UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area
<p>The CarboZALF experimental area near Dedelow (NE Germany): plot design and instrumentation.</p> "> Figure 2
<p>The Carolo P360 unmanned aerial vehicle (UAV) during a mission with open landing gear doors.</p> "> Figure 3
<p>Tetracam Inc. miniature multi-camera array Mini-MCA 12 with mounted narrow-band (10–40 nm) filters that cover the spectral range between the visible and the near-infrared light (470–953 nm; both center wavelengths).</p> "> Figure 4
<p>Screenshot of the MAVCDesk software. (<b>Left</b>) Primary flight display (not active) showing UAV status information; (<b>Right</b>) Visualization of the flight path across a map of the CarboZALF experimental area.</p> "> Figure 5
<p>(<b>a</b>) Dark offset image of b<sub>471</sub> showing periodic noise and progressive shutter band noise; (<b>b</b>) Dark offset image of b<sub>899</sub> showing a global checkered pattern and progressive shutter band noise.</p> "> Figure 6
<p>Row-wise average and 5-grade approximation of band-noise affected flat-field images of b<sub>891</sub> and b<sub>899</sub>.</p> "> Figure 7
<p>(<b>a</b>) Flat field image generated for vignetting correction of b<sub>831</sub>; and (<b>b</b>) for vignetting correction of b<sub>899</sub>.</p> "> Figure 8
<p>(<b>a</b>) Example for an uncorrected image (RAW format) recorded in b<sub>831</sub>; and (<b>b</b>) the respective image after noise reduction and consecutive vignetting correction.</p> "> Figure 9
<p>Image mosaic of b<sub>761</sub>. Overlay: Reconstructed flight path from recorded GPS locations (black dots).</p> "> Figure 10
<p>(<b>a</b>) Reflectance of the white calibration panel (matt white Bristol cardboard) from laboratory and field measurements at P1; (<b>b</b>) Reflectance of the black calibration panel (black cardboard) from laboratory and field measurements at P1.</p> "> Figure 11
<p>Relationship between ASD Fieldspec measurements of topsoil reflectance in the wavelengths corresponds to Mini-MCA 12 bands b<sub>658</sub> and b<sub>756</sub>.</p> "> Figure 12
<p>Relationship between ground measured reflectance of black and white calibration panels and the respective digital numbers acquired by Mini-MCA 12. (<b>a</b>) Bands 1–6; and (<b>b</b>) Bands 7–12.</p> "> Figure 13
<p>RGB composite image of the CarboZALF experimental area from calibrated Mini-MCA 12 bands b<sub>658</sub>, b<sub>551</sub> and b<sub>471</sub>.</p> "> Figure 14
<p>Comparison of the spectral response of lucerne extracted from calibrated Mini-MCA 12 bands with ground measured ASD Fieldspec reflectance and with bare soil reflectance (extracted from calibrated Mini-MCA 12 bands; ASD Fieldspec reflectance not available). The selected sites represent high (28), medium (1) and low (5) amounts of fresh phytomass of lucerne. The bare soil spectrum represents an area free of vegetation within plot 7.</p> "> Figure 15
<p>Relationship between fresh and dry phytomass of lucerne measured at the 22 permanent observation sites.</p> "> Figure 16
<p>Relationships obtained between (<b>a</b>) NDVI; (<b>b</b>) TSAVI; (<b>c</b>) TBVI<sub>b899/b953</sub>; and (<b>d</b>) EVI constructed from VIS bands in combination with NIR band b<sub>899</sub> (except TBVI<sub>b899/b953</sub>) and fresh phytomass of lucerne at the 22 permanent observation sites.</p> "> Figure 17
<p>Spatial distribution of fresh phytomass of lucerne within the eight plots of the CarboZALF experimental area. Outclipped areas are disturbed areas due to experimental devices (autochambers, pathways, <span class="html-italic">etc.</span>).</p> "> Figure 18
<p>Spatial distribution of total exported carbon by harvest within the eight plots of lucerne at the CarboZALF experimental area.</p> "> Figure 19
<p>Temporal decline of above ground dry phytomass of lucerne between the first and fourth harvest in 2014.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. UAV-Platform Carolo P360
2.3. Mounted Sensors
2.4. Ground Control Software
2.5. Mission Settings
2.6. Image Processing
2.6.1. Noise Reduction
2.6.2. Vignetting Correction
2.6.3. Lens Distortion Correction
2.6.4. Mosaicking and Georeferencing
2.6.5. Radiometric Calibration
