Anti-Sweep Jamming Design and Implementation Using Multi-Channel Harmonic Timing Sequence Detection for Short-Range FMCW Proximity Sensors
<p>Block diagram of a short-range FMCW proximity sensor (LNA: low-noise amplifier; VCO: voltage-controlled oscillator; LO: local signal).</p> "> Figure 2
<p>Block diagram of time–frequency analysis for the sweep jamming signal with AM.</p> "> Figure 3
<p>Block diagram of multi-harmonic timing sequence detection based on BPF.</p> "> Figure 4
<p>Block diagram of multi-harmonic timing sequence detection based on FFT (The operations in the dashed box are implemented using a digital device).</p> "> Figure 5
<p>Basic concept of FFT-based harmonic timing sequence detection.</p> "> Figure 6
<p>The outputs of the 2th/4th/6th/8th harmonic channels (SNR = −10 dB). (<b>a</b>) The BPF-based method, and (<b>b</b>) the FFT-based method.</p> "> Figure 7
<p>A comparison of the 2th/4th/6th/8th harmonic channels based on the BPF and FFT scheme (SNR = −10 dB).</p> "> Figure 8
<p>The designed anti-jamming sensor prototype. (<b>a</b>) The transceiver antenna and signal processing module, and (<b>b</b>) the RF module.</p> "> Figure 9
<p>The scenario of a low speed encounter for prototype in the chamber (the metal plate target was fixed on the moving car vertically, and the prototype was placed at one end of the track, loaded by the car moving along the track from 10.5 to 1.5 m at a speed of 1 m/s).</p> "> Figure 10
<p>The 4th/6th/8th channel outputs of the prototype. (<b>a</b>) Low speed encounter; (<b>b</b>) under sweep jamming. (Sweep jamming parameters:<math display="inline"> <semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi>N</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>100</mn> <mtext> </mtext> <mi>MHz</mi> </mrow> </semantics> </math>; <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>f</mi> <mi>j</mi> </msub> <mo>=</mo> <mn>500</mn> <mtext> </mtext> <mi>KHz</mi> </mrow> </semantics> </math>; <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>d</mi> <mi>w</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mtext> </mtext> <mi>ms</mi> </mrow> </semantics> </math>; AM signal: sine; <math display="inline"> <semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>j</mi> <mi mathvariant="normal">M</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mtext> </mtext> <mi>KHz</mi> </mrow> </semantics> </math>.)</p> ">
Abstract
:1. Introduction
2. Failure Mechanism Analysis of Short-Range FMCW Proximity Sensor under Sweep Jamming
2.1. FMCW Harmonic Ranging Principle
2.2. Sweep Jamming Strategy
2.3. Failure Mechanism Analysis
3. Design and Implementation of Multi-Channel Harmonic Timing Sequence Detection
3.1. Multi-Channel Harmonic Timing Sequence Detection Based on BPF
3.2. Multi-Channel Harmonic Timing Sequence Detection Based on FFT
4. Simulated and Measured Results Discussion
4.1. Ranging Performance Simulation and Analysis
4.2. Implementation Complexity Analysis
4.3. Anti-Jamming Test and Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, C.; Peng, Z.; Huang, T.Y.; Fan, T.; Wang, F.K.; Horng, T.S.; Muñoz-Ferreras, J.-M.; Gómez-García, R.; Ran, L.; Lin, J. A Review on Recent Progress of Portable Short-Range Noncontact Microwave Radar Systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1692–1706. [Google Scholar] [CrossRef]
- Li, C.L.; Chen, W.; Liu, G.; Yan, R.; Xu, H.; Qi, Y. A Noncontact FMCW Radar Sensor for Displacement Measurement in Structural Health Monitoring. Sensors 2015, 15, 7412–7433. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.; Ash, M.; Chen, Q.; Chetty, K. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis. Sensors 2016, 16, 1401. [Google Scholar] [CrossRef] [PubMed]
- Damien, V.; Paul, C.; Roland, C. Localization and Mapping Using Only a Rotating FMCW Radar Sensor. Sensors 2013, 13, 4527–4552. [Google Scholar] [CrossRef]
- Yue, K.; Hao, X.; Li, P. An LFMCW detector with new structure and FRFT based differential distance estimation method. Springer Plus 2016, 5, 922. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.B.; Alvestegui, G.G.; Mcdaniel, J.W.; Li, Y.; Gogineni, S.; Rodriguez-Morales, F.; Brozena, J.; Leuschen, C.J. Ultrawideband FMCW Radar for Airborne Measurements of Snow Over Sea Ice and Land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 834–843. [Google Scholar] [CrossRef]
- Choi, J.H.; Jang, J.H.; Huang, T.Y.; Fan, T.; Wang, F.K.; Horng, T.S.; Muñoz-Ferreras, J.-M.; Gómez-García, R.; Ran, L.; Lin, J. Design of an FMCW radar altimeter for wide-range and low measurement error. IEEE Trans. Instrum. Meas. 2015, 64, 3517–3525. [Google Scholar] [CrossRef]
