A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk
<p>Schematic of the portable surface-enhanced Raman spectroscopic system.</p> "> Figure 2
<p>Raman spectra of tetracycline hydrochloride powder (<b>a</b>) and whole milk (<b>b</b>).</p> "> Figure 3
<p>SEM image of silver colloid nanoparticles.</p> "> Figure 4
<p>Raman spectra of mean and ±SD of six batches of silver colloids.</p> "> Figure 5
<p>Surface-enhanced Raman spectra of water-tetracycline solution at seven concentration levels.</p> "> Figure 6
<p>Linear relationship between tetracycline peak intensity at 1285 cm<span class="html-italic"><sup>−</sup></span><sup>1</sup> and its concentration in water. Inset: 0.01 ppm, 0.1 ppm and 1 ppm.</p> "> Figure 7
<p>Surface-enhanced Raman spectra of milk-tetracycline solution at seven concentration levels.</p> "> Figure 8
<p>Linear relationship between tetracycline peak intensity at 1322 cm<sup>−1</sup> and its concentration in milk. Inset: 0.01 ppm, 0.1 ppm and 1 ppm.</p> ">
Abstract
:1. Introduction
- Develop a simple and easy to use SERS method for on-site detection of tetracycline residue in milk and water.
- Analyze the spectra for consistently positive detection of residual tetracycline.
- Develop a quantitative model to estimate tetracycline concentrations.
2. Materials and Methods
2.1. Portable Raman Spectroscopic System
2.2. Silver Colloid Preparation
2.3. Sample Preparation and Spectral Measurement
3. Results and Discussion
3.1. Raman Spectra of Tetracycline and Whole Milk
3.2. Raman Spectra of Cyclodextrin Capped Silver Colloids
3.3. Surface-Enhanced Raman Spectra of Water-Tetracycline Solution
3.4. Surface-Enhanced Raman Spectra of Milk-Tetracycline Solution
4. Conclusions
Author Contributions
Conflicts of Interest
Disclaimer
References
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C. Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 1996, 19, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Roberts, M.C.; Werckenthin, C.; Pang, Y.; Lange, C. Tetracycline resistance in Staphylococcus spp. from domestic animals. Vet. Microbiol. 1998, 63, 217–227. [Google Scholar] [CrossRef]
- Levy, S.B. The Antibiotics Paradox: How Miracle Drugs Are Destroying the Miracle; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Witte, W. Medical consequences of antibiotics use in agriculture. Science 1998, 279, 996–997. [Google Scholar] [CrossRef] [PubMed]
- Gwee, M.C.E. Can tetracycline-induced fatty liver in pregnancy be attributes to choline deficiency? Med. Hypotheses 1985, 9, 157–162. [Google Scholar] [CrossRef]
- Cinquina, A.L.; Longo, F.; Anastasi, G.; Giannetti, L.; Cozzani, R. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A 2003, 987, 227–233. [Google Scholar] [CrossRef]
- Andersen, W.C.; Roybal, J.E.; Conzales, S.A.; Turnipseed, S.B.; Pfenning, A.P.; Kuck, L.R. Determination of tetracycline residues in shrimp and whole milk using liquid chromatography with ultraviolet detection and residue confirmation by mass spectrometry. Anal. Chim. Acta 2005, 529, 145–150. [Google Scholar] [CrossRef]
- Zwald, A.G.; Ruegg, P.L.; Kaneene, J.B.; Warnick, L.D.; Wells, S.J.; Fossler, C.; Halbert, L.W. Management practices and reported antimicrobial usage on conventional and organic dairy farms. J. Dairy Sci. 2004, 81, 191–201. [Google Scholar] [CrossRef]
- Ouderkirk, L.A. Bacillus stearothermopbilus disk assay for detection of residual penicillin in milk: Collaborative study. J. Assoc. Off. Anal. Chem. 1979, 62, 985–988. [Google Scholar] [PubMed]
- Mitchell, J.M.; Griffiths, M.W.; McEwen, S.A.; McNab, W.B.; Yee, A.J. Antimicrobial drug residues in milk and meat: Causes, concerns, prevalence, regulations, tests, and test performance. J. Food Prot. 1998, 61, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Sundlof, S.F. Drug and chemical residues in livestock. Vet. Clin. N. Am. Food Anim. Pract. 1989, 5, 411–449. [Google Scholar] [CrossRef]
- McEwen, S.A.; Meek, A.H.; Black, W.D. A dairy farm survey of antibiotic treatment practices, residue control methods and associations with inhibitors in milk. J. Food Prot. 1991, 54, 454–459. [Google Scholar] [CrossRef]
- Paige, J.C. Analysis of tissue residues. FDA Vet. 1994, 9, 4–6. [Google Scholar]
- Milk Drug Residue Sampling Survey; Food and Drug Administration: Silver Spring, MD, USA, 2015; p. 10.
