Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride
<p>Relative reflectance of treatment to control for each of four species as acquired by CP.</p> "> Figure 2
<p>Relative reflectance of treatment to control for each of four species as acquired by FOV.</p> "> Figure 3
<p>Weeks 1, 2, and 3 of the first <span class="html-italic">A. thaliana</span> experiment; response was similar in the second experiment. (<b>a</b>) Week 1 control plants; (<b>b</b>) Week 1 treatment plants which exhibit slight chlorosis along the edges of older leaves; (<b>c</b>) Week 2 control plants; (<b>d</b>) Week 2 treatment plants which exhibit chlorosis, necrosis, and decreased biomass; (<b>e</b>) Week 3 control plants; (<b>f</b>) Week 3 plants which exhibit significant necrosis.</p> "> Figure 4
<p>Example (<b>a</b>) <span class="html-italic">B. napus</span> and (<b>b</b>) <span class="html-italic">H. annuus</span> plants at week 3. Arrows in (<b>a</b>) are pointing out areas of chlorosis around leaf edges. The arrow in (<b>b</b>) is pointing out a necrotic spot.</p> "> Figure 5
<p>Chlorophyll content (Chl <span class="html-italic">a + b</span>, µg/mL) by week and treatment level for each species considered. Lines (solid = control, dashed = treatment) indicate mean values at each week.</p> "> Figure 6
<p>Relative water content (RWC) by week and treatment level for each species considered. Lines (solid = control, dashed = treatment) indicate mean values at each week.</p> "> Figure 7
<p>Dry biomass (mg) by week and treatment level for each species considered. Lines (solid = control, dashed = treatment) indicate mean values at each week.</p> "> Figure 8
<p>CLAI by week and treatment level for each species considered. Lines (solid = control, dashed = treatment) indicate mean values at each week.</p> "> Figure 9
<p>Height by week and treatment level for <span class="html-italic">H. annuus</span>. Lines (solid = control, dashed = treatment) indicate mean values at each week.</p> "> Figure A1
<p>Control and treatment spectra for <span class="html-italic">A. thaliana</span> as acquired by CP and FOV.</p> "> Figure A2
<p>Control and treatment spectra for <span class="html-italic">Z. mays</span> as acquired by CP and FOV.</p> "> Figure A3
<p>Control and treatment spectra for <span class="html-italic">H. annuus</span> as acquired by CP and FOV.</p> "> Figure A4
<p>Control and treatment spectra for <span class="html-italic">B. napus</span> as acquired by CP and FOV.</p> ">
Abstract
:1. Introduction
1.1. Plant Species Considered
1.2. Lithium in Plants
2. Materials and Methods
2.1. Plant Growth and Treatment
2.2. Equipment Setup and Spectra Collection
2.3. Collection of Physical Measures
2.4. Data Analysis
3. Results
3.1. Spectra
3.2. Phenotypic Observations
3.3. Endpoints
3.4. Vegetation Indices and Overall Response
4. Discussion
4.1. Chlorophyll Content
4.2. Water Content
4.3. Remaining Endpoints: Size and Shape
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Week | Group | Chl a + b (µg/mL) | RWC | Dry Biomass (mg) | CLAI |
---|---|---|---|---|---|
Zea mays | |||||
1 | Control | 24.83 ± 2.30 | 0.916 ± 0.005 | 309.0 ± 102.1 | 0.371 ± 0.105 |
Treatment | 24.92 ± 2.76 | 0.915 ± 0.004 | 334.7 ± 93.5 | 0.304 ± 0.086 | |
2 | Control | 25.34 ± 2.28 | 0.912 ± 0.005 | 502.4 ± 195.3 | 0.352 ± 0.084 |