- Balal, N.; Pinhasi, G.A.; Pinhasi, Y. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies. Sensors 2016, 16, 751. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, J.; Wang, X.; Sun, B. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR). Sensors 2017, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Lee, S.Y.; Choi, H.H.; Lee, S.J.; Park, C.S. The improved spatial nuller with frequency swept jammer. In Proceedings of the Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2014; pp. 1084–1087. [Google Scholar]
- Choi, D.Y.; Kim, W.K.; Kim, J.H.; Cho, H. Performance of analog and digital modulation schemes under sweep jamming. In Proceedings of the Eighth International Conference on Ubiquitous and Future Networks, Vienna, Austria, 5–8 July 2016; pp. 13–15. [Google Scholar]
- Mighani, S.; Mivehchy, M.; Sabahi, M.F. Evaluating sweep noisy barrage jamming effect on tracking radar based on functioning destruction time. In Proceedings of the International Symposium on Telecommunications, Tehran, Iran, 9–11 September 2014; pp. 400–404. [Google Scholar]
- Choi, J.H.; Lee, J.M.; Jung, M.S.; An, J.Y.; Kim, K.L. FMCW transceiver of short-range proximity sensor in sea clutter. Microw. Opt. Technol. Lett. 2017, 59, 334–337. [Google Scholar] [CrossRef]
- Choi, J.H.; Jung, M.S.; Yeom, K.W. A design and assessment of a direction finding proximity fuze sensor. IEEE Sens. J. 2013, 13, 3079–3089. [Google Scholar] [CrossRef]
- You, P.; Liu, Z.; Wang, H.; Wei, X.; Li, X. Dynamic compressed HRRP generation for random stepped-frequency radar based on complex-valued fast sequential homotopy. Sensors 2014, 14, 8283–8304. [Google Scholar] [CrossRef] [PubMed]
- Max, P. New Generation Naval Artillery Multi-Function Fuze. In Proceedings of the 56th Annual Fuze Conference, Baltimore, MD, USA, 12–15 May 2012; pp. 1–20. [Google Scholar]
- Xiao, Z.; Zhang, H. Research on Modeling and Simulation of Echo Signal of Pulse Doppler Fuze and Judgment Criterion of Its Impact. Acta Armament. 2016, 37, 1820–1827. [Google Scholar]
- Huang, Y.; Hao, X.; Kong, Z.; Zhang, B. Recognition of target and jamming signal for FM fuze based on entropy features. Acta Armament. 2017, 38, 254–260. [Google Scholar]
- Li, Z.; Hao, X.; Chen, H.; Li, P. Target signal recognition for CW Doppler proximity radio detector based on SVM. In Proceedings of the International Conference on Mechatronic Sciences, Electric Engineering and Computer, Shengyang, China, 20–22 December 2013; pp. 1160–1163. [Google Scholar]
- Beasley, P. The Influence of Transmitter Phase Noise on FMCW Radar Performance. In Proceedings of the Radar Conference, Manchester, UK, 13–15 September 2006; pp. 331–334. [Google Scholar]
- Fericean, S.; Dorneich, A.; Droxler, R.; Krater, D. Development of a Microwave Proximity Sensor for Industrial Applications. IEEE Sens. J. 2008, 9, 870–876. [Google Scholar] [CrossRef]
- Komarov, I.; Sergey, M. Fundamentals of Short-Range FM Proximity Sensor; Artech House: London, UK, 2003; pp. 111–112. [Google Scholar]
- Zuo, H.Y.; Hao, X.H.; Yue, K. Anti-AM Jamming Performance of FM Doppler Fuze. Available online: http://www.cnki.net/kcms/detail/11.2625.V.20170203.1448.001.html (accessed on 20 July 2017).
- Ayhan, S.; Scherr, S.; Bhutani, A.; Fischbach, B.; Pauli, M.; Zwick, T. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy. IEEE Trans. Microw. Theory Tech. 2016, 64, 3290–3301. [Google Scholar] [CrossRef]
- Zhao, H.C. Fundamentals and Methodology of Radio Fuze; National Defense Industry Press: Beijing, China, 2012; pp. 55–56. [Google Scholar]
Parameters | Value |
---|---|
Carrier frequency | X-band |
FM frequency /KHz | 100 |
Bandwidth of sensor /MHz | 100 |
Detection range/m | 1–15 |
Target speed/(m/s) | 500 |
Sensor sampling frequency/MHz | 5 |
FFT points | 128 |
SNR/dB | −10 |
Parameters | |||
---|---|---|---|
Number of Slices Flip Flops | Number of 4 input look-up tabels (LUTs) | Number of MULT18X18s | |
BPF | 5256 | 4573 | 21 |
FFT | 1502 | 1281 | 8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Z.; Li, P.; Yan, X.; Hao, X. Anti-Sweep Jamming Design and Implementation Using Multi-Channel Harmonic Timing Sequence Detection for Short-Range FMCW Proximity Sensors. Sensors 2017, 17, 2042. https://doi.org/10.3390/s17092042
Kong Z, Li P, Yan X, Hao X. Anti-Sweep Jamming Design and Implementation Using Multi-Channel Harmonic Timing Sequence Detection for Short-Range FMCW Proximity Sensors. Sensors. 2017; 17(9):2042. https://doi.org/10.3390/s17092042
Chicago/Turabian StyleKong, Zhijie, Ping Li, Xiaopeng Yan, and Xinhong Hao. 2017. "Anti-Sweep Jamming Design and Implementation Using Multi-Channel Harmonic Timing Sequence Detection for Short-Range FMCW Proximity Sensors" Sensors 17, no. 9: 2042. https://doi.org/10.3390/s17092042
APA StyleKong, Z., Li, P., Yan, X., & Hao, X. (2017). Anti-Sweep Jamming Design and Implementation Using Multi-Channel Harmonic Timing Sequence Detection for Short-Range FMCW Proximity Sensors. Sensors, 17(9), 2042. https://doi.org/10.3390/s17092042