Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy
<p>Behind-the-ear EEG setup. In the right picture, each white circle represents an EEG electrode. A line between two electrodes represents an EEG channel whose signal is derived by taking the potential difference between those two electrodes. White lines represent channels derived between the left and right ear. Blue lines represent unilateral channels.</p> "> Figure 2
<p>Block diagram of seizure detector training and testing (<span class="html-italic">m</span>: number of channels; <span class="html-italic">n</span>: number of features of each channel).</p> "> Figure 3
<p>EEG segment with EOG artifacts.</p> "> Figure 4
<p>Boxplots on the left represent the distribution of amplitudes of EOG from Fp2-F8, LC-RC, LT-RT, LT-LC, and RT-RC among the patients. The right plot is a zoomed-in version of the portion indicated inside the gray rectangle in the left plot.</p> "> Figure 5
<p>Grand average EOGs among the patients in the left. The right plot is a zoomed-in version of the portion indicated inside the gray rectangle in the left plot.</p> "> Figure 6
<p>Time series of representative scalp EEG and behind-the-ear EEG during seizure.</p> "> Figure 7
<p>Averaged PSD of scalp EEG and behind-the-ear EEG during seizures.</p> "> Figure 8
<p>False detection rates and sensitivities of seizure detection among the patients.</p> "> Figure 9
<p>Example of repetitive EOG artifacts causing false detections from scalp EEG and no false detections from behind-the-ear EEG on patient 10.</p> "> Figure 10
<p>Example of abnormal EEG causing false detections from patient 2.</p> "> Figure 11
<p>Example of abnormal EEG causing false detections from patient 4.</p> "> Figure 12
<p>False detection rates and sensitivities of seizure detection from cross-head channels and unilateral channels among the patients.</p> "> Figure 13
<p>Boxplots representing distribution of false detection rates and sensitivities from cross-head channels and unilateral channels among the patients.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical EEG Recordings
2.3. Behind-the-Ear EEG Setup
2.4. Preprocessing
2.5. Comparison of Electrooculography (EOG) between Scalp EEG Channels and Behind-the-Ear EEG Channels
2.6. Comparison between Scalp EEG and Behind-the-Ear EEG during Seizure
2.7. Seizure Detection
2.7.1. Feature Extraction
2.7.2. SVM Classification
2.8. Comparison of Seizure Detection between Cross-Head Channels and Unilateral Channels
3. Results
3.1. Artifacts
3.2. Comparison of Scalp EEG and Behind-the-Ear EEG during Seizure
3.3. Seizure Detection
3.4. Comparison of Seizure Detection between Cross-Head Channels and Unilateral Channels
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Ethical Statement
References
- De Boer, H.M.; Mula, M.; Sander, J.W. The global burden and stigma of epilepsy. Epilepsy Behav. 2008, 12, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Forsgren, L.; Beghi, E.; Õun, A.; Sillanpää, M. The epidemiology of epilepsy in Europe—A systematic review. Eur. J. Neurol. 2005, 12, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J.; Forsgren, L.; French, J.A.; Glynn, M.; et al. A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L.; Srinivasan, R. Electroencephalogram. Scholarpedia 2007, 2, 1348. [Google Scholar] [CrossRef]
- Alving, J.; Beniczky, S. Diagnostic usefulness and duration of the inpatient long-term video-EEG monitoring: Findings in patients extensively investigated before the monitoring. Seizure 2009, 18, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Askamp, J.; van Putten, M.J.A.M. Mobile EEG in epilepsy. Int. J. Psychophysiol. 2014, 91, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Casson, A.J.; Yates, D.C.; Smith, S.J.M.; Duncan, J.S.; Rodriguez-Villegas, E. Wearable electroencephalography. IEEE Eng. Med. Biol. Mag. 2010, 29, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Debener, S.; Minow, F.; Emkes, R.; Gandras, K.; de Vos, M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012, 49, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Looney, D.; Kidmose, P.; Park, C.; Ungstrup, M.; Rank, M.; Rosenkranz, K.; Mandic, D. The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse 2012, 3, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Bleichner, M.G.; Lundbeck, M.; Selisky, M.; Minow, F.; Jager, M.; Emkes, R.; Debener, S.; De Vos, M. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiol. Rep. 2015, 3, e12362. [Google Scholar] [CrossRef] [PubMed]