Treatment | 26.79 ± 1.88 | 0.914 ± 0.005 | 552.2 ± 180.6 | 0.349 ± 0.077 | |
3 | Control | 20.84 ± 4.21 | 0.902 ± 0.009 | 896.0 ± 368.0 | 0.378 ± 0.096 |
Treatment | 23.64 ± 2.12 | 0.905 ± 0.006 | 818.4 ± 285.5 | 0.364 ± 0.093 | |
Arabidopsis thaliana | |||||
1 | Control | 15.49 ± 2.18 | 0.928 ± 0.006 | 139.1 ± 27.8 | 0.563 ± 0.065 |
Treatment | 15.42 ± 1.33 | 0.918 ± 0.010 | 179.6 ± 77.7 | 0.505 ± 0.104 | |
2 | Control | 18.35 ± 2.23 | 0.922 ± 0.010 | 264.4 ± 31.6 | 0.704 ± 0.067 |
Treatment | 15.47 ± 4.34 | 0.882 ± 0.012 | 183.4 ± 69.5 | 0.480 ± 0.109 | |
3 | Control | 19.82 ± 2.93 | 0.916 ± 0.005 | 279.3 ± 25.1 | 0.730 ± 0.107 |
Treatment | 6.06 ± 3.40 | 0.629 ± 0.137 | 212.2 ± 69.1 | 0.461 ± 0.061 | |
Brassica napus | |||||
1 | Control | 13.66 ± 1.89 | 0.946 ± 0.003 | 271.0 ± 50.6 | 0.505 ± 0.068 |
Treatment | 13.67 ± 1.10 | 0.943 ± 0.004 | 313.9 ± 91.5 | 0.493 ± 0.068 | |
2 | Control | 14.41 ± 1.13 | 0.943 ± 0.008 | 492.5 ± 146.4 | 0.617 ± 0.100 |
Treatment | 13.51 ± 2.13 | 0.934 ± 0.005 | 520.4 ± 112.6 | 0.602 ± 0.115 | |
3 | Control | 15.12 ± 2.84 | 0.917 ± 0.018 | 924.7 ± 145.5 | 0.631 ± 0.080 |
Treatment | 14.45 ± 2.72 | 0.910 ± 0.019 | 831.6 ± 165.1 | 0.672 ± 0.095 | |
Helianthus annuus | |||||
1 | Control | 18.71 ± 2.35 | 0.932 ± 0.006 | 262.9 ± 130.6 | 0.427 ± 0.195 |
Treatment | 17.93 ± 3.24 | 0.928 ± 0.008 | 234.5 ± 113.2 | 0.398 ± 0.150 | |
2 | Control | 23.92 ± 2.62 | 0.929 ± 0.008 | 397.7 ± 109.9 | 0.565 ± 0.137 |
Treatment | 20.73 ± 3.12 | 0.931 ± 0.007 | 345.8 ± 162.2 | 0.527 ± 0.152 | |
3 | Control | 23.96 ± 2.88 | 0.911 ± 0.017 | 805.8 ± 201.3 | 0.651 ± 0.180 |
Treatment | 20.79 ± 3.74 | 0.913 ± 0.013 | 739.2 ± 218.2 | 0.556 ± 0.237 |
Week | Group | Height (cm) |
---|---|---|
1 | Control | 7.76 ± 2.04 |
Treatment | 8.89 ± 2.87 | |
2 | Control | 11.91 ± 2.80 |
Treatment | 12.30 ± 3.60 | |
3 | Control | 24.32 ± 4.63 |
Treatment | 18.86 ± 4.54 |
Appendix C
Species | VI | CP | FOV | ||||
---|---|---|---|---|---|---|---|
Tmt (F(1,10)) | Week (F(2,56)) | Interaction (F(2,56)) | Tmt (F(1,10)) | Week (F(2,56)) | Interaction (F(2,56)) | ||
H. annuus | NDVI | -- | -- | -- | 0.2385 | 0.0203 | 0.0813 |
WI | 0.5019 | 0.0069 | 0.4049 | 0.3317 | 0.0334 | 0.8654 | |
PSND | 0.0295 | 0.0127 | 0.8555 | 0.3109 | 0.0217 | 0.0746 | |
YI | 0.1177 | 0.6125 | 0.4628 | 0.0022 | <0.0001 | 0.0079 | |
R950/R750 | 0.3633 | <0.0001 | 0.7413 | 0.7559 | 0.1525 | 0.2403 | |
R750/R550 | 0.0071 | <0.0001 | 0.1573 | 0.0008 | <0.0001 | 0.0269 | |
R1636/R1933 | 0.0653 | 0.8831 | 0.6997 | 0.8969 | <0.0001 | 0.0061 | |
(R950 − R750)/(R950 + R750) | 0.3618 | <0.0001 | 0.7386 | 0.7619 | 0.1481 | 0.2351 | |
Z. mays | NDVI | -- | -- | -- | 0.7568 | 0.0006 | 0.6193 |
WI | 0.6174 | 0.0843 | 0.4998 | 0.6413 | <0.0001 | 0.9903 | |
PSND | 0.2175 | 0.0003 | 0.0707 | 0.7104 | 0.0005 | 0.5628 | |
YI | 0.4996 | 0.0030 | 0.1736 | 0.0197 | <0.0001 | 0.0729 | |
R950/R750 | 0.4220 | <0.0001 | 0.1904 | 0.9706 | <0.0001 | 0.2914 | |
R750/R550 | 0.8550 | 0.0002 | 0.4873 | 0.1712 | 0.0013 | 0.7066 | |
R1636/R1933 | 0.3538 | 0.0388 | 0.2561 | 0.6007 | 0.1999 | 0.6718 | |
(R950 − R750)/(R950 + R750) | 0.4221 | <0.0001 | 0.1910 | 0.9879 | <0.0001 | 0.2896 | |
B. napus | NDVI | -- | -- | -- | 0.5029 | 0.0004 | 0.8694 |
WI | 0.0103 | <0.0001 | 0.0250 | 0.1117 | 0.0213 | 0.6315 | |
