An Improved Aerial Target Localization Method with a Single Vector Sensor
<p>The direct refraction wave ray trace in the stratified medium.</p> "> Figure 2
<p>The projection of velocity <span class="html-italic">v</span> and its three orthogonal components <math display="inline"> <semantics> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics> </math>, considering <math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>,</mo> <mi>α</mi> </mrow> </semantics> </math>.</p> "> Figure 3
<p>The principle of harmonic cluster adaptive line spectrum enhancer.</p> "> Figure 4
<p>The passive localization geometry schematic diagram.</p> "> Figure 5
<p>The track geometry diagram of the aerial target in the horizontal plane.</p> "> Figure 6
<p>The estimation results of the simulation data. (<b>a</b>) Azimuth estimation results; (<b>b</b>) Source base frequency estimation results.</p> "> Figure 7
<p>The distribution diagram and statistical histogram of the aerial target motion parameters in the horizontal direction. (<b>a</b>) The estimation results of the heading angle and the base frequency; (<b>b</b>) The estimation results of the velocity and the closest distance.</p> "> Figure 8
<p>The comparison between the theoretical values and the estimation values of the horizontal distance.</p> "> Figure 9
<p>The motion track of the target moving on a straight line at the constant height and at the constant velocity.</p> "> Figure 10
<p>The profile of the sea experiment layout.</p> "> Figure 11
<p>The time and frequency domain information of the signal. (<b>a</b>) The signal waveform; (<b>b</b>) The normalized spectrogram of <math display="inline"> <semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics> </math> signal.</p> "> Figure 12
<p>The schematic diagram of adaptive line spectrum enhancer (ALE).</p> "> Figure 13
<p>The adaptive line spectrum enhancement results of the <math display="inline"> <semantics> <mrow> <msub> <mi>v</mi> <mi>z</mi> </msub> </mrow> </semantics> </math> signal.</p> "> Figure 14
<p>The azimuth estimation results. (<b>a</b>) Using the real part for calculation; (<b>b</b>) Using the imaginary part for calculation.</p> "> Figure 15
<p>The estimation results of the azimuth before and after post-processing.</p> "> Figure 16
<p>The spectra and frequency sequences extraction results. (<b>a</b>) In the band from 0.05 to 0.15; (<b>b</b>) In the band from 0.4 to 0.5; (<b>c</b>) In the band from 0.5 to 0.7.</p> "> Figure 17
<p>The heading angle and velocity estimation results.</p> "> Figure 18
<p>The horizontal distance Estimation Results if <span class="html-italic">p</span> = 900 m. (<b>a</b>) <math display="inline"> <semantics> <mi>φ</mi> </semantics> </math> estimation results; (<b>b</b>) Horizontal distance estimation results.</p> "> Figure 19
<p>The estimation results of the horizontal distance before and after compensation.</p> "> Figure 20
<p>The elevation estimation results. (<b>a</b>) Elevation estimation results using the vertical sound intensity flow method; (<b>b</b>) Artwork and magnification of the elevation estimation results using the frequency sequence extraction method.</p> "> Figure 21
<p>The height estimation results of the aerial target. (<b>a</b>) The height estimation results of the two algorithms; (<b>b</b>) The histogram statistical results of Algorithm 1; (<b>c</b>) The histogram statistical results of Algorithm 2.</p> "> Figure 21 Cont.
<p>The height estimation results of the aerial target. (<b>a</b>) The height estimation results of the two algorithms; (<b>b</b>) The histogram statistical results of Algorithm 1; (<b>c</b>) The histogram statistical results of Algorithm 2.</p> ">
Abstract
:1. Introduction
2. The Basic Principle of Passive Localization in the Horizontal Direction
2.1. Doppler Phenomenon in the Stratified Media
2.2. Angle Estimation Method
2.3. Frequency Estimation Method
2.4. Geometric Relationship of Passive Localization in the Horizontal Direction
2.5. The Basic Principle of the Conventional Parameter Estimation Algorithm
2.5.1. Theoretical Foundation
2.5.2. Simulation Results
2.6. The Basic Principle of the Improved Parameter Estimation Algorithm
2.6.1. Improvement of the Frequency Estimation Algorithm
2.6.2. Improvement of Closest Distance Estimation Algorithm
- Assume a value and obtain the corresponding estimation curve according to (22). Because the magnitude of the value only affects the amplitude of , value does not affect the variation trend of .
