Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing
<p>Network topology and associated problems.</p> "> Figure 2
<p>Wireless node (equipped with TI CC1125).</p> "> Figure 3
<p>Embedded sensor (<b>a</b>,<b>b</b>) Detail of the construction (<b>c</b>) Real implementation.</p> "> Figure 4
<p>Simplified routing mechanism.</p> "> Figure 5
<p>(<b>a</b>) Data sending spread out in intervals; (<b>b</b>) Power saving mechanism.</p> "> Figure 6
<p>Scheme of the monitoring system based on the wireless sensor network.</p> "> Figure 7
<p>Sealing testing with sensors immersed in water.</p> "> Figure 8
<p>Thermocouples used for the sensor calibration. (<b>a</b>) TerEle, (<b>b</b>) TerEst.</p> "> Figure 9
<p>Calibration of a sensor with respect to the thermocouple references TerEst and TerEle.</p> "> Figure 10
<p>Test of output power level for the output signal of mote.</p> "> Figure 11
<p>Preliminary test. (<b>a</b>) Data acquisition board to gather physical signals from several sensors (<b>b</b>) Mote buried in several specimens of concrete.</p> "> Figure 12
<p>(<b>a</b>) Construction element and (<b>b</b>) location of sensors.</p> "> Figure 12 Cont.
<p>(<b>a</b>) Construction element and (<b>b</b>) location of sensors.</p> "> Figure 13
<p>(<b>a</b>) Operator testing a sensor on the steel structure; (<b>b</b>) Detail of the mote tied to a steel bar.</p> "> Figure 14
<p>Ambient temperature profile.</p> "> Figure 15
<p>Temperature profile of concrete from sensors. (<b>a</b>) Sensors from 1 to 4. (<b>b</b>) Sensors from 5 to 8.</p> "> Figure 15 Cont.
<p>Temperature profile of concrete from sensors. (<b>a</b>) Sensors from 1 to 4. (<b>b</b>) Sensors from 5 to 8.</p> "> Figure 16
<p>(<b>a</b>) Thermo-chemical-mechanical FEM model of the footing; (<b>b</b>) Numerical prediction of the evolution of temperature with age for sensors 3 and 5.</p> "> Figure 16 Cont.
<p>(<b>a</b>) Thermo-chemical-mechanical FEM model of the footing; (<b>b</b>) Numerical prediction of the evolution of temperature with age for sensors 3 and 5.</p> ">
Abstract
:1. Introduction
2. Considerations on Used Wireless Communication
Network Topology
3. Embedded Sensor Description
3.1. Developed Sensor Node
3.2. Software
3.3. Monitoring and Control System
4. Experimental Results
4.1. Calibration and Testing
4.2. Construction Site
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alam, M.N.; Bhuiyan, R.H.; Dougal, R.A.; Ali, M. Concrete Moisture Content Measurement Using Interdigitated Near-Field Sensors. IEEE Sens. J. 2010, 10, 1243–1248. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, F.; Yu, L.; Li, B.; Wu, X.; Yin, B. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring. Sensors 2016, 16, 1535. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, Y.; Liu, G.; Wang, J.; Mao, X. Design of a wireless measurement system based on WSNs for large bridges. Measurement 2014, 50, 324–330. [Google Scholar] [CrossRef]
- Chae, M.J.; Yoo, H.S.; Kim, J.Y.; Cho, M.Y. Development of a wireless sensor network system for suspension bridge health monitoring. Autom. Constr. 2012, 21, 237–252. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, X.; Wang, Y.; Ou, J. A study on PVDF sensor using wireless experimental system for bridge structural local monitoring. Telecommun. Syst. 2013, 52, 2357–2366. [Google Scholar] [CrossRef]
- Grasley, Z.C.; Lange, D.A.; D’Ambrosia, M.D. Internal relative humidity and drying stress gradients in concrete. Mater. Struct. 2006, 39, 901–909. [Google Scholar] [CrossRef]