PSND | 0.1105 | <0.0001 | 0.3902 | 0.4865 | 0.0031 | 0.9486 | |
YI | 0.6543 | 0.0027 | 0.0242 | 0.5517 | <0.0001 | 0.9030 | |
R950/R750 | 0.8266 | <0.0001 | 0.1267 | 0.1847 | <0.0001 | 0.1889 | |
R750/R550 | 0.3200 | 0.7560 | 0.0431 | 0.2639 | 0.0001 | 0.6164 | |
R1636/R1933 | 0.0006 | <0.0001 | 0.0004 | 0.4581 | <0.0001 | 0.6011 | |
(R950 − R750)/(R950 + R750) | 0.8263 | <0.0001 | 0.1276 | 0.1821 | <0.0001 | 0.1806 | |
A. thaliana | NDVI | -- | -- | -- | <0.0001 | <0.0001 | <0.0001 |
WI | 0.0003 | <0.0001 | <0.0001 | 0.0034 | 0.0060 | <0.0001 | |
PSND | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
YI | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
R950/R750 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
R750/R550 | 0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.6830 | <0.0001 | |
R1636/R1933 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
(R950 − R750)/(R950 + R750) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
References
- Chaerle, L.; Van Der Straeten, D. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 2000, 5, 495–501. [Google Scholar] [CrossRef]
- Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S. Arsenic-Induced and Selenium-Induced Changes in Spectral Reflectance and Morphology of Soybean Plants. Remote Sens. Environ. 1989, 30, 263–269. [Google Scholar] [CrossRef]
- Slonecker, E.T. Analysis of the effects of heavy metals on vegetation hyperspectral reflectance properties. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2012; p. 561. [Google Scholar]
- Agelet, L.E.; Hurburgh, C.R. A Tutorial on Near Infrared Spectroscopy and Its Calibration. Crit. Rev. Anal. Chem. 2010, 40, 246–260. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Nat. Biotechnol. 1995, 13, 468. [Google Scholar] [CrossRef]
- Cameron, J.R.; Kenney, G.; Johnson, N.; Daniels, F. Radiation Dosimeter Utilizing Thermoluminescence of Lithium Fluoride. Science 1961, 134, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Hawrylak-Nowak, B.; Kalinowska, M.; Szymanska, M. A Study on Selected Physiological Parameters of Plants Grown Under Lithium Supplementation. Biol. Trace Elem. Res. 2012, 149, 425–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kszos, L.A.; Stewart, A.J. Review of lithium in the aquatic environment: Distribution in the united states, toxicity and case example of groundwater contamination. Ecotoxicology 2003, 12, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Crowley, K.D.; Ahearne, J.F. Managing the environmental legacy of US nuclear-weapons production—Although the waste from America’s arms buildup will never be “cleaned up,” human and environmental risks can be reduced and managed. Am. Sci. 2002, 90, 514–523. [Google Scholar] [CrossRef]
- Balonov, M.; Dubourg, M.; Efremenkov, V.; Gilpin, J. Management of Waste Containing Tritium and Carbon-14; Technical Reports Series; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M. Analysis of Remote Reflection Spectroscopy to Monitor Plant Health. Adv. Space Res. 1994, 14, 199–202. [Google Scholar] [CrossRef]
- Bandaru, V.; Hansen, D.J.; Codling, E.E.; Daughtry, C.S.; White-Hansen, S.; Green, C.E. Quantifying arsenic-induced morphological changes in spinach leaves: Implications for remote sensing. Int. J. Remote Sens. 2010, 31, 4163–4177. [Google Scholar] [CrossRef]
