An Effective Scheduling Algorithm for Coverage Control in Underwater Acoustic Sensor Network
<p>Three-dimensional underwater acoustic sensor network structure.</p> "> Figure 2
<p>Coding rule design.</p> "> Figure 3
<p>Relationship between values of <math display="inline"><semantics> <msup> <mrow> <mi>F</mi> </mrow> <mi>k</mi> </msup> </semantics></math>, <math display="inline"><semantics> <mi>α</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 4
<p>Time slot diagram of a TDMA frame period.</p> "> Figure 5
<p>Network reconfiguration mechanism flow chart.</p> "> Figure 6
<p>The change trend of the fitness function when the number of nodes changes and the node sensing radius <math display="inline"><semantics> <msub> <mi>r</mi> <mi>s</mi> </msub> </semantics></math> changes.</p> "> Figure 7
<p>The change trend of the number of nodes in the minimum node set when the number of nodes changes and the node sensing radius changes.</p> "> Figure 8
<p>Relationship between network lifetime and number of nodes.</p> "> Figure 9
<p>Relationship between network lifetime and sensing radius <math display="inline"><semantics> <msub> <mi>r</mi> <mi>s</mi> </msub> </semantics></math>.</p> "> Figure 10
<p>Relationship between network coverage and running rounds.</p> "> Figure 11
<p>Average residual energy of network nodes.</p> ">
Abstract
:1. Introduction
- (1)
- In the research object, the system model does not consider the water environment factors in practical application, and cannot meet the energy-optimization requirements of the underwater sensor network.
- (2)
- The autonomy of network nodes is insufficient, and there is a lack of intelligence in the process of energy-optimization of nodes.
2. Preliminaries
2.1. Assumptions
2.2. Sensing Coverage Model
2.3. Network Energy-Consumption Model
3. Energy-Efficient Coverage Control Using Memetic Algorithm
3.1. Problem Formulation
3.2. Node Sleep-Scheduling Mechanism Based on Memetic Algorithm
3.2.1. Coding Rule Design
3.2.2. Adaptive Function
3.3. Algorithm Simulation and Analysis
3.3.1. Genetic Evolution
3.3.2. Local Search
Algorithm 1 Local search algorithm. |
1: Calculate the adaptability of chromosome ; 2: Statistics of index position g where gene equals 1 in chromosome , , ; 3: for , ⋯, do 4: if > then 5: = ; 6: Keep the state of ; 7: else 8: = 1; 9: end if 10: end for 11: Get the improved chromosome and repeat to obtain the optimal population . |
3.4. Node Wake-Up Scheme
Algorithm 2 Stud Crossover (SC) Operator |
1: if then 2: Find the neighbor node of , ; 3: Find , which is the number of nonempty subsets of the neighbor node , ; 4: for , ⋯, do 5: for ,⋯, length() do 6: ; 7: end for 8: ; 9: if then 10: = ; 11: end if 12: end for ; 13: end if |
3.5. Network Reconfiguration Mechanism
4. Performance Evaluations
4.1. Convergence of the ESACC
4.2. Algorithm Simulation and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pompili, D.; Akyildiz, I.F. Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 2009, 7, 97–102. [Google Scholar] [CrossRef]
- Zheng, P. Effcient and Robust Underwater Sensor Network Systems: Design, Implementation and Experiments. Ph.D. Dissertation, University of Connecticut, Storrs, CT, USA, 2012. [Google Scholar]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279. [Google Scholar] [CrossRef]
- Cui, J.H.; Kong, J.; Gerla, M.; Zhou, S. The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Netw. 2006, 20, 12–18. [Google Scholar]
- Liu, F.; Tsui, C.Y.; Zhang, Y.J. Joint Routing and Sleep Scheduling for Lifetime Maximization of Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2010, 9, 2258–2267. [Google Scholar] [CrossRef] [Green Version]
