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Abstract: Satellite precipitation products (SPPs) provide alternative precipitation data for regions with
sparse rain gauge measurements. However, SPPs are subject to different types of error that need
correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to
adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the
pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct
the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account
the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels.
In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a
spatial classification that considers precipitation data with the same temporal distributions. The second
step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within
each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain
gauge measurements using relative RMSE and relative bias statistical errors. The results show that
analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing
rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias
correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic
classification is relevant for implementing bias correction methods at the local scale.

Keywords: quantile mapping bias correction; hydroclimatic area; temporal distribution;
TRMM-TMPA 3B42V7; Guiana Shield

1. Introduction

Given the current context of climate change, it is essential to improve our understanding of the
spatial and temporal dynamics of precipitation on the global and regional scales. Precipitation is an
essential part of the global water cycle and its measurement is particularly crucial. Observation
of precipitation at high spatial resolution is very important for monitoring and forecasting
extreme weather events such as floods and droughts, but also for obtaining input data for
hydrological applications and climate studies. However, obtaining accurate gauge-based precipitation
measurements at high spatial resolution is difficult because of various technical and practical
limitations [1]. Technical limitations can be exposed during heavy rainfall when water can accumulate
at a rate faster than can be cleared by the calibration trough of the measurement device. Conversely,
during light rainfall, water can evaporate from the collector. Practical limitations arise from the
challenges associated with the installation and maintenance of a dense network of measurement
devices in areas that are difficult to access, such as mountains, deserts, and primary forests [1,2].
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Satellite precipitation products (SPPs) such as the Tropical Rainfall Measuring Mission
Multisatellite Precipitation Analysis (TRMM-TMPA 3B42) [3–5], Climate Prediction Center MORPHing
(CMORPH) product [6], and Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) [7] provide alternatives for obtaining precipitation data
in regions with an insufficient distribution of rain gauge measurement stations. These SPPs with high
spatial resolution (0.25◦ × 0.25◦) and high temporal resolution (3 h) [8–15] are produced using data
obtained by different instruments deployed on several satellites. The algorithms of these products
link cloud brightness temperature, measured in the infrared band, with data relating to the size and
characteristics of hydrometeors, as measured by microwaves [1,14,16].

All the above blended rainfall products are subject to different types of error depending on the
quality of the measurements made by the sensor as well as the climate, topography, season, and
local climatic regime. Several studies have addressed SPP failures in different geographic regions
based on the intensity of precipitation and/or seasonal precipitation. The first evident defect of
SPPs is that they overestimate low daily intensities (<2 mm/day) and underestimate high daily
intensities (>20 mm/day) [8,11–14,17–19]. A second defect, observed by many authors, is that SPP
performance depends on season, with greater errors detected in winter compared with summer or
rainy seasons [9,10,12,18,20–25]. Ebert et al. [24] showed that as the precipitation regime tends toward
deep convection, the accuracy of the satellite estimates improves. A third defect observed in SPPs is
that their effectiveness depends on the climatic regime and that they show poorer performance in the
driest areas [12,13,17,26]. A fourth defect relates to the difference in performance of SPPs according
to topography, with low efficiency reported for SPPs in mountainous regions [9,17,27–29]. Finally,
SPPs have a low ability to detect the daily precipitated volume [27,30,31]. Indeed, SPPs are less able to
detect daily rainfall volume than rainfall occurrence. To correct all these defects, bias adjustment is
essential prior to the use of SPPs in hydrological applications.

Different bias adjustment approaches are used to improve the quality of SPP data. The linear
correction method corrects the average precipitation value based on the differences between the rain
gauge data and satellite data. However, this method does not correct the variance and all events are
adjusted with the same correction factor [15,32–37]. The Local Intensity Scaling method combines
a precipitation threshold with linear scaling [32,37,38]. This method separately corrects wet-day
frequency and wet-day intensity, applied pointwise and individually for each day of the year, and the
estimated precipitation is corrected using a scaling factor. Nevertheless, the results obtained with this
method are limited because, as with linear correction, the standard deviation is not corrected and all
events are adjusted using the same correction factor. The Power Transformation method corrects the
mean and variance of the temporal series of estimated precipitation [37,39–41]. This is a nonlinear
correction in an exponential form that combines the correction of the coefficient of variation with linear
scaling. The coefficient of variation of both daily and multiple-day precipitation amounts depends on
the wet-day frequency, but this correction does not adjust the frequency of wet days [40]. The Quantile
Mapping method (QM) [32,37,39,42–52], also named Distribution Mapping or the Quantile–Quantile
method, adjusts the cumulative distribution of estimated data to the cumulative distribution of rain
gauge data using a transfer function. This correction can capture the evolution of the mean and the
variability of precipitation while matching all statistical moments. Most of these methods use rain
gauge data to correct SPP data located in the same location (with respect to the satellite pixel). The aim
of this article is to correct the SPP data for the Guiana Shield using a novel two set approach, pixel by
pixel, without taking into account the daily rain gauge data of the pixel to be corrected, but instead
using the daily rain gauge data of the surrounding pixels. We introduce the concept of spatial scale
change analysis. The concept of scale must be involved in any spatial statistical analysis.