- Perveen, K.; Bridges, G.E.; Bhadra, S.; Thomson, D.J. Corrosion Potential Sensor for Remote Monitoring of Civil Structure Based on Printed Circuit Board Sensor. IEEE Trans. Instrum. Meas. 2014, 63, 2422–2430. [Google Scholar] [CrossRef]
- Qiao, G.; Sun, G.; Hong, Y.; Liu, T.; Guan, X. Corrosion in Reinforced Concrete Panels: Wireless Monitoring and Wavelet-Based Analysis. Sensors 2014, 14, 3395–3407. [Google Scholar] [CrossRef] [PubMed]
- Mehta, W.; El Zarki, M. A Bluetooth Based Sensor Network for Civil Infrastructure Health Monitoring. Wirel. Netw. 2004, 10, 401–412. [Google Scholar] [CrossRef]
- Shams, K.M.Z.; Ali, M. Wireless Power Transmission to a Buried Sensor in Concrete. IEEE Sens. J. 2007, 7, 1573–1577. [Google Scholar] [CrossRef]
- Quinn, W.; Angove, P.; Buckley, J.; Barrett, J.; Kelly, G. Design and performance analysis of an embedded wireless sensor for monitoring concrete curing and structural health. J. Civil Struct. Health Monit. 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Ulm, F.-J.; Coussy, O. Modeling of thermochemomechanical couplings of concrete at early ages. J. Eng. Mech. 1995, 121, 785–794. [Google Scholar] [CrossRef]
- Cervera, M.; Faria, R.; Oliver, J.; Prato, T. Numerical modeling of concrete curing, regarding hydration and temperature phenomena. Comput. Struct. 2002, 80, 1511–1521. [Google Scholar] [CrossRef]
- Bentz, D.P. Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations. Cement Concr. Res. 2006, 36, 238–244. [Google Scholar] [CrossRef]
- Schindler, A.K.; Folliard, K.J. Heat of hydration models for cementitious materials. ACI Mater. J. 2005, 102, 24–33. [Google Scholar]
- Sung, W.-T.; Hsu, Y.-C. Designing an industrial real-time measurement and monitoring system based on embedded system and ZigBee. Exp. Syst. Appl. 2011, 38, 4522–4529. [Google Scholar] [CrossRef]
- Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey. Comput. Netw. 2014, 67, 104–122. [Google Scholar] [CrossRef]
- Every, E.V.; Deyhim, A. Embedded Sensors for Life-Time Monitoring of Concrete. In Proceedings of the 4th International Conference on Structural Health Monitoring on Intelligent Infrastructure (SHMII-4), Zurich, Switzerland, 22–24 July 2009. [Google Scholar]
- Neville, A.M. Properties of Concrete, 4th and Final edition; Longman Group UK Limited: London, UK, 1995. [Google Scholar]
Age (Days) | fc (MPa) | E (GPa) | fst (MPa) |
---|---|---|---|
1 | 20.1 | 18.9 | 1.9 |
2 | 26.7 | 19.8 | 2.1 |
3 | 28.2 | 20.7 | 2.3 |
7 | 36.2 | 24.4 | 2.8 |
28 | 43.9 | 28.4 | 4.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezas, J.; Sánchez-Rodríguez, T.; Gómez-Galán, J.A.; Cifuentes, H.; González Carvajal, R. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing. Sensors 2018, 18, 876. https://doi.org/10.3390/s18030876
Cabezas J, Sánchez-Rodríguez T, Gómez-Galán JA, Cifuentes H, González Carvajal R. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing. Sensors. 2018; 18(3):876. https://doi.org/10.3390/s18030876
Chicago/Turabian StyleCabezas, Joaquín, Trinidad Sánchez-Rodríguez, Juan Antonio Gómez-Galán, Héctor Cifuentes, and Ramón González Carvajal. 2018. "Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing" Sensors 18, no. 3: 876. https://doi.org/10.3390/s18030876
APA StyleCabezas, J., Sánchez-Rodríguez, T., Gómez-Galán, J. A., Cifuentes, H., & González Carvajal, R. (2018). Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing. Sensors, 18(3), 876. https://doi.org/10.3390/s18030876