- Danratchadakorn, C.; Pornavalai, C. Coverage maximization with sleep scheduling for wireless sensor networks. In Proceedings of the IEEE International Conference on Electrical Engineering/electronics, Computer, Telecommunications and Information Technology, Hua Hin, Thailand, 24–27 June 2015; pp. 1–6. [Google Scholar]
- Zhao, Y.; Wu, J.; Li, F.; Lu, S. On Maximizing the Lifetime of Wireless Sensor Networks Using Virtual Backbone Scheduling. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1528–1535. [Google Scholar] [CrossRef]
- Lin, C.C.; Deng, D.J.; Wang, S.B. Extending the Lifetime of Dynamic Underwater Acoustic Sensor Networks Using Multi-Population Harmony Search Algorithm. IEEE Sens. J. 2016, 16, 4034–4042. [Google Scholar] [CrossRef]
- Wang, C.; Lin, H.; Jiang, H. CANS: A Congestion-Adaptive WSN-Assisted Emergency Navigation Algorithm with Small Stretch. IEEE Trans. Mob. Comput. 2016, 15, 1077–1089. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Q.; Che, Z.; Hao, X. Energy-Efficient Probabilistic Barrier Construction in Directional Sensor Networks. IEEE Sens. J. 2017, 17, 897–908. [Google Scholar] [CrossRef]
- Tsai, Y. Coverage-preserving routing protocols for randomly distributed wireless sensor networks. IEEE Trans. Wirel. Commun. 2007, 6, 1240–1245. [Google Scholar] [CrossRef]
- Ogundile, O.O.; Alfa, A.S. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks. Sensors 2017, 17, 1084. [Google Scholar] [CrossRef] [PubMed]
- Fariborzi, H.; Moghavvemi, M. EAMTR: Energy aware multi-tree routing for wireless sensor networks. IET Commun. 2009, 3, 733–739. [Google Scholar] [CrossRef]
- Zhang, R.; Labrador, M.A. Energy-aware topology control in heterogeneous wireless multi-hop networks. In Proceedings of the International Symposium on Wireless Pervasive Computing, San Juan, PR, USA, 5–7 February 2007. [Google Scholar]
- Kar, K.; Kodialam, M.; Lakshman, T.V.; Tassiulas, L. Routing for network capacity maximization in energy-constrained ad hoc networks. In Proceedings of the 22th Annual Joint Conference of the IEEE Computer and Communications Societies, San Francisco, CA, USA, 30 March–3 April 2003; pp. 1–9. [Google Scholar]
- Zhang, B.; Zhao, Z.; Ma, J.; Mouftah, H.T. Efficient Localized Topology Control Algorithm. In Proceedings of the 2007 Workshop on High PERFORMANCE Switching & Routing, Brooklyn, NY, USA, 30 May–1 June 2007; pp. 1–6. [Google Scholar]
- Jiang, P.; Liu, J.; Feng, W.; Wang, J.; Xue, A. Node Deployment Algorithm for Underwater Sensor Networks Based on Connected Dominating Set. Sensors 2016, 16, 388. [Google Scholar] [CrossRef] [PubMed]
- Sozer, E.M.; Stojanovic, M.; Proakis, J.G. Underwater acoustic networks. IEEE J. Ocean. Eng. 2000, 25, 72–83. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, Q. Optimum cluster size for underwater acoustic sensor networks. In Proceedings of the IEEE Conference on Military Communications, Washington, DC, USA, 23–25 October 2006; IEEE Press: Washington, DC, USA, 2006; pp. 1218–1222. [Google Scholar]
- Jiang, P.; Liu, J.; Wu, F. Node non-uniform deployment based on clustering algorithm for underwater sensor networks. Sensors 2015, 15, 29997–30010. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, M. On the Relationship Between Capacity and Distance in an Underwater Acoustic Channel. ACM Sigmob. Mob. Comput. Commun. Rev. 2007, 11, 34–43. [Google Scholar] [CrossRef]
- Berkhovskikh, L.; Lysanov, Y. Fundamentals of Ocean Acoustics; Springer: New York, NY, USA, 1982. [Google Scholar]