All the above bias correction methods are used to correct SPP estimates to provide results that are
acceptable on the global scale; however, these methods are limited when correcting SPPs on the local
scale. One limitation of applying these methods on the global scale is that precipitation estimates are
corrected using the same scaling factor or the same correction coefficients without consideration of the
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disparities between the series to be corrected. Another weakness is that the statistical profile of the
precipitation series is considered without accounting for the temporal profile. All these difficulties
limit the correction of SPPs on the local scale.

Here, we propose to correct daily SPP estimates (TRMM-TMPA 3B42V7) using a novel two
set approach. The first step defines hydroclimatic areas using a spatial classification that considers
precipitation data with the same temporal distributions. The second step uses the Quantile Mapping
bias correction method to correct the daily SPP data contained within each hydroclimatic area, by
defining a calibration set and a validation set.

To identify the influence of the analysis scale on the statistical results, three simulations were
conducted for the Guiana Shield using 93 daily rain gauges. The first simulation was performed for
the entire study area, i.e., without any hydroclimatic division. The second simulation was undertaken
with the study area divided into six hydroclimatic areas. The third simulation was performed with
23 hydroclimatic areas. For each simulation, we compared both the daily precipitation estimated from
TRMM-TMPA 3B42V7 and the daily rain gauge measurements; and the precipitation corrected using
the QM method and daily rain gauge measurements. We then validated the accuracy of the correction
based on the RMSE and bias.

The remainder of this article is structured as follows: Section 2 describes the study area and
presents the data used. Section 3 provides an overview of the methodology used to correct the biases.
The results are presented and discussed in Section 4. Finally, the conclusions are drawn in Section 5.

2. Data

2.1. Study Area

The Guiana Plateau, also called the Guiana Shield, is a region in South America located north of
the Amazon River and east of the Orinoco River. This area is over 2 million km2. It spans six countries:
Colombia, Venezuela, Guyana, Suriname, French Guiana, and northern Brazil (Amapá, Roraima, and
Pará). The Guiana Shield has poor soil, an extensive river system, and dense primary rainforest [53].
This area accounts for 13% of the surface of the South American continent. In this study, the area
considered lies within 2◦ S–6◦ N, 45◦–62◦ W (Figure 1). The Guiana Shield is a region with high spatial
variability in precipitation [11,54]. The annual average difference in precipitation between the littoral
zone and inland areas can reach 2300 mm/year [11]. It is an area subject to intense and local convective
precipitation. The network of precipitation measurements is very sparse and located primarily on the
coast and along the rivers. Most of the present population lives on the coast or along the rivers and
thus, is highly vulnerable to flooding.
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Figure 1. Elevation map of the Guiana Shield. The SRTM30 (Shuttle Radar Topography Mission) digital
elevation model is available at http://www.diva-gis.org/gdata. Dots represent the daily rain gauges
available in French Guiana and northern Brazil.
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2.2. Rain Gauges

The daily rain gauge data used in this study come from 93 daily rain gauges distributed between
French Guiana and northern Brazil (Figure 1), including 18 in the Guyanese territory. North Brazilian
data come from the Brazil National Water Agency (ANA). They are freely available online [55].
Rainfall data from French Guiana are provided by Météo France. To have the most complete time
series and compare the SPP data, we use the period 2001–2012. The data are checked for quality and
used in the following analysis.

2.3. Precipitation Product

A recent study by Ringard et al. [11] compared different SPPs in the Guiana Shield (TRMM-TMPA
3B42RT, TRMM-TMPA 3B42V7, PERSIANN, and CMORPH). The results obtained show that for areas
with intense convective precipitation, TRMM-TMPA 3B42V7 performs better than the other products,
especially in the estimation of extreme precipitation events. In regions along the Amazon, the use of
PERSIANN is better. Finally, in the driest areas, TRMM-TMPA 3B42V7 and PERSIANN exhibit the
same level of performance.