- Collins, W.; Chang, S.H.; Raines, G.; Canney, F.; Ashley, R. Airborne Biogeophysical Mapping of Hidden Mineral-Deposits. Econ. Geol. 1983, 78, 737–749. [Google Scholar] [CrossRef]
- Davids, C.; Tyler, A.N. Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sens. Environ. 2003, 85, 30–38. [Google Scholar] [CrossRef]
- Dunagan, S.C.; Gilmore, M.S.; Varekamp, J.C. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ. Pollut. 2007, 148, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Kooistra, L.; Salas, E.A.L.; Clevers, J.G.P.W.; Wehrens, R.; Leuven, R.S.E.W.; Nienhuis, P.H.; Buydens, L.M.C. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Pollut. 2004, 127, 281–290. [Google Scholar] [CrossRef]
- Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Monitoring the effects of arsenic and chromium accumulation in Chinese brake fern (Pteris vittata). Int. J. Remote Sens. 2007, 28, 1055–1067. [Google Scholar] [CrossRef]
- Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Spectral reflectance and leaf internal structure changes of barley plants due to phytoextraction of zinc and cadmium. Int. J. Remote Sens. 2007, 28, 1041–1054. [Google Scholar] [CrossRef]
- Sridhar, B.B.M.; Vincent, R.K.; Roberts, S.J.; Czajkowski, K. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 676–681. [Google Scholar] [CrossRef]
- Milton, N.M.; Eiswerth, B.A.; Ager, C.M. Effect of Phosphorus Deficiency on Spectral Reflectance and Morphology of Soybean Plants. Remote Sens. Environ. 1991, 36, 121–127. [Google Scholar] [CrossRef]
- Schwaller, M.R.; Schnetzler, C.C.; Marshall, P.E. The changes in leaf reflectance of sugar maple (Acer-saccharum Marsh) seedlings in response to heavy-metal stress. Int. J. Remote Sens. 1983, 4, 93–100. [Google Scholar] [CrossRef]
- Su, Y.; Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L. Effect of bioaccumulation of Cs and Sr natural isotopes on foliar structure and plant spectral reflectance of Indian mustard (Brassica juncea). Water Air Soil Pollut. 2007, 180, 65–74. [Google Scholar] [CrossRef]
- NSF. Arabidopsis: The Model Plant. Available online: http://www.nsf.gov/pubs/2002/bio0202/model.htm#content (accessed on 5 December 2017).
- Li, X.; Gao, P.; Gjetvaj, B.; Westcott, N.; Gruber, M.Y. Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci. 2009, 177, 68–80. [Google Scholar] [CrossRef]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.R.; Schroder, P. Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res. 2009, 16, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Vanaja, M.; Yadav, S.K.; Archana, G.; Lakshmi, N.J.; Reddy, P.R.R.; Vagheera, P.; Razak, S.K.A.; Maheswari, M.; Venkateswarlu, B. Response of C-4 (maize) and C-3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. Plant Soil Environ. 2011, 57, 207–215. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Sunflower (Helianthus annuus L.)—A potential crop for environmental industry. Helia 2007, 30, 167–174. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Phytoremediation potential of maize (Zea mays L.). A review. Afr. J. Gen. Agric. 2010, 6, 275–287. [Google Scholar]
- Capehart, T. Corn & Other Feedgrains. Available online: https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/ (accessed on 7 June 2018).
