High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF
<p>Squint angle as a function of illumination time for different look angles. The illumination time is defined as the time relative to the moment of the minimum slant range. The required squint angle is 23.5<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> to ensure one minute repeat-observation interval images with a 0.25 m resolution and 5 km swath in both azimuth and range, when the look angle is chosen as 35.0<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> (red line). Black line represents the synthetic aperture process for images.</p> "> Figure 2
<p>Squint angle as a function of illumination time for different orbit height. Black line represents the synthetic aperture process for images. The look angles of different simulations are chosen as 35<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>. The required squint angle decreases along with an increasing orbit height. For systems with an orbit height of 1000 km, images with repeat-observation intervals varying from tens of seconds to 4 min will be available when the squint angle is higher than 32.1<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>.</p> "> Figure 3
<p>Illustration of the receive window. The PRI (1/PRF) includes a transmitted pulse duration <math display="inline"> <semantics> <mi>τ</mi> </semantics> </math>, two guard intervals <math display="inline"> <semantics> <msub> <mi>t</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> </semantics> </math>, and the receive window. <math display="inline"> <semantics> <msub> <mi>t</mi> <mrow> <mi>E</mi> <mi>R</mi> <mi>S</mi> </mrow> </msub> </semantics> </math> is the echo time of the effective range swath, <math display="inline"> <semantics> <mrow> <msub> <mi>t</mi> <mi>τ</mi> </msub> <mo>=</mo> <mi>τ</mi> </mrow> </semantics> </math> is the received pulse duration for each point, ensuring that the targets to be imaged are with full range resolution, and <math display="inline"> <semantics> <msub> <mi>t</mi> <mrow> <mi>R</mi> <mi>C</mi> <mi>M</mi> </mrow> </msub> </semantics> </math> is the duration caused by the RCM. The duration <math display="inline"> <semantics> <msub> <mi>t</mi> <mrow> <mo>Δ</mo> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>l</mi> <mi>a</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </msub> </semantics> </math>, related to the span of the slant range, consists of <math display="inline"> <semantics> <msub> <mi>t</mi> <mrow> <mi>E</mi> <mi>R</mi> <mi>S</mi> </mrow> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>t</mi> <mrow> <mi>R</mi> <mi>C</mi> <mi>M</mi> </mrow> </msub> </semantics> </math>.</p> "> Figure 4
<p>Timing diagram (slant range versus PRF) (<b>left</b>) and basic geometry (<b>right</b>) of CVPRF conception. Pulses of different squint angle is represented with different color (varying from red to gray). For transmitted pulse on the right of the figure, its suitable PRF is shown on the left with the same color.</p> "> Figure 5
<p>Timing diagram of Staggered-SAR, also called sweep SAR. Both red and gray color represents for beams of Staggered-SAR. The red beam means pulses of the current PRFs is in conflict with transmitted pulse blockage and cannot be received. However, pulses of this slant range still can be received at other PRFs.</p> "> Figure 6
<p>Spaceborne SAR geometry: side-looking geometry (<b>left</b>) and along-track geometry (<b>right</b>).</p> "> Figure 7
<p>Slant range history of the sliding spotlight SAR. Lines of different color indicate different targets, with a distance of 2.5 km in azimuth, and each line records the slant range history of a target with a 0.25 m resolution; the dark line is the center target of the scene. The distance between Point 1 and Point 3 is 5 km in azimuth; hence, the span of the squint angle for a 5-km azimuth swath is 17.3<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>∼23.5<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>.</p> "> Figure 8