The daily SPPs used in this study come from the TRMM TMPA 3B42 algorithm, which was
developed by NASA. A brief description of the TRMM-TMPA 3B42V7 product is given below.
TRMM TMPA 3B42 is a rainfall estimation product from the TRMM mission that combines satellite
and ground data [3–5,22,56,57]. The main data sources for TRMM-TMPA 3B42V7 are infrared GOES-W
(Geostationary Operational Environmental Satellite-West), GOES-E (East), GMS (Geostationary
Meteorological Satellite), Meteosat-5, Meteosat-7, and NOAA-12 geostationary satellites, as well as the
passive microwave radiometers of the TMI/TRMM (TRMM Microwave Imager), SSMI/DMSP (Special
Sensor Microwave Imager/Defense Meteorological Satellite Program), AMSU/NOAA (Advanced
Microwave Sounding Unit/National Oceanic and Atmospheric Administration) and AMSR-E/Aqua
(Advanced Microwave Scanning Radiometer-EOS) low orbit satellites.

During the last ten years, the TMPA algorithm has undergone three important updates to
incorporate data from new sensors into the algorithm [22]. TRMM-TMPA 3B42V7, the research
version, is available approximately two months after observation. The 3B42 algorithm runs in four
stages [13]: (1) passive microwave precipitation estimates are calibrated and combined, (2) infrared
precipitation estimates are generated using the calibrated data from the passive microwave sensors,
(3) the infrared and passive microwave data are combined, and (4) the data are rescheduled on a
monthly basis using the rain gauge data. Furthermore, TRMM-TMPA 3B42 uses precipitation estimates
directly from the passive microwave data when available, but it inserts infrared data when the passive
microwave data are unavailable [10]. TRMM-TMPA 3B42V7 algorithm output data have a 3 h time
resolution with rainfall amounts expressed in mm/h. The geographical area covered extends from
latitude 50◦ N–50◦ S for 3B42V7 with a 0.25◦ × 0.25◦ spatial grid resolution. The TRMM-TMPA 3B42V7
product data have been available since January 1, 1998 (through to the present day) [58].

3. Methods

We propose to correct daily TRMM-TMPA 3B42V7 estimates using a two set approach without
taking into account the daily rain gauge data of the pixel to be corrected, but instead using the
daily rain gauge data of the surrounding pixels. In this case, a spatial analysis must be involved.
This novel set approach is divided into two steps: (1) several scales are defined through the definition
of hydroclimatic zones; (2) bias correction using the Quantile Mapping approach is parameterized
with the daily data contained in each hydroclimatic area, through the definition of a calibration set and
a validation set.
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3.1. Definition of Hydroclimatic Area

The aim is to identify the influence of the analysis scale on the efficiency of the Quantile Mapping
correction method. For this purpose, we define hydroclimatic areas obtained from the rain gauge
precipitation series based on long-term monthly means of the rain gauge data. The hydroclimatic
areas are constructed using a hierarchical ascendant classification (HAC) [59,60]. The purpose of the
classification approach is to obtain groups of rainfall time series with similar profiles. The creation of
such groups makes it possible to distribute the precipitation series into different hydroclimatic areas.

At the initial stage of the method, each rain gauge forms a class, which makes 93 classes.
The method proceeds by reducing the number of classes. At each step, two classes are grouped; thus,
reducing the number of classes. The two classes chosen for grouping are those whose dissimilarity is
the weakest; this dissimilarity value is called the aggregation index. Here, the aggregation index uses
the centers of gravity of the classes, as in the Ward method [59].

Three simulations have been implemented to account for the influence of scaling analysis. The first
simulation was performed on a single area, representing all the 93 rain gauges (i.e., the entire study
area). The second simulation was performed on six classes representing six hydroclimatic areas.
The third simulation was undertaken on 23 classes representing 23 hydroclimatic areas. The second
simulation, carried out on six hydroclimatic areas, is the continuation of the work developed in
Ringard et al. [11], who perform a regional analysis of SPPs in these six areas. Figure 2 shows an
example of the classification performed in this study for zone 6 only. In the example shown in Figure 3,
three areas are created from zone 6: Z6c11, Z6c2, and Z6b. The 23 hydroclimatic areas are obtained by
following this same scheme.
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Figure 2. Diagram of the hierarchical ascendant classification for zone 6. Red dots indicate the
dissimilarity values of the hydroclimatic groups conserved. Black squares in solid lines are the names
of the areas at different hierarchical levels. Dotted black squares are classes with only one rain gauge,
which are therefore unusable.