- According to the curve, the more stable time period can be determined.
- Through matching estimation at the selected interval, scanning each value, the corresponding velocity estimation sequence can be obtained.
- The mean value of the velocity estimation results in the stable time period is taken as the estimated value corresponding to the scanned value.
- When the value is closest to the velocity estimation result obtained through using (20), the corresponding is regarded as the optimal estimation result of the closest distance.
2.6.3. Horizontal Distance Compensation Algorithm
3. The Basic Principle of Passive Localization in the Vertical Direction
3.1. Elevation Estimation
3.1.1. Vertical Sound Intensity Flow Method
3.1.2. Frequency Sequence Extraction Method
3.2. Source Height Estimation
3.2.1. Estimation Algorithm 1
3.2.2. Estimation Algorithm 2
4. Sea Experiment Data and Results
4.1. Time Domain Waveform and Frequency Domain Spectrum
4.2. Azimuth Estimation Results
4.3. Post-Processing Methods
4.3.1. Moving Window-Weighted Median Filtering Method
4.3.2. Forward and Backward Double Filtering Method
4.4. Frequency Estimation Results
4.5. Parameter Estimation Results in the Horizontal Direction
4.6. Parameter Estimation Results in the Vertical Direction
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hudimac, A.A. Ray theory solution for the sound intensity in water due to a point source above it. J. Acoust. Soc. Am. 1957, 29, 993–999. [Google Scholar] [CrossRef]
- Weinstein, S.M.; Henney, A.G. Wave solution for air-to water sound transmission. J. Acoust. Soc. Am. 1965, 37, 899–901. [Google Scholar] [CrossRef]
- Brekhovskikh, L.M. Waves in Layered Media, 2nd ed.; Science Press: Beijing, China, 1985; pp. 233–238. [Google Scholar]
- Urick, R.J. Noise signature of an aircraft in level flight over the sea. J. Acoust. Soc. Am. 1972, 52, 993–999. [Google Scholar] [CrossRef]
- Chapman, D.M.F.; Ward, P.D. The normal-mode theory of air-to-water sound transmission in the ocean. J. Acoust. Soc. Am. 1990, 87, 601–618. [Google Scholar] [CrossRef]
- Buckingham, M.J.; Giddens, E.M.; Simonet, F.; Hahn, T.R. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in marine sediment. J. Comput. Acoust. 2002, 10, 445–464. [Google Scholar] [CrossRef]
- Buckingham, M.J.; Giddens, E.M. Theory of sound propagation from a moving source in a three-layer Pekeris waveguide. J. Acoust. Soc. Am. 2006, 120, 1825–1841. [Google Scholar] [CrossRef]
- Clark, J.G.; Flanagan, R.P.; Weinberg, N.L. Moving source in a bounded deep ocean multipath acoustic propagation with a channel. J. Acoust. Soc. Am. 1976, 60, 1274–1284. [Google Scholar] [CrossRef]
- Jacyna, G.M.; Jacobson, M.J. Analysis of source-motion effects on sound transmission in the deep ocean. J. Acoust. Soc. Am. 1977, 61, 1153–1162. [Google Scholar] [CrossRef]
- Guthrie, A.N.; Fitzgerald, R.M.; Nutile, D.A.; Shaffer, J.D. Long-range low-frequency CW propagation in the deep ocean: Antigua-Newfoundland. J. Acoust. Soc. Am. 1974, 56, 58–69. [Google Scholar] [CrossRef]
- Hawker, K.E. A normal mode theory of acoustic Doppler effects in the oceanic waveguide. J. Acoust. Soc. Am. 1979, 65, 675–681. [Google Scholar] [CrossRef]
- Schmidt, H.; Kuperman, W.A. Spectral and modal representations of the Doppler-shifted field in ocean waveguides. J. Acoust. Soc. Am. 1994, 96, 386–391. [Google Scholar] [CrossRef]
- Ferguson, B.G. Doppler effect for sound emitted by a moving airborne source and received by acoustic sensors located above and below the sea surface. J. Acoust. Soc. Am. 1993, 94, 3244–3247. [Google Scholar] [CrossRef] [PubMed]