<p>Timing diagrams (slant range versus PRF) of the uniform PRF (<b>left</b>) and the CVPRF (<b>right</b>). The dark solid line represents the slant range of a 5 km ground swath width with a squint angle of 17.3<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>, and the red solid line represents the slant range of a 5 km ground swath width with a squint angle of 23.5<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>. The slant range of the acceptable squint angle is represented by the blue line, where the maximum of <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>R</mi> <mrow> <mi>s</mi> <mi>q</mi> <mi>u</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math> is limited to 18.6 km.</p> "> Figure 9
<p>Comparison of the uniform PRF and the CVPRF system with a diagram of the transmitted and received pulses. Different color represents different pulse. The purple box indicates the receive window, and the colored feature in purple box is the echo for its corresponding transmitted pulse. (<b>a</b>–<b>c</b>) represent the varying position of the echo data for the uniform PRF system. For the sliding spotlight mode, the slant range decreases with decreasing squint illumination angle, and the position of the echo data shifts closer to the beginning of the receive window, eventually running out of the receive window; For the CVPRF system in (<b>d</b>), the pulse interval decreases for each new pulse, which is equivalent to a corresponding movement of the receive window, and ensures a proper position for the echo data.</p> "> Figure 10
<p>Illustration of the transmit and receive of the <span class="html-italic">k</span>-th pulse.</p> "> Figure 11
<p>A sequence of a pulse frequency for the CVPRF system. The frequency of the first pulse is 3535 Hz and there are 44,584 pulses during the squint angle changes from 23.5<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> to 17.3<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>.</p> "> Figure 12
<p>Distribution of targets in the simulation scene (<b>a</b>) and the echo data of the uniform PRF (<b>b</b>) and CVPRF (<b>c</b>); Echo data of CVPRF with the step size of PRF up to 1 Hz (<b>d</b>) and 2 Hz (<b>e</b>).</p> "> Figure 13
<p>Geometry of the RASR for the uniform PRF (<b>a</b>) and the CVPRF (<b>b</b>). The red point <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>′</mo> </msup> </semantics> </math> is a strong point-like target, and both the blue and yellow points are normal targets.</p> "> Figure 14
<p>Performance prediction of the RASR for the design example. Ten strong point-like targets are distributed in the ambiguous area.The RASR of uniform PRF system is represented by the red line, and the RASR of CVPRF system is represented by the blue line.</p> "> Figure 15
<p>Block diagram of the high-order imaging algorithm.</p> "> Figure 16
<p>Distribution of targets in the simulation scene.</p> "> Figure 17
<p>Focused result by the proposed algorithm.</p> ">
Abstract
:1. Introduction
2. CVPRF Concept
3. Design of the Sequence of PRF
4. Range Ambiguities
5. Imaging Algorithm
5.1. Resampling Strategy for the CVPRF System
5.2. High-Order Imaging Algorithm for High-Resolution Spaceborne SAR
6. Simulation and Results
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Townsend, W. An initial assessment of the performance achieved by the Seasat-1 radar altimeter. IEEE J. Ocean. Eng. 1980, 5, 80–92. [Google Scholar] [CrossRef]
- Moreira, A. A golden age for spaceborne SAR systems. In Proceedings of the 20th International Conference on Microwaves, Radar, and Wireless Communication (MIKON), Gdańsk, Poland, 16–18 June 2014; pp. 1–4. [Google Scholar]
- Shimada, M.; Kawano, N.; Watanabe, M.; Motooka, T.; Ohki, M. Calibration and validation of the Pi-SAR-L2. In Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; pp. 194–197. [Google Scholar]
- Fox, P.; Seguin, G.; Girard, R. The Radarsat II mission. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; Volume 3, pp. 1500–1502. [Google Scholar]
- Morena, L.; James, K.; Beck, J. An introduction to the RADARSAT-2 mission. Can. J. Remote Sens. 2004, 30, 221–234. [Google Scholar] [CrossRef]
- Buckreuss, S.; Balzer, W.; Muhlbauer, P.; Werninghaus, R.; Pitz, W. The TerraSAR-X satellite project. In Proceedings of the IEEE International Geoscience and remote sensing symposium, Toulouse, France, 21–25 July 2003; Volume 5, pp. 3096–3098. [Google Scholar]
- Krieger, G.; Fiedler, H.; Hajnsek, I.; Eineder, M.; Werner, M.; Moreira, A. TanDEM-X: Mission concept and performance analysis. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; Volume 7, pp. 4890–4893. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Arikawa, Y.; Saruwatari, H.; Hatooka, Y.; Suzuki, S. ALOS-2 launch and early orbit operation result. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 3406–3409. [Google Scholar]