3.2. Principles and Implementation of the Quantile Mapping (QM) Method

The second step uses the Quantile Mapping bias correction method to correct the daily SPP data
contained within each hydroclimatic area, by defining a calibration set and a validation set. The QM
method adjusts the distribution of daily satellite precipitation (Ps) with the distribution of daily rain
gauge precipitation (Po) using a transfer function (h). Figure 3 presents a schematic of the QM method.
The transformation can be formulated as below [61,62]:

Po = h(Ps) (1)
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shifted to the distribution function of the rain gauge data.

If the variable of interest has a known distribution, the transformation is defined as:

Po = F−1
o (Fs(Ps)) (2)

where Fs is the Cumulative Distribution Function (CDF) of Ps and F−1
o is the inverse CDF of Po.

There are several statistical transformations related to the QM method for modeling the
quantile-quantile relationship [62]. The distribution-derived transformation uses a theoretical
distribution to solve Equation (2). Parametric transformations are used directly to model the
quantile-quantile relationship (Equation (1)). Finally, instead of assuming parametric distributions,
nonparametric transformations use empirical CDFs to solve Equation (2) or nonparametric regressions
such as cubic smoothing splines to solve Equation (1). Several approaches are possible; here, a
smoothing spline is used to fit the quantile-quantile plot of daily observed and daily modeled time
series. We relied on the work of Gudmundsson et al. [62] to implement this method.

Calibration of the QM Method and Correction of SPP Time Series

To implement the QM correction method we divided each hydroclimatic area into two parts:
calibration set and validation set. We take the example of a hydroclimatic area composed of four rain
gauges represented by four pixels (Figure 4).
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The calibration set is shown in green and the validation set in red. The calibration process uses
the calibration set to adjust the distribution of the daily SPP data to match the distribution of the daily
rain gauge data [62]. A function is set to adjust the precipitation data from a rainfall threshold set at
1 mm/d. The cut-off threshold is used to remove low precipitation values in the SPP data in order to
equalize the frequency of wet days between the daily rain gauge and SPP precipitation data sets [63].
The result obtained corresponds to correction coefficients, calculated, for each percentile. The greater
the number of quantile divisions used to represent the underlying frequency distributions, the better
the correction [64]. The correction coefficients are calculated from the daily mean rain gauge series
and the daily mean satellite series of the calibration set. In a second step, the correction coefficients
obtained from the calibration set are applied to correct the SPP series of the validation set (red pixel in
Figure 4). We implemented the same leave-one-out cross validation used in the paper of Kim et al. [63]:
correction coefficients are calculated over 11 years and then applied to correct one year (the omitted
year) of the SPP series of the validation set. This procedure is repeated for every year. The 12 years
obtained by the validation process are combined into a single time series that forms the corrected
SPP series.

In the example shown in Figure 4, the correction coefficients obtained from the calibration set
(green pixels) are applied to the SPP series of the validation set (red pixel) to obtain the corrected SSP
series. In each simulation on the 93 daily SPP series representing the available rain gauges, 70 daily
SPP series are used as the calibration set, and 23 are selected as the validation set for the QM correction.
The 23 daily SPP series of the validation set are chosen by selecting one rain gauge in each of the
23 hydroclimatic areas and the rest are used as calibration set. Comparison of the relative bias (rBIAS)
and the relative RMSE (rRMSE) between the different simulations of the spatial clustering is performed
on these same validation set.

4. Results

For each of the three simulations undertaken, we compared both the TRMM-TMPA 3B42V7
precipitation estimates against the daily rain gauge measurements, and the TRMM-TMPA 3B42V7
precipitation estimates corrected with the QM method against the daily rain gauge measurements.

The accuracy of the QM correction method in the various configurations presented above was
evaluated via the calculation of the deviations: estimated – measured, and using statistical indices:
rBIAS and rRMSE (Table 1).

Table 1. Quantitative statistical criteria. For a given rain gauge and its associated pixel, Oi is the rain
gauge value and Ei the satellite value. N is the total number of days in the time series.