- Medwin, H.; Helbig, R.A.; Hagy, J.D. Spectral characteristics of sound transmission through the rough sea surface. J. Acoust. Soc. Am. 1973, 54, 99–109. [Google Scholar] [CrossRef]
- Reid, D.C.; Zoubir, A.; Boashash, B. Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner-Ville distribution. J. Acoust. Soc. Am. 1997, 102, 207–223. [Google Scholar] [CrossRef]
- Becker, K. A general approach to TMA observability from angle and frequency measurements. IEEE Trans. Acoust. Speech Signal Process. 1996, 32, 487–496. [Google Scholar] [CrossRef]
- Neubert, J.A. The effect of Doppler on long-range sound propagation. J. Acoust. Soc. Am. 1977, 62, 1404–1411. [Google Scholar] [CrossRef]
- Chan, Y.T.; Towers, J.J. Passive Localization from Doppler-Shifted Frequency Measurements. IEEE Trans. Signal Process. 1992, 40, 2594–2598. [Google Scholar] [CrossRef]
- Hong, L.J.; Chen, H.J. Two-dimensional combined vector hydrophone of the resonant-column type. Appl. Acoust. 2005, 24, 119–121. [Google Scholar]
- Hui, J.Y.; Hui, J. Vector Signal Processing; National Defense Industry Press: Beijing, China, 2009; pp. 6–8. [Google Scholar]
- Zhao, A.B.; Ma, L.; Ma, X.F.; Hui, J. An improved azimuth angle estimation method with a single acoustic vector sensor based on an active sonar detection system. Sensors 2017, 17, 412. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Yue, R.Y.; Tian, Z.X.; Han, J. Ship shaft-frequency electric field testing based on harmonic waves adaptive line enhancer. Equip. Environ. Eng. 2011, 8, 29–32. [Google Scholar]
- He, W.X. Vector-Sensor Doppler Localization Research. Master’s Thesis, Harbin Engineering University, Harbin, China, 2010. [Google Scholar]
- Hawkes, M.; Nehorai, A. Wideband source localization using a distributed acoustic vector-sensor array. IEEE Trans. Signal Process. 2003, 51, 1479–1491. [Google Scholar] [CrossRef]
- Liu, J.M. Research on Independent Coordinates Filtering and Parameterized Trajectory Fusion Technology for Aerial Targets. Ph.D. Thesis, Xidian University, Xi’an, China, 2012. [Google Scholar]
- Sun, W.; Qiao, G.; Wang, F.Y. Research on algorithm of Doppler log data post-processing. Tech. Acoust. 2014, 33, 101–105. [Google Scholar]
Parameters | Value | Parameters | Value |
---|---|---|---|
Source base frequency | 40 Hz | Integration time length | 2 s |
Heading angle | 10° | Sampling frequency | 1 kHz |
Velocity | 20 m/s | Target Height H | 200 m |
Closest distance | 700 m | Sound velocity in the air | 340 m/s |
Initial distance | 1200 m | Sound velocity in the water | 1500 m/s |
Signal Noise Ratio (SNR) | 10 dB | Signal total duration T | 200 s |
Parameters | Theoretical Value | Estimation Value |
---|---|---|
Source base frequency | 40 Hz | 40.3 Hz |
Heading angle | 10° | 8° |
Velocity | 20 m/s | 20.4 m/s |
Closest distance | 700 m | 880 m |
Motion Parameters | Estimation Results |
---|---|
Source frequency | 0.1167 |
Heading angle | 53.0° |
Velocity | 18.8 m/s |
Closest distance | 744 m |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, A.; Bi, X.; Hui, J.; Zeng, C.; Ma, L. An Improved Aerial Target Localization Method with a Single Vector Sensor. Sensors 2017, 17, 2619. https://doi.org/10.3390/s17112619
Zhao A, Bi X, Hui J, Zeng C, Ma L. An Improved Aerial Target Localization Method with a Single Vector Sensor. Sensors. 2017; 17(11):2619. https://doi.org/10.3390/s17112619
Chicago/Turabian StyleZhao, Anbang, Xuejie Bi, Juan Hui, Caigao Zeng, and Lin Ma. 2017. "An Improved Aerial Target Localization Method with a Single Vector Sensor" Sensors 17, no. 11: 2619. https://doi.org/10.3390/s17112619
APA StyleZhao, A., Bi, X., Hui, J., Zeng, C., & Ma, L. (2017). An Improved Aerial Target Localization Method with a Single Vector Sensor. Sensors, 17(11), 2619. https://doi.org/10.3390/s17112619