- Grzesiak, M.T.; Filek, W.; Hura, T.; Kocurek, M.; Pilarski, J. Leaf optical properties during and after drought stress in triticale and maize genotypes differing in drought tolerance. Acta Physiol. Plant. 2010, 32, 433–442. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content. Remote Sens. Environ. 2012, 117, 440–448. [Google Scholar] [CrossRef]
- Al-Abbas, A.H.; Barr, R.; Hall, J.D.; Crane, F.L.; Baumgardner, M.F. Spectra of Normal and Nutrient-Deficient Maize Leaves. Agron. J. 1974, 66, 16–20. [Google Scholar] [CrossRef]
- Ercoli, L.; Mariotti, M.; Masoni, A.; Massantini, F. Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. Eur. J. Agron. 1993, 2, 113–117. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E. Light Reflectance Compared with Other Nitrogen Stress Measurements in Corn Leaves. Agron. J. 1994, 86, 934–938. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance Indexes Associated with Physiological-Changes in Nitrogen-Limited and Water-Limited Sunflower Leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semiempirical Indexes to Assess Carotenoids Chlorophyll—A Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Barberi, P. Changes in Spectral Properties of Aging and Senescing Maize and Sunflower Leaves. Physiol. Plant. 1994, 91, 334–338. [Google Scholar] [CrossRef]
- Mariotti, M.; Ercoli, L.; Masoni, A. Spectral properties of iron-deficient corn and sunflower leaves. Remote Sens. Environ. 1996, 58, 282–288. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Reddy, G.S.; Rao, C.L.N.; Venkataratnam, L.; Rao, P.V.K. Influence of plant pigments on spectral reflectance of maize, groundnut and soybean grown in semi-arid environments. Int. J. Remote Sens. 2001, 22, 3373–3380. [Google Scholar] [CrossRef]
- Zhao, D.L.; Reddy, K.R.; Kakani, V.G.; Read, J.J.; Carter, G.A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 2003, 257, 205–217. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Mcstay, N.G.; Rogers, H.H.; Anderson, C.E. Effects of Lithium on Phaseolus-vulgaris L. Sci. Total Environ. 1980, 16, 185–191. [Google Scholar] [CrossRef]
- Bingham, F.T.; Bradford, G.R.; Page, A.L. Toxicity of Lithium to Plants. Calif. Agric. 1964, 18, 6–7. [Google Scholar]
- Naranjo, M.A.; Romero, C.; Belles, J.M.; Montesinos, C.; Vicente, O.; Serrano, R. Lithium treatment induces a hypersensitive-like response in tobacco. Planta 2003, 217, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Kent, N.L. The influence of lithium salts on certain cultivated plants and their parasitic diseases. Ann. Appl. Biol. 1941, 28, 189–209. [Google Scholar] [CrossRef]
- Kent, N.L. Absorption, translocation and ultimate fate of lithium in the wheat plant. New Phytol. 1941, 40, 291–298. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Chloride in soils and its uptake and movement within the plant: A review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef]
- Boyko, A.; Golubov, A.; Bilichak, A.; Kovalchuk, I. Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol. 2010, 51, 1066–1078. [Google Scholar] [CrossRef] [PubMed]
- Bueso, E.; Alejandro, S.; Carbonell, P.; Perez-Amador, M.A.; Fayos, J.; Belles, J.M.; Rodriguez, P.L.; Serrano, R. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J. 2007, 52, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Mulkey, T.J. Alteration of growth and gravitropic response of maize roots by lithium. Gravit. Space Res. 2005, 18, 119–120. [Google Scholar]