Statistical Criteria Formula

BIAS 1
N

N
∑

i=1
(Ei − Oi)

rBIAS Biais
O

RMSE

√
1
N

N
∑

i=1
(Ei − Oi)

2

rRMSE RMSE
O

4.1. Quality of Corrected TRMM-TMPA 3B42V7 Estimates for the Entire Study Area as a Calibration Set

In the first simulation, the parameterization of the QM correction method is performed for the
entire zone using data from the 70 rain gauges in the calibration set.
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4.1.1. Global Assessment

Figure 5 shows the global rBIAS and global rRMSE for the 23 validation pixels considered as a
whole. The biases and RMSEs are obtained after comparison of both the precipitation estimated from
TRMM-TMPA 3B42V7 and daily rain gauge measurements (black), and the precipitation corrected
with the QM method and daily rain gauge measurements (grey).Sensors 2017, 17, 1413 8 of 17 
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Figure 5. (a) Global relative bias (rBIAS; %) and (b) global relative RMSE (rRMSE; %) obtained by
comparing the precipitation estimated from TRMM-TMPA 3B42V7 with daily rain gauge measurements
(black), and the precipitation corrected with the QM method with daily rain gauge measurements
(grey) over the entire study area.

Figure 5a shows that the global rBIAS is worse after the QM correction. Without correction,
the average of the rBIAS of the 23 daily SPP series is −3% against −25% after the QM correction.
For the rRMSE, Figure 5b shows a very slight improvement of only 1% for the QM-corrected data.
This result shows that for the Guiana Shield, the TRMM-TMPA 3B42V7 SPP provides a reasonably
good estimation of precipitation on the global scale. The rBIAS degradation of the QM-corrected data
indicates that this method is not applicable to large spatial scales.

4.1.2. Local Assessment

Figure 6 shows the rBIASs and rRMSEs for the 23 validation daily SPP series considered
individually. The rBIASs and rRMSEs are obtained after comparing the precipitation estimated from
TRMM-TMPA 3B42V7 and daily rain gauge measurements (black), and the precipitation corrected
with the QM method and daily rain gauge measurements (grey).
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the precipitation corrected with the QM method and daily rain gauge measurements (grey) for the
validation pixel in each of the 23 hydroclimatic areas.
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Figure 6 shows that only four daily SPP series have a low bias without applying the QM correction.
When the QM correction is applied throughout the entire study area, seven of the 23 validation daily
SPP series show a correction in rBIAS and 16 daily SPP series show a deterioration in rBIAS in
comparison with the raw data. For the seven daily SPP series corrected, the improvement of rBIAS is
on average 13.4%. Conversely, for the 16 uncorrected daily SPP series, the deterioration of rBIAS is
on average 16.7%. Regarding the rRMSE, after the QM correction, the 23 daily SPP series show lower
rRMSEs with an average improvement of 40%. These results show that for the Guiana Shield, the QM
correction increases the bias for a large number of daily SPP series and thus, it is not a method that is
applicable to large spatial scales.

4.2. Quality of Corrected TRMM-TMPA 3B42V7 Estimates for 6 Hydroclimatic Areas as Calibration Sets

In the second simulation, we apply the HAC method to all the rain gauge data to obtain 6 classes
of hydroclimatic regime. The QM correction method is then parameterized with data contained in
each hydroclimatic regime. The parameterization of the QM correction method is done for each of the
6 hydroclimatic zones, and these parameters are applied to the validation pixels located in each of the
hydroclimatic zones.

Figure 7 shows the rBIASs and rRMSEs for the validation daily SPP series. The rBIASs and
rRMSEs are obtained by comparing both the TRMM-TMPA 3B42V7 precipitation estimates and daily
rain gauge measurements, and the TRMM-TMPA 3B42V7 precipitation estimates corrected with the
QM method and daily rain gauge measurements.
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of both the precipitation estimated from TRMM-TMPA 3B42V7 and daily rain gauge measurements
(black), and the precipitation corrected with the QM method and daily rain gauge measurements (grey)
for 23 pixels in 6 hydroclimatic areas.

In comparison with the raw data, nine of the 23 validation daily SPP series show a correction in
rBIAS and 14 daily SPP series show a deterioration in rBIAS. The improvement of rBIAS for the nine
validation daily SPP series is on average 14.2%. The deterioration of rBIAS for the other 14 validation
daily SPP series is on average 9.7%. Compared with the first simulation, it is evident that only two more
daily SPP series show an improvement after QM. The improvement of the nine validation daily SPP
series is slightly better than in the previous simulation. However, the degradation of the 14 daily SPP
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series after the QM correction is much less significant when taking into account the six hydroclimatic
zones rather than considering the entire region as a single hydroclimatic area.

