Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy
<p>Picture of the N-QTF including the size of the main geometrical parameters.</p> "> Figure 2
<p>Schematic of the QEPAS trace gas sensor using a THz Quantum Cascade Laser (THz QCL) as the excitation source. PM—Parabolic Mirror; ADM—Acoustic Detection Module; QTF—Quartz Tuning Fork; PC—Personal Computer.</p> "> Figure 3
<p>Two-dimensional beam profile of the THz-QCL acquired by means of an IR pyrocamera after mirror PM#3 (see <a href="#sensors-16-00439-f002" class="html-fig">Figure 2</a>) when the beam is focused out of the N-QTF (<b>a</b>) or between the two prongs (<b>b</b>). Both beam profiles are shown together with an illustration representing the position of the focused THz beam (red spot) with respect to the N-QTF.</p> "> Figure 4
<p>(<b>a</b>) QEPAS spectral scans of gas mixture containing different concentrations of methanol in N<sub>2</sub> at a gas pressure of 10 Torr acquired with 3 s lock-in integration time. The spectral scan obtained for pure N<sub>2</sub> under the same operating conditions is also depicted. (<b>b</b>) Calibration curve (solid red line) obtained from the linear fit of measured QEPAS peak signals (●) <span class="html-italic">vs.</span> methanol concentrations.</p> "> Figure 5
<p>(<b>a</b>) Spectral scan of 100 ppm of methanol in N<sub>2</sub> at a gas pressure of 10 Torr acquired with a 3 s lock-in integration time using the N-QTF. (<b>b</b>) Spectral scan of 100 ppm of methanol in N<sub>2</sub> obtained for the same experimental conditions using the C-QTF with a standard geometry. The lower data sampling in panel (<b>a</b>) is due to a faster voltage ramp employed in this work with respect to the measurements reported in [<a href="#B11-sensors-16-00439" class="html-bibr">11</a>].</p> "> Figure 6
<p>Allan-Werle deviation in ppm as a function of the lock-in integration time for the QEPAS sensor. The curve was calculated by analyzing 120-min-long acquisition periods of the signal measured for pure N<sub>2</sub> at 10 Torr and setting the lock-in integration time at 100 ms.</p> ">
Abstract
:1. Introduction
2. Quartz Tuning Fork Design and Implementation
3. THz QEPAS Sensor Architecture
4. THz QEPAS Sensor Calibration and Performance
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mittleman, D.M.; Jacobsen, R.H.; Neelamani, R.; Baraniuk, R.G.; Nuss, M.C. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B 1998, 67, 379–390. [Google Scholar]
- Van Exter, M.; Fattinger, Ch.; Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar]
- Harde, H.; Katzenellenbogen, N.; Grischkowsky, D. Terahertz coherent transients from methyl chloride vapor. J. Opt. Soc. Am. B 1994, 11, 1018–1030. [Google Scholar]
- Harde, H.; Grischkowsky, D. Coherent transients excited by subpicosecond pulses of terahertz radiation. J. Opt. Soc. Am. B 1991, 8, 1642–1651. [Google Scholar] [CrossRef]
- Vitiello, M.S.; Scalari, G.; Williams, B.; De Natale, P. Quantum cascade lasers: 20 years of challenges. Opt. Express 2015, 23, 5167–5182. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, M.S.; Tredicucci, A. Tunable Emission in THz Quantum Cascade Lasers. IEEE Trans. THz Sci. Technol. 2011, 1, 76–84. [Google Scholar] [CrossRef]
- Vitiello, M.S.; Consolino, L.; Bartalini, S.; Taschin, A.; Tredicucci, A.; Inguscio, M.; De Natale, P. Quantum-limited frequency fluctuations in a terahertz laser. Nat. Photonics 2012, 6, 525–528. [Google Scholar] [CrossRef]
- Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L. High-power terahertz quantum-cascade laser. Electron. Lett. 2006, 42, 89–90. [Google Scholar] [CrossRef]