- Granados-Chinchilla, F.; Rodriguez, C. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Bilandzic, N.; Kolanovic, S.; Varenina, I.; Jurkovic, Z. Concentrations of veterinary drug residues in milk from individual farms in Croatia. Mljekarstvo 2011, 61, 260–267. [Google Scholar]
- Pogurschi, E.; Ciric, A.; Zugrav, C.; Patrascu, D. Identification of antibiotic residue in raw milk samples coming from the metropolitan area of Bucharest. Agric. Agric. Sci. Procedia 2015, 6, 242–245. [Google Scholar] [CrossRef]
- Kijak, P.J.; Leadbetter, M.G.; Thomas, M.H.; Thompson, E.A. Confirmation of oxytetracycline, tetracycline and chlortetracycline residues in milk by particle beam liquid chromatography/mass spectrometry. Biol. Mass Spectrom. 1991, 20, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Blasco, C.; Corcia, A.D.; Pico, Y. Determination of tetracyclines in multi-specie animal tissue by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. Food Chem. 2009, 116, 1005–1012. [Google Scholar] [CrossRef]
- Wasch, K.D.; Okerman, L.; Croubels, S.; Brabander, H.D.; Hoof, J.V.; Backer, P.D. Detection of residues of tetracycline antibiotics in pork and chicken meat: Correlation between results of screening and confirmatory test. Analyst 1998, 123, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.F.; Nikolaidou, S.I.; Papadoyannis, I.N. Laboratory of analytical development and validation of an HPLC confirmatory method for the determination of tetracycline antibiotics residues in bovine muscle according to the European Union regulation 2002/657/EC. J. Sep. Sci. 2005, 28, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.W.; Zuo, Y. Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem. 2007, 105, 1297–1301. [Google Scholar] [CrossRef]
- Okerman, L.; Wasch, K.D.; Hoof, J.V. Detection of antibiotics in muscle tissue with microbiological inhibition tests: Effects of the matrix. Analyst 1998, 123, 2361–2365. [Google Scholar] [CrossRef] [PubMed]
- Kurittu, J.; Lonnberg, S.; Virta, M.; Karp, M. A group-specific microbial test for the detection of tetracycline residues in raw milk. J. Agric. Food Chem. 2000, 48, 3372–3377. [Google Scholar] [CrossRef] [PubMed]
- Kurittu, J.; Lonnberg, S.; Virta, M.; Karp, M. Qualitative detection of tetracycline residues in milk with luminescence-based microbial method: The effect of milk composition and assay performance in relation to an immunoassay and a microbial inhibition assay. J. Food Prot. 2000, 63, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Pikkemaat, M.G.; Dijk, S.O.; Schouten, J.; Rapallini, M.; Egmond, H.J. A new microbial screening method for the detection of antimicrobial residues in slaughter animals: The Nouws antibiotic test (NAT-screening). Food Control 2008, 19, 781–789. [Google Scholar] [CrossRef]
- Zhou, L.; Li, D.J.; Gai, L.; Wang, J.P.; Li, Y.B. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens. Actuators B Chem. 2012, 162, 201–208. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, J.; Li, Y.; Gao, H.; Guo, J.; Shen, F.; Sun, C. A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 2015, 54, 7–15. [Google Scholar] [CrossRef]