Regarding the rRMSEs, after QM correction, 23 daily SPP series show lower rRMSEs with an
average improvement of 40%. The improvement is of the same order of magnitude as the first
simulation. These results show that for the Guiana Shield, the correction by QM shows a bias
degradation for a large number of daily SPP series and that it is therefore not applicable to large
spatial scales.

These results show that dividing the study area into six different hydroclimatic areas and
correcting the bias using the parameterized QM correction method with the data contained in each
of the hydroclimatic zones makes it possible to improve the rBIAS of the TRMM-TMPA 3B42V7 SPP
slightly. However, more than half the daily SPP series remain uncorrected. On the regional scale, the
TRMM-TMPA 3B42V7 SPP shows greater difficulty in correctly estimating precipitation. Although the
QM correction makes it possible to correct some regions, this correction method still has difficulties in
improving the bias in certain regions.

4.3. Quality of corrected TRMM-TMPA 3B42V7 Estimates for 23 Hydroclimatic Areas as Calibration Sets

In this third simulation, the QM correction method is applied to the 23 hydroclimatic areas
obtained by the HAC method and represented in Figure 8. For each of the 23 hydroclimatic areas,
one pixels is used as the validation daily SPP series. The remaining pixels in each area are used as
calibration daily SPP series for the QM correction method.
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Figure 8. Spatial map of the 23 hydroclimatic areas obtained by the hierarchical ascendant classification
method. Black dots represent the validation pixels.

The parameterization of the QM correction method is done for each of the 23 hydroclimatic areas,
and these parameters are applied to the validation daily SPP series located in each hydroclimatic area.
The rBIASs and rRMSEs are calculated by comparing the satellite data with the QM corrected data
(Figure 9). Figure 9 shows the results of the rBIASs and rRMSEs for each of the 23 validation daily SPP
series. Compared with the raw satellite data, 18 of the 23 validation daily SPP series show a correction
of rBIAS and only five daily SPP series show a worsening of rBIAS. The improvement of rBIAS for the
corrected daily SPP series is on average 12.1%. The deterioration of rBIAS for the degraded daily SPP
series is on average 9.8%. Compared with the first two simulations, the improvement in rBIAS is much
better, with 78% of validation daily SPP series showing a correction of rBIAS after QM correction.
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Figure 9. (a) Relative bias (rBIAS; %) and (b) relative RMSE (rRMSE; %) obtained by comparison
of both the precipitation estimated from TRMM-TMPA 3B42V7 and daily rain gauge measurements
(black), and the precipitation corrected with the QM method and daily rain gauge measurements (grey)
for 23 pixels using 23 hydroclimatic areas.

Regarding the rRMSEs, after QM correction, 20 daily SPP series show lower rRMSEs with an
average improvement of 28%. Only three daily SPP series show larger rRMSEs after QM correction.

4.4. Performance

Figure 10 shows the Empirical Cumulative Distribution Function (ECDF) of daily rain gauge
data, SPP data and of corrected SPP data for the three simulations under consideration. In the first
simulation the parameterization of the QM correction method is done for the entire zone with the data
from the 70 rain gauges in the calibration set. The ECDF of the corrected SPP shows no improvement
and seems to be moving away from the ECDF of the daily rain gauge data, in particular for intensities
greater than 15 mm/d. The relative bias of the corrected SPP (−31.74%) is about 1% greater than
the relative bias before QM correction (−30.61%). For intensities less than 15 mm/d, i.e., 80% of the
recorded precipitation, the correction is remarkably effective. However, for intensities between 15 and
40 mm/d, the ECDF of the corrected SPP data is largely greater than the gauge’s ECDF. High intensities
are not corrected.

In the second simulation, the QM correction method is parameterized with data from each of the
six hydroclimatic regimes. The relative bias of the SPP data improved markedly from −30.61% before
QM correction to −13.01% after QM correction. For intensities less than 20 mm/d, i.e., about 85% of
precipitation, the QM correction is effective. For intensities between 20 and 50 mm/d, the ECDF of the
SPP after correction is still a little removed from the ECDF of the daily rain gauge measurement.