- Duff, M.C.; Kuhne, W.W.; Halverson, N.V.; Chang, C.-S.; Kitamura, E.; Hawthorn, L.; Martinez, N.E.; Stafford, C.; Milliken, C.E.; Caldwell, E.F.; et al. mRNA Transcript abundance during plant growth and the influence of Li+ exposure. Plant Sci. 2014, 229, 262–279. [Google Scholar] [CrossRef] [PubMed]
- Sneva, F.A. Lithium Toxicity in Seedlings of 3 Cool Season Grasses. Plant Soil 1979, 53, 219–224. [Google Scholar] [CrossRef]
- Bartolo, M.E.; Carter, J.V. Lithium Decreases Cold-Induced Microtubule Depolymerization in Mesophyll-Cells of Spinach. Plant Physiol. 1992, 99, 1716–1718. [Google Scholar] [CrossRef] [PubMed]
- ASD. FieldSpec® Pro: User’s Guide; Revision, C., Ed.; Analytical Spectral Devices: Boulder, CO, USA, 2002. [Google Scholar]
- Knudson, L.L.; Tibbitts, T.W.; Edwards, G.E. Measurement of Ozone Injury by Determination of Leaf Chlorophyll Concentration. Plant Physiol. 1977, 60, 606–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papista, E.; Acs, E.; Boddi, B. Chlorophyll-alpha determination with ethanol—A critical test. Hydrobiologia 2002, 485, 191–198. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Lloret, P.; Munoz, F.; Vilajeliu, M. Reflectance Assessment of Mite Effects on Apple-Trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Remote Sensing Center, Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Serrano, L. Effects of leaf structure on reflectance estimates of chlorophyll content. Int. J. Remote Sens. 2008, 29, 5265–5274. [Google Scholar] [CrossRef]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Adams, M.L.; Philpot, W.D.; Norvell, W.A. Yellowness index: An application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. Int. J. Remote Sens. 1999, 20, 3663–3675. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus-hippocastanum L. and Acer-platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Martinez, N.E.; Sharp, J.L.; Kuhne, W.W.; Johnson, T.E.; Stafford, C.T.; Duff, M.C. Assessing the use of reflectance spectroscopy in determining CsCl stress in the model species Arabidopsis thaliana. Int. J. Remote Sens. 2015, 36, 5887–5915. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities—A review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Verbruggen, N. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J. Exp. Bot. 2005, 56, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Appenroth, K. Definition of “heavy metals” and their role in biological systems. Soil Heavy Met. 2010, 19, 19–29. [Google Scholar]
- Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging spectrometry and vegetation science. In Imaging Spectrometry; Van der Meer, F.D., de Jong, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2006; p. 111. [Google Scholar]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Slaton, M.R.; Hunt, E.R.; Smith, W.K. Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 2001, 88, 278–284. [Google Scholar] [CrossRef] [PubMed]
Species | Endpoint | Tmt (F(1,10)) | Week (F(2,56)) | Interaction (F(2,56)) |
---|---|---|---|---|
A. thaliana | Chl a + b | <0.0001 | <0.0001 | <0.0001 |
RWC | <0.0001 | <0.0001 | <0.0001 | |