- Consolino, L.; Bartalini, S.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; De Natale, P. THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing. Sensors 2013, 13, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Consolino, L.; Campa, A.; Ravaro, M.; Mazzotti, D.; Vitiello, M.S.; Bartalini, S.; De Natale, P. Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Borri, S.; Patimisco, P.; Sampaolo, A.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Scamarcio, G.; Spagnolo, V. Terahertz quartz enhanced photo-acoustic sensor. Appl. Phys. Lett. 2013, 103. [Google Scholar] [CrossRef]
- Patimisco, P.; Borri, S.; Sampaolo, A.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Scamarcio, G.; Spagnolo, V. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser. Analyst 2014, 139, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, V.; Patimisco, P.; Pennetta, R.; Sampaolo, A.; Scamarcio, G.; Vitiello, M.S.; Tittel, F.K. THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection. Opt. Express 2015, 23, 7574–7582. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.; Malinovsky, A.; Morozov, A. Applications of quartz tuning fork in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105:1–043105:9. [Google Scholar] [CrossRef]
- Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Mid-infrared fiber-coupled QCL-QEPAS sensor. Appl. Phys. B 2013, 112, 25–33. [Google Scholar] [CrossRef]
- Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. Opt. Lett. 2012, 37, 4461–4463. [Google Scholar] [CrossRef] [PubMed]
- Jahjah, M.; Jiang, W.; Sanchez, N.P.; Ren, W.; Patimisco, P.; Spagnolo, V.; Herndon, S.C.; Griffin, R.J.; Tittel, F.K. Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL based QEPAS sensor system during DISCOVER-AQ 2013. Opt. Lett. 2014, 39, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Giglio, M.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing. Sensor Actuators B-Chem. 2016, 227, 539–546. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Ultrasensitive gas detection by quartz-enhance photoacoustic spectroscopy in the fundamental molecular absorption bands region. Appl. Phys. B 2005, 80, 133–138. [Google Scholar] [CrossRef]
- Flygare, W.H. Molecular Relaxation. Acc. Chem. Res. 1968, 1, 121–127. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, G.; Zhang, J.; Yu, X.; Sun, R.; Tittel, F.K. Quartz Enhanced Photoacoustic Spectroscopy Using Different Quartz Tuning Forks. Sensors 2015, 15, 7596–7604. [Google Scholar] [CrossRef] [PubMed]
- Giglio, M.; Patimisco, P.; Sampaolo, A.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Allan Deviation Plot as a Tool for Quartz Enhanced Photoacoustic Sensors Noise Analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaolo, A.; Patimisco, P.; Giglio, M.; Vitiello, M.S.; Beere, H.E.; Ritchie, D.A.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy. Sensors 2016, 16, 439. https://doi.org/10.3390/s16040439
Sampaolo A, Patimisco P, Giglio M, Vitiello MS, Beere HE, Ritchie DA, Scamarcio G, Tittel FK, Spagnolo V. Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy. Sensors. 2016; 16(4):439. https://doi.org/10.3390/s16040439
Chicago/Turabian StyleSampaolo, Angelo, Pietro Patimisco, Marilena Giglio, Miriam S. Vitiello, Harvey E. Beere, David A. Ritchie, Gaetano Scamarcio, Frank K. Tittel, and Vincenzo Spagnolo. 2016. "Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy" Sensors 16, no. 4: 439. https://doi.org/10.3390/s16040439
APA StyleSampaolo, A., Patimisco, P., Giglio, M., Vitiello, M. S., Beere, H. E., Ritchie, D. A., Scamarcio, G., Tittel, F. K., & Spagnolo, V. (2016). Improved Tuning Fork for Terahertz Quartz-Enhanced Photoacoustic Spectroscopy. Sensors, 16(4), 439. https://doi.org/10.3390/s16040439