In the third simulation, the QM correction method is parameterized with data from each of the
23 hydroclimatic regimes. The ECDF of the corrected SPP data shows better agreement with the daily
rain gauge compared to the ECDF of SPP data before QM correction. Indeed, the relative bias is
improved from −30.61% to −9.83%. For intensities less than 25 mm/d, i.e., about 90% of precipitation,
the QM correction shows very good results. However, the tendency to correct the intensity between 25
and 50 mm/d is more difficult.
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Figure 10. Empirical Cumulative Distribution Function for a rain gauge and its associated pixel under
the three simulations. Each simulation shows the ECDF of the daily rain gauge (black), the ECDF of
SPP before QM (red) and the ECDF of SPP after QM (blue).

In summary, the QM method corrects the weak and high intensities rather than the medium
intensities. The results show this novel two set approach reduces bias and RMSE significantly.

5. Discussion and Conclusions

The objective was to demonstrate the importance of considering hydroclimatic regimes in
the correction of daily satellite precipitation data. We used a spatial classification approach and
exploited the QM method to correct daily TRMM-TMPA 3B42V7 SPP estimates. The rain gauge
measurement pixels were grouped spatially into different hydroclimatic zones according to their
temporal profiles based on long-term monthly means of precipitation data using the HAC method.
Then, parameterization of the QM method was performed for each of the hydroclimatic areas, and
these parameters were used to correct the daily TRMM-TMPA 3B42V7 SPP estimates. In order to show
how variation in the scale of analysis affected the rBIAS and rRMSE, three simulations with different
spatial divisions were conducted, and the effects of the QM method on the accuracy of the corrected
SPP estimates were observed.

For the global scale (simulation 1), applying the QM correction TRMM-TMPA 3B42V7 has a poor
effect: only seven out of 23 daily SPP series are corrected. The approach used in this paper, which
applies the correction to the satellite series from the calibration daily SPP series throughout the zone,
does not make it possible to correct the bias present in the SPP. The QM correction method, on a global
scale, is limited in its ability to correct atmospheric phenomena that occur at finer scale. Even after
reducing the spatial scale to 6 hydroclimatic groups (simulation 2), the QM correction applied within
each hydroclimatic area still shows significant relative biases. Only nine out of 23 daily SPP series
have an improved relative bias after the QM correction. However, the daily SPP serie that are not
corrected have smaller errors than in simulation 1. In order to improve the relative bias, we once again
reduced the spatial scale in order to correct daily SPP series within a smaller area that is characteristic
of a more precise climate regime. Simulation 3 divides the area into 23 hydroclimatic groups. At this
finer scale, bias results are significantly improved. Of the 23 daily SPP series, which correspond to the
23 areas, 18 show an improvement in rBIAS, and 20 show an improvement in rRMSE. Applying the
QM correction method to the data contained in each hydroclimatic area makes it possible to improve
the accuracy of the TRMM-TMPA 3B42V7 SPP at the finer spatial scale.

The principal finding was that the QM bias correction performed worst at the coarsest scale,
whereas additional benefits were produced at a finer scale. Classifying the rain gauge data by
hydroclimatic area clearly improved the rBIASs and rRMSEs, reducing errors in the precipitation
estimates. The temporal characteristics of the sampling units, such as amplitude or similarity of the
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time series, are important scale concepts. The analysis of the ECDF shows that the QM method corrects
the weak intensities rather than the medium intensities.

It is important to note a deterioration of rBIAS after QM correction for certain SPP series. The daily
SPP series with a degradation of rBIAS can be classified according to two cases. The first case are SPP
series that considerably overestimate or underestimate precipitation before QM correction, which is
amplified after QM correction. The second case is SPP series that have low rBIAS before QM correction,
which see their rBIAS degraded after QM correction. This category of SPP series does not require
QM correction because the satellite series is very close to the gauge series. For example, within the
23 hydroclimatic areas, only five daily SPP series showed degradation. Of these five, three showed
rBIASs before correction of <1%. Therefore, only two daily SPP series showed a large degradation
of rBIAS.