- Okerman, L.; Croubels, S.; Cherlet, M.; De Wasch, K.; De Backer, P.; Van Hoof, J. Evaluation and establishing the performance of different screening tests for tetracycline residues in animal tissues. Food Addit. Contam. 2004, 21, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Dhakal, S. Optical methods and techniques for meat quality inspection. Trans. ASABE 2015, 58, 1371–1386. [Google Scholar]
- Chao, K.; Dhakal, S.; Qin, J.; Peng, Y.; Schmidt, W.; Kim, M.; Chan, D. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders. Sensors 2017, 17, 618. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Chan, D. Evaluation of turmeric powder adulterated with metanil yellow using FT-Raman and FT-IR spectroscopy. Foods 2016, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Qin, J.; Kim, M.S.; Chao, K. Raman Spectroscopy. In Spectroscopic Methods in Food Analysis; Franca, A.S., Nollet, L., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 111–142. [Google Scholar]
- Chu, H.; Huang, Y.; Zhao, Y. Silver nanorod arrays as a surface-enhanced Raman scattering for foodborne pathogenic bacteria detection. Appl. Spectrosc. 2008, 62, 922–931. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, Y.; Lin, M.; Mustapha, A. Detecting single Bacillus spores by surface enhanced Raman spectroscopy. Sens. Instrum. Food Qual. Saf. 2008, 2, 247–253. [Google Scholar] [CrossRef]
- Mecker, L.C.; Tyner, K.M.; Kauffman, J.F.; Arzhantsev, S.; Mans, D.J.; Gryniewicz-Ruzicka, C.M. Selective melamine detection in multiple sample matrices with a portable Raman instrument using SERS-active gold nanoparticles. Anal. Chim. Acta 2012, 733, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Herman, T.J. Determination and prediction of fumonisin contamination in maize by surface-enhanced Raman spectroscopy. Food Bioprocess Technol. 2016, 9, 588–603. [Google Scholar] [CrossRef]
- Jancr, T.; Valinger, D.; Kljusuric, J.G.; Mikac, L.; Vidacek, S.; Ivanda, M. Determination of histamine in fish by surface enhanced Raman spectroscopy using silver colloid SERS substrates. Food Chem. 2017, 224, 48–54. [Google Scholar]
- Zhai, C.; Peng, Y.; Li, Y.; Chao, K. Extraction and identification of mixed pesticides Raman signal and establishment of their prediction models. J. Raman Spectrosc. 2017, 48, 494–500. [Google Scholar] [CrossRef]
- Clarke, S.J.; Littleford, R.E.; Smith, W.E.; Goodacre, R. Rapid monitoring of antibiotics using Raman and surface-enhanced Raman spectroscopy. Analyst 2005, 130, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Mckeating, K.S.; Couture, M.; Dinel, M.P.; Tsodikova, S.G.; Masson, J.F. High throughput LSPR and SERS analysis of aminoglycoside antibiotics. Analyst 2016, 141, 5120–5126. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhu, X.; Sun, Y.; Wang, H.; Qian, H.; Yao, W. Rapid detection method for nitrofuran antibiotic residues by surface-enhanced Raman spectroscopy. Eur. Food. Res. Technol. 2012, 235, 555–561. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Q.W.; Yan, N.; Wang, H. Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: Synthesis and application in detecting tetracycline. Analyst 2011, 136, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Chao, K.; Kim, M.S. Raman chemical imaging system for food safety and quality inspection. Trans. ASABE 2010, 53, 1873–1882. [Google Scholar] [CrossRef]
- Ma, S.; Huang, Q. A SERS study of oxidation of glutathione under plasma irradiation. RSC. Adv. 2015, 5, 57847–57852. [Google Scholar] [CrossRef]