- Janoth, J.; Gantert, S.; Koppe, W.; Kaptein, A.; Fischer, C. TerraSAR-X2-Mission overview. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 217–220. [Google Scholar]
- Madsen, S.; Edelstein, W.; DiDomenico, L.D.; LaBrecque, J. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Sydney, Ausralia, 9–13 July 2001; Volume 1, pp. 447–449. [Google Scholar]
- Dierking, W. Sea ice monitoring by synthetic aperture radar. Oceanography 2013, 26, 100–111. [Google Scholar] [CrossRef]
- García-Pintado, J.; Mason, D.C.; Dance, S.L.; Cloke, H.L.; Neal, J.C.; Freer, J.; Bates, P.D. Satellite-supported flood forecasting in river networks: A real case study. J. Hydrol. 2015, 523, 706–724. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Mittermayer, J.; Wollstadt, S.; Prats-Iraola, P.; López-Dekker, P.; Krieger, G.; Moreira, A. Bidirectional SAR imaging mode. IEEE Trans. Geosci. Remote Sens. 2013, 51, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Villano, M.; Krieger, G.; Moreira, A. Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4462–4479. [Google Scholar] [CrossRef]
- Freeman, A.; Johnson, W.T.; Huneycutt, B.E.A.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J. The ‘myth’ of the minimum SAR antenna area constraint. IEEE Trans. Geosci. Remote Sens. 2000, 38, 320–324. [Google Scholar] [CrossRef]
- Wang, P.; Liu, W.; Chen, J.; Niu, M.; Yang, W. A high-order imaging algorithm for high-resolution spaceborne SAR based on a modified equivalent squint range model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1225–1235. [Google Scholar] [CrossRef]
- Zeng, H.C.; Chen, J.; Liu, W.; Yang, W. Modified Omega-k Algorithm for High-Speed Platform Highly-Squint Staggered SAR Based on Azimuth Non-Uniform Interpolation. Sensors 2015, 15, 3750–3765. [Google Scholar] [CrossRef] [PubMed]
Sensor | Operation | Resolution | Swath | Squint Angle |
---|---|---|---|---|
Seasat | 1978 | 25 m(A) × 25 m(R) | 100 km(R) | – |
Radarsat-2 | 2007–Present | 3 m(A) × 3 m(R) | 20 km(R) | – |
TerraSAR-X | 2007–Present | 1 m(A) × 1 m(R) | 5 km(A) × 10 km(R) | 2.2 |
TanDEM-X | 2010–Present | 1 m(A) × 1 m(R) | 5 km(A) × 10 km(R) | 2.2 |
Sentinel-1a | 2013–Present | 5 m(A) × 5 m(R) | 80 km(R) | – |
ALOS-2 | 2014–Present | 1 m(A) × 3 m(R) | 25 km(A) × 25 km(R) | 3.5 |
TerraSAR-X NG | 2018+ | 0.25 m(A) × 0.25 m(R) | 5 km(A) × 5 km(R) | more than 5 |
Parameter | Value | Units |
---|---|---|
Orbit height | 514 | km |
Eccentricity | 0.00018 | - |
Inclination | 97.45 | |
Longitude of ascend note | 92.39 | |
Argument of perigee | 91.28 | |
Carrier frequency | 9.65 | GHz |
Bandwidth | 1.2 | GHz |
Look angle | 35 | |
Antenna length | 4.8 | m |
Antenna height | 0.8 | m |
Azimuth resolution | 0.25 | m |
Azimuth swath | 5.0 | km |
Range swath | 5.0 | km |
Range | Azimuth | |||||
---|---|---|---|---|---|---|
PSLR | ISLR | PSLR | ISLR | |||
(m) | (dB) | (dB) | (m) | (dB) | (dB) | |
1 | 0.226 | −13.057 | −9.649 | 0.210 | −13.254 | −10.635 |
2 | 0.226 | −13.052 | −9.646 | 0.211 | −13.256 | −10.640 |
3 | 0.226 | −13.050 | −9.647 | 0.212 | −13.260 | −10.650 |
4 | 0.226 | −13.051 | −9.656 | 0.208 | −13.258 | −10.617 |
5 | 0.226 | −13.071 | −9.638 | 0.209 | −13.256 | −10.625 |
6 | 0.226 | −13.057 | −9.652 | 0.210 | −13.254 | −10.633 |
7 | 0.226 | −13.061 | −9.656 | 0.206 | −13.254 | −10.611 |
8 | 0.226 | −13.064 | −9.657 | 0.207 | −13.256 | −10.612 |
9 | 0.227 | −13.057 | −9.656 | 0.208 | −13.254 | −10.613 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, Z.; Wang, P.; Li, C.; Chen, J.; Liu, W.; Fang, Y. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF. Sensors 2017, 17, 1700. https://doi.org/10.3390/s17081700
Men Z, Wang P, Li C, Chen J, Liu W, Fang Y. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF. Sensors. 2017; 17(8):1700. https://doi.org/10.3390/s17081700
Chicago/Turabian StyleMen, Zhirong, Pengbo Wang, Chunsheng Li, Jie Chen, Wei Liu, and Yue Fang. 2017. "High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF" Sensors 17, no. 8: 1700. https://doi.org/10.3390/s17081700
APA StyleMen, Z., Wang, P., Li, C., Chen, J., Liu, W., & Fang, Y. (2017). High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF. Sensors, 17(8), 1700. https://doi.org/10.3390/s17081700