- Ganesan, T.; Elamvazuthi, I.; Shaari, K.Z.K.; Vasant, P. Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production. Appl. Energy 2013, 103, 368–374. [Google Scholar] [CrossRef]
- Ting, C.K.; Liao, C.C. A memetic algorithm for extending wireless sensor network lifetime. Inf. Sci. 2010, 180, 4818–4833. [Google Scholar] [CrossRef]
- Neshat, M.; Sepidnam, G.; Sargolzaei, M.; Toosi, A.N. Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014, 42, 965–997. [Google Scholar] [CrossRef]
- Du, H.; Na, X.; Rong, Z. Particle Swarm Inspired Underwater Sensor Self-Deployment. Sensors 2014, 14, 15262–15281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.C.; Ting, C.K. A Novel Integer-Coded Memetic Algorithm for the Set k-Cover Problem in Wireless Sensor Networks. IEEE Trans. Cybern. 2018, 48, 2245–2258. [Google Scholar] [CrossRef] [PubMed]
- Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms; Caltech Concurrent Computation Program, C3P Report 826 (1989); California Institute of Technology: Pasadena, CA, USA, 1989. [Google Scholar]
- Trivedi, A.; Srinivasan, D.; Sanyal, K.; Ghosh, A. A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition. IEEE Trans. Evolut. Comput. 2017, 21, 440–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Zhao, D.; Sun, Y.; Xue, X. A Genetic Algorithm Based Mechanism for Scheduling Mobile Sensors in Hybrid WSNs Applications. In Wireless Algorithms, Systems, and Applications (WASA 2017); Ma, L., Khreishah, A., Zhang, Y., Yan, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Germany, 2017; Volume 10251, pp. 220–231. [Google Scholar]
Number | Fitness | ESACC | Std. | GA | Std. | Number | Fitness | ESACC | Std. | GA | Std. |
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 0.62 | 0.35 | 0.08 | 0.09 | 0.02 | 150 | 0.79 | 3.03 | 0.07 | 8.53 | 3.54 |
50 | 0.58 | 0.26 | 0.07 | 0.07 | 0.02 | 150 | 0.75 | 1.49 | 0.05 | 4.28 | 2.24 |
50 | 0.37 | 0.01 | 0.01 | 0.01 | 0.01 | 150 | 0.36 | 0.03 | 0.01 | 0.05 | 0.01 |
250 | 0.82 | 4.7 | 0.11 | 31.16 | 16.52 | 350 | 0.85 | 8.91 | 0.21 | 52.64 | 25.36 |
250 | 0.81 | 3.91 | 0.11 | 18.56 | 10.23 | 350 | 0.83 | 7.37 | 0.20 | 40.52 | 21.23 |
250 | 0.35 | 0.05 | 0.01 | 0.09 | 0.01 | 350 | 0.34 | 0.07 | 0.01 | 0.12 | 0.02 |
450 | 0.87 | 16.61 | 0.28 | 74.52 | 36.14 | 550 | 0.88 | 20.07 | 0.21 | 118.11 | 55.21 |
450 | 0.86 | 12.10 | 0.27 | 68.48 | 33.74 | 550 | 0.87 | 18.01 | 0.30 | 100.11 | 52.62 |
450 | 0.34 | 0.09 | 0.01 | 0.15 | 0.01 | 550 | 0.34 | 0.12 | 0.01 | 0.19 | 0.02 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Initial energy of node | 1000 J | Node energy threshold | 10 J |
Carrier frequency f | 25 kHz | Packet size | 1 kbit |
Node sensing radius | 30 m | Circuit energy consumption to process one bit of information | 50 nJ/bit |
Average depth H | 100 m | Data transmission rate | 5 kbps |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, Y.; Chang, T.; Chang, S. An Effective Scheduling Algorithm for Coverage Control in Underwater Acoustic Sensor Network. Sensors 2018, 18, 2512. https://doi.org/10.3390/s18082512
Wang H, Li Y, Chang T, Chang S. An Effective Scheduling Algorithm for Coverage Control in Underwater Acoustic Sensor Network. Sensors. 2018; 18(8):2512. https://doi.org/10.3390/s18082512
Chicago/Turabian StyleWang, Hui, Youming Li, Tingcheng Chang, and Shengming Chang. 2018. "An Effective Scheduling Algorithm for Coverage Control in Underwater Acoustic Sensor Network" Sensors 18, no. 8: 2512. https://doi.org/10.3390/s18082512
APA StyleWang, H., Li, Y., Chang, T., & Chang, S. (2018). An Effective Scheduling Algorithm for Coverage Control in Underwater Acoustic Sensor Network. Sensors, 18(8), 2512. https://doi.org/10.3390/s18082512