A multitude of studies show that the performance of SPPs is a function of precipitation intensities,
climate and seasons. Simulation 1 calibrates the correction method from 70 rain gauges available
throughout the region. Calibration is therefore carried out on pixels which may have a precipitation
difference of more than 2000 mm/year. Even after subdividing the area into 6 regions, (Simulation 2),
the correction’s effectiveness is evidently still limited. The more we decompose into hydroclimatic
zones, the more we group together, within a zone, rain gauges that are very close climatically.
This grouping improves the efficiency of the QM correction to reduce the bias. Consequently, if
the areas that are used to define the correction parameters contain more homogeneous time data, the
more likely it is that the quality of the correction is high. This is because the correction will apply to a
SPP series with a time profile “similar” to those used for the calibration of the correction parameters.
Conversely, if the correction parameters are established from areas containing more heterogeneous
data, it is more likely that the correction parameters will be poorly adapted to the SPP series to be
corrected, and hence the quality of the correction will be of low quality. This shows the importance of
taking into account spatial scale in the QM correction method.

Several hypotheses may be invoked to explain this degradation. A first hypothesis is that the
method compares and corrects a satellite pixel covering 625 km2 with a rain gauge point. There is
therefore an incompressible bias between the amount of precipitation at the rain gauge point and the
amount of precipitation in the satellite pixel. This is linked to localized phenomena such as convective
rain, which can be very intense and spatially restricted. A second hypothesis is related to the criterion
used to define the hydroclimatic zones, i.e., the 12 monthly averages of precipitation data. This criterion
can lead to bias degradation linked to different temporal phenomena existing during the 12 years of
the time series, but it can also lead to identical hydroclimatic regimes when monthly averages are used.

From a spatial perspective, studies have been carried out on the capacity of SPP to estimate
precipitation in mountainous areas. Zambrano-Bigiarini et al. [65] compare 14 regions across Chile
and show that SPPs perform better in low and mid-altitude regions. In our study, the altitude of the
23 daily rain gauges associated to the 23 validation daily SPP series varies from 1 m (Chaves and
Kourou) to 305 m (Lourenco). We observe, with the third simulation, that among the five lowest daily
rain gauges and associated SPP series (>10 m), only one sees its bias increase after QM correction.
Conversely, the five highest daily rain gauges and associated SPP series (>100 m), all show a decrease
in bias after QM correction in the associated daily SPP series. The five daily SPP series that see their
bias deteriorate after QM correction, in simulation 3, are at low and mid-altitudes of 1, 12, 16, 71 and
76 m. These results show that the topography of our region does not explain the worsening of the
bias. The second possible explanation of the bias differences after correction is distance to the coast.
Among the five daily SPP series that show a deterioration of the bias after correction in the third
simulation, the distances to the coast are very variable. The validation daily rain gauge in the area
5c2 (Fazenda Parana) is 640 km from the coast, while the validation daily rain gauge in the areas
5b11 (Saint Laurent) and 4a1 (Chaves) are located at a distance of just 20 km and 2 km, respectively.
The distance to the coast cannot therefore be used as a criterion to justify the degradation at these
daily SPP series. In terms of land cover, of our 23 validation daily rain gauge associated to daily SPP
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series, 7 are at a distance of less than 1 km from the lake or river, of which four show a deterioration
of the bias after correction, i.e., more than half. In the microwave domain, the radiometer receives
the signal of the diffusion and absorption of hydrometeors but also of the terrestrial surfaces, thus
measuring the moisture content of these surfaces. Our results may therefore show that the proximity of
water has an influence on the difficulty of the SPP in the estimation of the precipitations and thus the
difficulty of correctly correcting certain daily SPP series. The radiometer measures moisture content
above water bodies and thus overestimates precipitation. These results are confirmed by Delahaye [8]
which observes errors of estimation over dense forests, due to the high moisture content captured by
the radiometer.

In addition to a spatial approach, a temporal approach could be considered. In other words, the
satellite data could be corrected according to season or according to other criteria such as the temporal
characteristics of rainfall [63]. This would make it possible to divide the time series into several time
sequences, and to correct each of the sequences according to different correction coefficients.

Our study has indicated that hydroclimatic classification is relevant for establishing a bias
correction method. We conclude that this novel two set approach to correct for TRMM-TMPA 3B42V7
SPP estimates provides acceptable results for the Guiana Shield. The perspective ultimately aims to
use these results to design a methodology for correcting SSP pixels on a wider scale with a limited
amount of gauge data. Future work will investigate the possibility of correcting TRMM-TMPA 3B42V7
SPPs based on predefined hydroclimatic areas. Thus, each satellite pixel will be associated with a
hydroclimatic regime and will be corrected based on the rain gauge data present within the same
hydroclimatic regime. This work will make it possible to improve the correction of TRMM-TMPA
3B42V7 SPPs at the large scale for areas with a sparse rain gauge measurement network.
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