Dry biomass | 0.0479 | <0.0001 | 0.0014 | |
CLAI | <0.0001 | 0.0309 | 0.0002 | |
Z. mays | Chl a + b | 0.1067 | <0.0001 | 0.1922 |
RWC | 0.2580 | <0.0001 | 0.4192 | |
Dry biomass | 0.9923 | <0.0001 | 0.5890 | |
CLAI | 0.2652 | 0.4338 | 0.4271 | |
H. annuus | Chl a + b | 0.0014 | <0.0001 | 0.2899 |
RWC | 0.9459 | <0.0001 | 0.5909 | |
Dry biomass | 0.4353 | <0.0001 | 0.8903 | |
CLAI | 0.3669 | 0.0006 | 0.7505 | |
Height | 0.1703 | <0.0001 | 0.0031 | |
B. napus | Chl a + b | 0.3459 | 0.1573 | 0.7325 |
RWC | 0.1600 | <0.0001 | 0.5512 | |
Dry biomass | 0.8766 | <0.0001 | 0.0599 | |
CLAI | 0.8302 | <0.0001 | 0.4791 |
Endpoint | VI | H. annuus | A. thaliana | ||
---|---|---|---|---|---|
CP | FOV | CP | FOV | ||
Chl a + b | NDVI | -- | -- | -- | 0.3617 |
WI | -- | -- | 0.8154 | 0.9284 | |
PSND | 0.0063 | -- | 0.0200 | 0.3836 | |
YI | -- | 0.0202 | 0.0003 | 0.1850 | |
R950/R750 | -- | -- | 0.0661 | 0.4488 | |
R750/R550 | <0.0001 | 0.0030 | 0.0205 | 0.0235 | |
R1636/R1933 | -- | -- | 0.0256 | 0.7458 | |
(R950 − R750)/(R950 + R750) | -- | -- | 0.0937 | 0.3938 | |
RWC | NDVI | -- | -- | -- | 0.5406 |
WI | -- | -- | 0.9937 | 0.4283 | |
PSND | -- | -- | 0.5333 | 0.7267 | |
YI | -- | -- | 0.9289 | 0.5922 | |
R950/R750 | -- | -- | 0.0257 | 0.0632 | |
R750/R550 | -- | -- | 0.6446 | 0.0194 | |
R1636/R1933 | -- | -- | 0.3356 | 0.6893 | |
(R950 − R750)/(R950 + R750) | -- | -- | 0.0402 | 0.0572 | |
Dry biomass | NDVI | -- | -- | -- | 0.5192 |
WI | -- | -- | 0.1565 | 0.9351 | |
PSND | -- | -- | 0.6989 | 0.5206 | |
YI | -- | -- | 0.3900 | 0.0007 | |
R950/R750 | -- | -- | 0.7997 | 0.1980 | |
R750/R550 | -- | -- | <0.0023 | <0.0001 | |
R1636/R1933 | -- | -- | 0.5527 | 0.6381 | |
(R950 − R750)/(R950 + R750) | -- | -- | 0.7680 | 0.1066 | |
CLAI | NDVI | -- | -- | -- | 0.0040 |
WI | -- | -- | 0.5640 | 0.3781 | |
PSND | -- | -- | 0.1282 | 0.0058 | |
YI | -- | -- | 0.2448 | 0.9941 | |
R950/R750 | -- | -- | 0.4603 | 0.0663 | |
R750/R550 | -- | -- | 0.0003 | 0.0415 | |
R1636/R1933 | -- | -- | 0.2342 | 0.0049 | |
(R950 − R750)/(R950 + R750) | -- | -- | 0.3739 | 0.0266 | |
Height | NDVI | -- | -- | -- | -- |
WI | -- | -- | -- | -- | |
PSND | <0.0001 | -- | -- | -- | |
YI | -- | 0.0229 | -- | -- | |
R950/R750 | -- | -- | -- | -- | |
R750/R550 | <0.0001 | <0.0001 | -- | -- | |
R1636/R1933 | -- | -- | -- | -- | |
(R950 − R750)/(R950 + R750) | -- | -- | -- | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, N.E.; Sharp, J.L.; Johnson, T.E.; Kuhne, W.W.; Stafford, C.T.; Duff, M.C. Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride. Sensors 2018, 18, 2750. https://doi.org/10.3390/s18092750
Martinez NE, Sharp JL, Johnson TE, Kuhne WW, Stafford CT, Duff MC. Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride. Sensors. 2018; 18(9):2750. https://doi.org/10.3390/s18092750
Chicago/Turabian StyleMartinez, Nicole E., Julia L. Sharp, Thomas E. Johnson, Wendy W. Kuhne, Clay T. Stafford, and Martine C. Duff. 2018. "Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride" Sensors 18, no. 9: 2750. https://doi.org/10.3390/s18092750
APA StyleMartinez, N. E., Sharp, J. L., Johnson, T. E., Kuhne, W. W., Stafford, C. T., & Duff, M. C. (2018). Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride. Sensors, 18(9), 2750. https://doi.org/10.3390/s18092750