- Goverdovsky, V.; Looney, D.; Kidmose, P.; Mandic, D.P. In-Ear EEG From Viscoelastic Generic Earpieces: Robust and Unobtrusive 24/7 Monitoring. IEEE Sens. J. 2016, 16, 271–277. [Google Scholar] [CrossRef]
- Debener, S.; Emkes, R.; De Vos, M.; Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 2015, 5, 16743. [Google Scholar] [CrossRef] [PubMed]
- Mirkovic, B.; Bleichner, M.G.; De Vos, M.; Debener, S. Target speaker detection with concealed EEG around the ear. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Looney, D.; Park, C.; Kidmose, P.; Rank, M.L.; Ungstrup, M.; Rosenkranz, K.; Mandic, D.P. An in-the-ear platform for recording electroencephalogram. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2011, 1, 6882–6885. [Google Scholar]
- Bleichner, M.G.; Debener, S. Concealed, Unobtrusive Ear-Centered EEG Acquisition: CEEGrids for Transparent EEG. Front. Hum. Neurosci. 2017, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gotman, J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 530–540. [Google Scholar] [CrossRef]
- Qu, H.; Gotman, J. Improvement in seizure detection performance by automatic adaptation to the EEG of each patient. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 79–87. [Google Scholar] [CrossRef]
- Wilson, S.B.; Scheuer, M.L.; Emerson, R.G.; Gabor, A.J. Seizure detection: Evaluation of the Reveal algorithm. Clin. Neurophysiol. 2004, 115, 2280–2291. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A.; Guttag, J. Application of Machine Learning To Epileptic Seizure Detection. Proc. Int. Conf. Mach. Learn. 2010, 975–982. [Google Scholar] [CrossRef]
- Hunyadi, B.; Signoretto, M.; Van Paesschen, W.; Suykens, J.A.K.; Van Huffel, S.; De Vos, M. Incorporating structural information from the multichannel EEG improves patient-specific seizure detection. Clin. Neurophysiol. 2012, 123, 2352–2361. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A.; Edwards, H.; Connolly, J.; Bourgeois, B.; Ted Treves, S.; Guttag, J. Patient-specific seizure onset detection. Epilepsy Behav. 2004, 5, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; Marnane, W.P.; Lightbody, G.; Reilly, R.B.; Boylan, G.B. Classifier models and architectures for EEG-based neonatal seizure detection. Physiol. Meas. 2008, 29, 1157–1178. [Google Scholar] [CrossRef] [PubMed]
- Klem, G.; Luders, H.; Jasper, H.; Elger, C. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar]
- De Clercq, W.; Vergult, A.; Vanrumste, B.; Van Paesschen, W.; Van Huffel, S. Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 2006, 53, 2583–2587. [Google Scholar] [CrossRef] [PubMed]
- Vergult, A.; De Clercq, W.; Palmini, A.; Vanrumste, B.; Dupont, P.; Van Huffel, S.; Van Paesschen, W. Improving the interpretation of ictal scalp EEG: BSS-CCA algorithm for muscle artifact removal. Epilepsia 2007, 48, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.J.; Sejnowski, T.J. A Non-linear Information Maximisation Algorithm that Performs Blind Separation. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge MA, USA, 1995; pp. 467–474. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; do Nascimento, O.F.; Lucas, M.F.; Doncarli, C. Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. J. Neurosci. Methods 2007, 162, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Do Nascimento, O.F.; Lucas, M.F.; Farina, D. Identification of task parameters from movement-related cortical potentials. Med. Biol. Eng. Comput. 2009, 47, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Meier, R.; Dittrich, H.; Schulze-Bonhage, A.; Aertsen, A. Detecting epileptic seizures in long-term human EEG: A new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J. Clin. Neurophysiol. 2008, 25, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Gotman, J. A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: Possible use as a warning device. IEEE Trans. Biomed. Eng. 1997, 44, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Gabor, A.J. Seizure detection using a self-organizing neural network: Validation and comparison with other detection strategies. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 27–32. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef] [PubMed]
