 | 0.74 | 0.39 |
newT | 0.27 | 0.24 | 0.36 | 0.41 |
Tie Point | UAV20 | UAV40 | UAV75 | TLS |
---|---|---|---|---|
sSph | 7.52 | 3.27 | / | 0.50 |
LSph | 1.73 | 2.52 | 4.92 | 0.53 |
Cone | 6.68 | 2.03 | 3.14 | 0.81 |
newT | 0.69 | 0.36 | 0.68 | 0.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbančič, T.; Roškar, Ž.; Kosmatin Fras, M.; Grigillo, D. New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration. Sensors 2019, 19, 3179. https://doi.org/10.3390/s19143179
Urbančič T, Roškar Ž, Kosmatin Fras M, Grigillo D. New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration. Sensors. 2019; 19(14):3179. https://doi.org/10.3390/s19143179
Chicago/Turabian StyleUrbančič, Tilen, Žiga Roškar, Mojca Kosmatin Fras, and Dejan Grigillo. 2019. "New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration" Sensors 19, no. 14: 3179. https://doi.org/10.3390/s19143179
APA StyleUrbančič, T., Roškar, Ž., Kosmatin Fras, M., & Grigillo, D. (2019). New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration. Sensors, 19(14), 3179. https://doi.org/10.3390/s19143179