- Leypold, C.F.; Reiher, M.; Brehm, G.; Schmitt, M.O.; Schneider, S.; Matousek, P.; Towrie, M. Tetracycline and derivatives-assignment of IR and Raman spectra via DFT calculations. Phys. Chem. Chem. Phys. 2003, 5, 1149–1157. [Google Scholar] [CrossRef]
- El-Abassy, R.M.; Eravuchira, P.J.; Donfack, P.; von der Kammer, B.; Materny, A. Fast determination of milk fat content using Raman spectroscopy. Vib. Spectrosc. 2011, 56, 3–8. [Google Scholar] [CrossRef]
- Mazurek, S.; Szostak, R.; Czaja, T.; Zachwieja, A. Analysis of milk by FT-Raman spectroscopy. Talanta 2015, 138, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Sharma, R.; Taylor, M.W.; Creamer, L.K. Heat-induced aggregation and dissociation of protein and fat particles in recombined milk. Nederlands Melk en Zuiveltijdschrift 1996, 50, 149–166. [Google Scholar]
- Pellon, J.T.; McLean, L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 2000, 227, 167–176. [Google Scholar]
- Siddhanta, S.; Narayana, C. Surface-enhanced Raman spectroscopy of proteins: Implications for drug designing. Nanomater. Nanotechnol. 2012, 2, 1–13. [Google Scholar] [CrossRef]
- Munro, C.H.; Smith, W.E.; Garner, M.; Clarkson, J.; White, P.C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 1995, 11, 3712–3720. [Google Scholar] [CrossRef]
- Shirtcliffe, N.; Nickel, U.; Schneider, S. Reproducible preparation of silver sols with small particle size using borohydride reduction: For use as nuclei for preparation of larger particles. J. Colloid Interface Sci. 1999, 211, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, T.; Baia, M.; Vaclaus, V. A Raman spectroscopic study of the diclofenac sodium-β-cyclodextrin interaction. Eur. J. Pharm. Sci. 2004, 22, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.F.; Hecht, L.; Barron, L.D. New evidence for conformational flexibility in cyclodextrins from vibrational Raman optical activity. Chem. Eur. J. 1997, 3, 1292–1298. [Google Scholar] [CrossRef]
- Das, S.K.; Rajabalaya, R.; David, S.; Gani, N.; Khanam, J.; Nanda, A. Cyclodextrins-the molecular container. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 1694–1720. [Google Scholar]
- Broadhurst, C.L.; Schmidt, W.F.; Kim, M.S.; Nguyen, J.K.; Qin, J.; Chao, K.; Bauchan, G.L.; Shelton, D.R. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from −100 to 50 °C. Lipids 2016, 51, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, S.; Chao, K.; Huang, Q.; Kim, M.; Schmidt, W.; Qin, J.; Broadhurst, C.L. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk. Sensors 2018, 18, 424. https://doi.org/10.3390/s18020424
Dhakal S, Chao K, Huang Q, Kim M, Schmidt W, Qin J, Broadhurst CL. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk. Sensors. 2018; 18(2):424. https://doi.org/10.3390/s18020424
Chicago/Turabian StyleDhakal, Sagar, Kuanglin Chao, Qing Huang, Moon Kim, Walter Schmidt, Jianwei Qin, and C. Leigh Broadhurst. 2018. "A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk" Sensors 18, no. 2: 424. https://doi.org/10.3390/s18020424
APA StyleDhakal, S., Chao, K., Huang, Q., Kim, M., Schmidt, W., Qin, J., & Broadhurst, C. L. (2018). A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk. Sensors, 18(2), 424. https://doi.org/10.3390/s18020424