- Van Putten, M.J.A.M. Nearest neighbor phase synchronization as a measure to detect seizure activity from scalp EEG recordings. J. Clin. Neurophysiol. 2003, 20, 320–325. [Google Scholar] [CrossRef] [PubMed]
- De Cheveigné, A. Sparse time artifact removal. J. Neurosci. Methods 2016, 262, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Holsheimer, J.; Feenstra, B.W.A. Volume conduction and EEG measurements within the brain: A quantitative approach to the influence of electrical spread on the linear relationship of activity measured at different locations. Electroencephalogr. Clin. Neurophysiol. 1977, 43, 52–58. [Google Scholar] [CrossRef]
PID | Nr. of Seizures | Sex | Age | Seizure Onset Zone and AED Dosage on the Inspection Day | Recording Time (h) |
---|---|---|---|---|---|
1 | 1 | F | 19 | Right occipital lobe Topiramate (100 mg) | 12 |
2 | 9 | F | 24 | Left temporal lobe Levetiracetam (2000 mg) Clobazam (10 mg) | 91 |
3 | 8 | M | 32 | Right temporal lobe Carbamazepine (500 mg) | 52 |
4 | 1 | M | 64 | Left temporal lobe Lamotrigine (200 mg) Carbamazepine(200 mg) Lacosamide (200 mg) | 3 |
5 | 2 | M | 61 | Right temporal lobe Lamotrigine (200 mg) Levetiracetam (2000 mg) | 27 |
6 | 2 | F | 33 | Right parietal lobe No AED | 23 |
7 | 5 | M | 45 | Left temporal lobe Lamotrigine (200 mg) Perampanel (2 mg) | 34 |
8 | 6 | F | 32 | Left temporal lobe Lamotrigine (200 mg) Levetiracetam (2000 mg) | 72 |
9 | 2 | F | 49 | Left temporal lobe Lacosamide (100 mg) | 43 |
10 | 1 | M | 28 | Right temporal lobe Topiramate (100 mg) Lamotrigine (200 mg) | 21 |
11 | 3 | F | 25 | Right temporal lobe Lamotrigine (225 mg) Levetiracetam (1250 mg) | 10 |
12 | 7 | M | 20 | Left temporal lobe Lacosamide (350 mg) Perampanel (4 mg) Lamotrigine (400 mg) Oxcarbazepine (300 mg) | 43 |
PID | LC-RC | LT-RT | LT-LC | RT-RC | ||||
---|---|---|---|---|---|---|---|---|
1 | Fz-Cz | 0.96 | F4-C4 | 0.99 | F7-T3 | 0.99 | T4-Sph2 | 0.89 |
2 | T5-O1 | 0.91 | T5-O1 | 0.92 | T5-O1 | 0.93 | T3-T5 | 0.79 |
3 | Fp2-F8 | 0.81 | Fp2-F8 | 0.82 | T3-Sph1 | 0.75 | C4-P4 | 0.81 |
4 | F7-T3 | 0.95 | F4-C4 | 0.96 | F3-C3 | 0.93 | F3-C3 | 0.74 |
5 | T4-Sph2 | 0.88 | T4-T6 | 0.85 | Cz-Pz | 0.74 | T4-T6 | 0.81 |
6 | Cz-Pz | 0.81 | T3-Sph1 | 0.73 | C3-P3 | 0.79 | Fp2-F8 | 0.78 |
7 | T5-O1 | 0.71 | T4-Sph2 | 0.68 | C3-P3 | 0.73 | P4-O2 | 0.87 |
8 | T3-T5 | 0.70 | T3-T5 | 0.73 | F3-C3 | 0.76 | T6-O2 | 0.79 |
9 | P3-O1 | 0.91 | F7-T3 | 0.95 | T3-Sph1 | 0.95 | T4-Sph2 | 0.92 |
10 | Fp2-F4 | 0.94 | Fp2-F4 | 0.87 | Fp1-F3 | 0.85 | P4-O2 | 0.81 |
11 | Fp1-F7 | 0.77 | T5-O1 | 0.77 | P4-O2 | 0.71 | Pz-O1 | 0.70 |
12 | T5-O1 | 0.65 | T6-O2 | 0.68 | F3-C3 | 0.65 | T4-Sph2 | 0.66 |
Mean ± SD | 0.83 ± 0.11 | 0.83 ± 0.11 | 0.82 ± 0.11 | 0.80 ± 0.07 |
False Detections/h | Sensitivity (%) | |||
---|---|---|---|---|
Scalp EEG | Ear EEG | Scalp EEG | Ear EEG | |
Median (min max) | 1.14 (0 7) | 0.52 (0 7.50) | 100 (0 100) | 94.50 (33 100) |
Mean ± SD | 1.36 ± 1.91 | 1.15 ± 2.08 | 81.25 ± 31.76 | 82.17 ± 23.40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Cleeren, E.; Dan, J.; Claes, K.; Van Paesschen, W.; Van Huffel, S.; Hunyadi, B. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy. Sensors 2018, 18, 29. https://doi.org/10.3390/s18010029
Gu Y, Cleeren E, Dan J, Claes K, Van Paesschen W, Van Huffel S, Hunyadi B. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy. Sensors. 2018; 18(1):29. https://doi.org/10.3390/s18010029
Chicago/Turabian StyleGu, Ying, Evy Cleeren, Jonathan Dan, Kasper Claes, Wim Van Paesschen, Sabine Van Huffel, and Borbála Hunyadi. 2018. "Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy" Sensors 18, no. 1: 29. https://doi.org/10.3390/s18010029
APA StyleGu, Y., Cleeren, E., Dan, J., Claes, K., Van Paesschen, W., Van Huffel, S., & Hunyadi, B. (2018). Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy. Sensors, 18(1), 29. https://doi.org/10.3390/s18010029