Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus
<p>(<b>a</b>) Plot showing the variation of the water contact angle and the amount of silica NPs deposited on the paper versus the number of silica NP sprayings. (<b>b</b>) Contact angle images for samples prepared with 5 to 35 sprays.</p> "> Figure 1 Cont.
<p>(<b>a</b>) Plot showing the variation of the water contact angle and the amount of silica NPs deposited on the paper versus the number of silica NP sprayings. (<b>b</b>) Contact angle images for samples prepared with 5 to 35 sprays.</p> "> Figure 2
<p>SEM images of bare paper (<b>a</b>) and silica NPs on paper after different numbers of sprays, from 5 to 30, at higher magnification, showing single paper fibers (<b>b</b>–<b>g</b>).</p> "> Figure 3
<p>SEM images of (<b>a</b>) bare carbon, (<b>b</b>) CNT/C, (<b>c</b>) CH-CNT/C, (<b>d</b>) Ab-CH-CNT/C, and (<b>e</b>) virus-Ab-CH-CNT/C.</p> "> Figure 4
<p>(<b>a</b>) Differential pulse voltammograms and (<b>b</b>) impedance spectra for characterization of (i) bare carbon, (ii) CH-CNT/C, and (iii) Ab-CH-CNT/C in 2.5mM [Fe(CN)<sub>6</sub>]<sup>−3/−4</sup>.</p> "> Figure 5
<p>Calibration curves obtained for varying concentrations of H1N1 virus from 10 to 10<sup>4</sup> PFU mL<sup>−1</sup> in PBS and in saliva (5000 PFU mL<sup>−1</sup>, green symbols). The error bars show the standard deviations of the measurements.</p> "> Figure 6
<p>Selectivity test of the sensor for H1N1 virus with respect to the MS2 bacteriophage (10<sup>4</sup> PFU mL<sup>−1</sup>) and influenza B virus (10<sup>4</sup> PFU mL<sup>−1</sup>) diluted in PBS (1×, pH 7.4). The error bars show the standard deviations of the measurements.</p> "> Scheme 1
<p>Scheme illustration showing (<b>a</b>) the hydrophobization of paper using a glass vaporizer and a polyester stencil, which prevented the silica NPs sticking onto the places for the three electrodes (Note: the distance between the paper and the stencil is exaggerated here for illustration purpose.) and (<b>b</b>) the paper-based immunosensor with a PDMS well containing the electrolyte, and the functionalization scheme of the working electrode.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrophobization of Paper
2.3. Fabrication of the Electrodes onto Paper via Stencil Printing
2.4. Bio-Tailoring of the Working Electrode
2.5. Structural and Morphological Characterizations
2.6. Electrochemical Measurements
3. Results and Discussion
3.1. Superhydrophobicity of the Paper Substrate
3.2. Morphological and Structural Characterizations of the Bio-Electrodes
3.3. Electrochemical Characterizations of the Bio-Electrodes
3.4. Sensitivity and Selectivity Studies
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nery, E.W.; Kubota, L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 2013, 405, 7573–7595. [Google Scholar] [CrossRef] [PubMed]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Michelini, E.; Zangheri, M.; Di, M.; Calabria, D.; Simoni, P. Trends in Analytical Chemistry Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Kit-anan, W.; Olarnwanich, A.; Sriprachuabwong, C.; Karuwan, C. Disposable paper-based electrochemical sensor utilizing inkjet-printed Polyaniline modified screen-printed carbon electrode for Ascorbic acid detection. J. Electroanal. Chem. 2012, 685, 72–78. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, Y.; Lu, Y.; Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 2012, 51, 6925–6928. [Google Scholar] [CrossRef] [PubMed]
- Määttänen, A.; Vanamo, U.; Ihalainen, P.; Pulkkinen, P.; Tenhu, H.; Bobacka, J.; Peltonen, J. A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens. Actuators B Chem. 2013, 177, 153–162. [Google Scholar] [CrossRef]
- Noiphung, J.; Songjaroen, T.; Dungchai, W.; Henry, C.S.; Chailapakul, O.; Laiwattanapaisal, W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal. Chim. Acta 2013, 788, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Godino, N.; Gorkin, R.; Bourke, K.; Ducrée, J. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip 2012, 12, 3281. [Google Scholar] [CrossRef] [PubMed]
- Peduru Hewa, T.M.; Tannock, G.A.; Mainwaring, D.E.; Harrison, S.; Fecondo, J.V. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J. Virol. Methods 2009, 162, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kiilerich-Pedersen, K.; Daprà, J.; Cherré, S.; Rozlosnik, N. High sensitivity point-of-care device for direct virus diagnostics. Biosens. Bioelectron. 2013, 49, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Lum, J.; Wang, R.; Lassiter, K.; Srinivasan, B.; Abi-Ghanem, D.; Berghman, L.; Hargis, B.; Tung, S.; Lu, H.; Li, Y. Rapid detection of avian influenza H5N1 virus using impedance measurement of immuno-reaction coupled with RBC amplification. Biosens. Bioelectron. 2012, 38, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Nidzworski, D.; Pranszke, P.; Grudniewska, M.; Król, E.; Gromadzka, B. Universal biosensor for detection of influenza virus. Biosens. Bioelectron. 2014, 59, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sharma, A.; Jang, J. Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes. Analyst 2014, 139, 5415–5421. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Hong, S.; Jang, J. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform. Sci. Rep. 2017, 7, 42771. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Chander, Y.; Goyal, S.M.; Cui, T. Carbon nanotube electric immunoassay for the detection of swine influenza virus H1N1. Biosens. Bioelectron. 2011, 26, 3482–3487. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.M.; Martinez, A.W.; Gong, J.; Mace, C.R.; Phillips, S.T.; Carrilho, E.; Mirka, K.A.; Whitesides, G.M. Paper-based elisa. Angew. Chem. Int. Ed. 2010, 49, 4771–4774. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.F.; Huang, C.H.; Kuo, R.L.; Chang, C.K.; Chen, K.F.; Tsao, K.C.; Tsang, N.M. Paper-based enzyme-free immunoassay for rapid detection and subtyping of influenza A H1N1 and H3N2 viruses. Anal. Chim. Acta 2015, 883, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Zhang, L.; Chang, S.; Cui, W.; Zheng, Z. Multiplex Microfluidic Paper-based Immunoassay for the Diagnosis of Hepatitis C Virus Infection. Anal. Chem. 2014, 86, 5338–5344. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, H.; Xie, J.; Okagaki, J.; Saji, T. Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 2012, 28, 4605–4608. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sumana, G.; Verma, R.; Sood, S.; Sood, K.N.; Gupta, R.K.; Malhotra, B.D. Fabrication of Neisseria gonorrhoeae biosensor based on chitosan—MWCNT platform. Thin Solid Films 2010, 519, 1135–1140. [Google Scholar] [CrossRef]
- Veetil, J.V.; Ye, K. Development of Immunosensors Using Carbon Nanotubes. Biotechnol. Prog. 2007, 23, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Yan, J.; Song, X.; Yan, M.; Ge, S.; Yu, J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 2012, 33, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ge, L.; Yan, M.; Song, X.; Ge, S.; Yu, J. Biosensors and Bioelectronics Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron. 2012, 32, 238–243. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.Q.; Adams, M.J.; Carsten, E.B.; Lefkowitz, E.J. Virus Taxonomy: Classification and Nomenclature of Viruses. In Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier Inc.: Amsterdam, The Netherland, 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Ruhal, A.; Rana, J.S.; Kumar, S.; Kumar, A. Functionalization and Fabrication of MWCNT on Screen Printed Carbon Eletrode. IJMER 2012, 2, 1310–1313. [Google Scholar]
- Merkoçi, A.; Aldavert, M.; Marín, S.; Alegret, S. New materials for electrochemical sensing V: Nanoparticles for DNA labeling. TrAC Trends Anal. Chem. 2005, 24, 341–349. [Google Scholar] [CrossRef]
- Zhang, M.; Smith, A.; Gorski, W. Carbon Nanotube—Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Anal. Chem. 2004, 76, 5045–5050. [Google Scholar] [CrossRef] [PubMed]
- Okuno, J.; Maehashi, K.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron. 2007, 22, 2377–2381. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Srivastava, S.; Agrawal, V.V.; Willander, M.; John, R.; Malhotra, B.D. A biofunctionalized quantum dot–nickel oxide nanorod based smart platform for lipid detection. J. Mater. Chem. B 2016, 4, 2706–2714. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumar, V.; Ali, M.A.; Solanki, P.R.; Srivastava, A.; Sumana, G.; Saxena, P.S.; Joshi, A.G.; Malhotra, B.D. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 2013, 5, 3043. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.; Devarakonda, S.; Kumar, S.; Jang, J. Development of a Paper-based Electrochemical Immunosensor using an Antibody-Carbon Nanotubes Bio-conjugate Modified Electrode for Label-free Detection of Foodborne Pathogens. Sens. Actuator B Chem. 2017, 253, 115–123. [Google Scholar] [CrossRef]
- Reichmuth, D.S.; Wang, S.K.; Barrett, L.M.; Throckmorton, D.J.; Einfeld, W.; Singh, A.K. Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip 2008, 8, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.T.C.; Sharma, S.; Dutra, R.A.F.; Noronha, J.P.C.; Cass, A.E.G.; Sales, M.G.F. Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: Application to myoglobin detection. Biosens. Bioelectron. 2013, 45, 237–244. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devarakonda, S.; Singh, R.; Bhardwaj, J.; Jang, J. Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus. Sensors 2017, 17, 2597. https://doi.org/10.3390/s17112597
Devarakonda S, Singh R, Bhardwaj J, Jang J. Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus. Sensors. 2017; 17(11):2597. https://doi.org/10.3390/s17112597
Chicago/Turabian StyleDevarakonda, Sivaranjani, Renu Singh, Jyoti Bhardwaj, and Jaesung Jang. 2017. "Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus" Sensors 17, no. 11: 2597. https://doi.org/10.3390/s17112597
APA StyleDevarakonda, S., Singh, R., Bhardwaj, J., & Jang, J. (2017). Cost-Effective and Handmade Paper-Based Immunosensing Device for Electrochemical Detection of Influenza Virus. Sensors, 17(11), 2597. https://doi.org/10.3390/s17112597