2.7. Ground-Based Measurements
2.7.1. Fresh, Dry Phytomass and Total Carbon Content of Lucerne
2.7.2. Total Carbon Content of Lucerne per Vegetation Period
2.7.3. Spectral Response of Vegetation and Bare Soil
2.8. Description and Calculation of VIs
3. Results and Discussion
3.1. Radiometric Calibration
3.2. Empirical Line Quality Assessment
3.3. Ground-Based Measurements of Vegetation
3.4. VI Performance
3.5. Spatial Variability of Fresh Phytomass
3.6. Total C Export by Harvest—Quantities and Spatial Variability
3.7. Total C Export by Harvest Per Year—Temporal Trends and Spatial Variability
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef]
- Revill, A.; Sus, O.; Barrett, B.; Williams, M. Carbon Cycling of European Croplands: A Framework for Data Assimilation of Optical and Microwave Earth Observation Data. Remote Sens. Environ. 2013, 137, 84–93. [Google Scholar] [CrossRef]
- Houborg, R.; Cescatti, A.; Migliavacca, M.; Kustas, W.P. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modelling of GPP. Agric. For. Meteorol. 2013, 177, 10–23. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef]
- Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef]
- Peña, J.M.; Torres-Sánchez, J.; de Castro, I.A.; Kelly, M.; Lopez-Granados, F. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE 2013, 8, e77151. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berni, J.A.J.; Suárez, L.; Sepulcre-Cantó, G.; Morales, F.; Miller, J.R. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens. Environ. 2009, 113, 1262–1275. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Bouman, B.A.M. Accuracy of estimation the leaf area index from vegetation indices derived from drop reflectance characteristics, a simulation study. Int. J. Remote Sens. 1992, 13, 3069–3084. [Google Scholar] [CrossRef]
- Rundquist, D.; Gitelson, A.; Derry, D.; Ramirez, J.; Stark, R.; Keydan, G. Remote Estimation of Vegetation Fraction in Corn Canopies. Pap. Nat. Resour. 2001, 274, 301–306. [Google Scholar]
- Clevers, J.G.P.W. The application of a weighted infra-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Myneni, R.B.; Williams, D.L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Chen, Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Osborne, B.; Saunders, M.; Walmsley, D.; Jones, M.; Smith, P. Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agric. Ecosyst. Environ. 2010, 139, 293–301. [Google Scholar] [CrossRef]
- Smith, P.; Lanigan, G.; Kutsch, W.L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Beziat, P.; Yeluripati, J.B.; Osborne, B.; et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 2010, 139, 302–315. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation System in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium; NASA SP-351: Greenbelt, MA, USA, 1974; pp. 3010–3017. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; de Pauw, E. Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–621. [Google Scholar]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar]
- Sommer, M.; Augustin, J.; Kleber, M. Feedback of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes—The CarboZALF experiment. Soil Tillage Res. 2015. [Google Scholar] [CrossRef]
- Scholtz, A.; Krüger, T.; Wilkens, C.-S.; Krüger, T.; Hiraki, K.; Vörsmann, P. Scientific Application and Design of Small Unmanned Aircraft Systems. In Proceedings of the 14th Australian International Aerospace Congress, Melbourne, Australia, 28 February–03 Match 2011.
- Mansouri, A.; Marzani, F.S.; Gouton, P. Development of a protocol for CCD calibration: Application to a Multispectral Imaging System. Int. J. Robot. Autom. 2005, 3767, 1–12. [Google Scholar] [CrossRef]
- Goldman, D.B.; Chen, J.-H. Vignette and Exposure Calibration and Compensation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2276–2288. [Google Scholar] [CrossRef] [PubMed]
- Hugemann, W. Correcting Lens Distortions in Digital Photographs; Ingenieurbüro Morawski + Hugemann: Leverkusen, Germany, 2010. [Google Scholar]
- Dall’ Asta, E.; Roncella, R. A Comparison of Semiglobal and Local Dense Matching Algorithms for Surface Reconstruction. In Proceedings of the ISPRS Technical Commission V Symposium, Riva del Garda, Italy, 23–25 June 2014.
- Conçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Moran, S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; González-Dugo, M.P.; Qi, J.; Clarke, T.R. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82. [Google Scholar] [CrossRef]
- Chen, W.; Yan, L.; Li, Z.; Jing, X.; Duan, Y.; Xiong, X. In-flight calibration of an airborne wide-view multispectral imager using a reflectance-based method and its validation. Int. J. Remote Sens. 2013, 34, 1995–2005. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- West, T.O.; Bandaru, V.; Brandt, C.C.; Schuh, A.E.; Ogle, S.M. Regional uptake and release of crop carbon in the United States. Biogeosciences 2011, 8, 2037–2046. [Google Scholar] [CrossRef]
- Zhang, X.; Izaurralde, R.C.; Manowitz, D.H.; Sahajpal, R.; West, T.O.; Thomson, A.M.; Xu, M.; Zhao, K.; LeDuc, S.; Williams, J.R. Regional scale cropland carbon budgets: Evaluating a Geospatial Agricultural Modeling System Using Inventory Data. Environ. Model. Softw. 2015, 63, 199–216. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Del Pozo, S.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; Felipe-García, B. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System. Remote Sens. 2014, 6, 1918–1937. [Google Scholar] [CrossRef]
- Von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and Limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and Novel Algorithms for Predicting Green LAI of crop canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignanò, A.; Rinaldi, M.; Ruggieri, S.; Santoro, F.; Figorito, B.; Gualano, S.; Diacono, M.; Tamborrino, R. An approach for delineating homogenous zones by using multi-sensor data. Geoderma 2013, 199, 117–127. [Google Scholar] [CrossRef]
- Rudolph, S.; van der Kruk, B.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Pätzold, S.; Robinson, D.A.; Vereecken, H.; Weihermüller, L. Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma 2015, 241–242, 262–271. [Google Scholar] [CrossRef]
- Sommer, M.; Wehrhan, M.; Zipprich, M.; Weller, U.; zu Castell, W.; Ehrich, S.; Tandler, B.; Selige, T. Hierarchical data fusion for mapping soil units at field scale. Geoderma 2003, 112, 179–196. [Google Scholar] [CrossRef]
- Diacono, M.; Gastrinianò, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A Multivariate Geostatistical Approach. Field Crops Res. 2012, 131, 49–62. [Google Scholar] [CrossRef]
- Taylor, J.C.; Wood, G.A.; Earl, R.; Godwin, R.J. Soil factors and their Influence on Within-Field crop Variability II: Spatial Analysis and Determination of Management Zones. Biosyst. Eng. 2003, 84, 441–453. [Google Scholar] [CrossRef]
- Stadler, A.; Rudolph, S.; Kupisch, M.; Langensiepen, M.; van der Kruk, B.; Ewert, F. Quantifying the effect of soil variability on crop growth using apparent soil electrical conductivity measurements. Eur. J. Agron. 2015, 64, 8–20. [Google Scholar] [CrossRef]
Band | Center Wavelength (nm) | FWHM * Coordinates (Bandwidth) (nm) | Bandwidth (10%) (nm) | Peak Transmission (%) |
---|---|---|---|---|
b471 | 471 | 466.0–475.1 (9.1) | 12.8 | 68.3 |
b515 | 515 | N/A (≈10.0) | N/A | N/A |
b551 | 551 | 545.5–555.6 (10.1) | 14.8 | 56.4 |
b613 | 613 | 607.7–617.8 (10.2) | 14.2 | 67.6 |
b658 | 658 | 653.4–662.9 (9.5) | 13.6 | 69.2 |
b713 | 713 | 708.1–717.7 (9.6) | 13.4 | 63.0 |
b761 | 761 | 756.2–766.7 (10.5) | 14.7 | 71.9 |
b802 | 802 | 797.3–807.3 (10.1) | 14.5 | 56.3 |
b831 | 831 | 826.3–835.8 (9.5) | 13.1 | 55.3 |
b861 | 861 | 856.4–866.4 (10.1) | 14.0 | 64.2 |
b899 | 899 | 891.3–907.7 (16.4) | 22.9 | 63.6 |
b953 | 953 | 933.0–973.8 (40.8) | 58.2 | 69.6 |
Band | DN Mini-MCA 12 | Reflectance ASD Fieldspec | |||
---|---|---|---|---|---|
White Panel | Black Panel | White Panel | Black Panel | Regression | |
b471 | 1299.5 | 87.1 | 0.968 | 0.062 | R = 0.000748 * DN − 0.003615 |
b515 | 1269.1 | 55.4 | 0.917 | 0.059 | R = 0.000707 * DN + 0.019753 |
b551 | 1355.0 | 62.6 | 0.909 | 0.060 | R = 0.000657 * DN + 0.018536 |
b613 | 1345.2 | 74.1 | 0.910 | 0.060 | R = 0.000669 * DN + 0.009897 |
b658 | 1330.0 | 74.0 | 0.911 | 0.060 | R = 0.000678 * DN + 0.010134 |
b713 | 1247.4 | 70.4 | 0.923 | 0.070 | R = 0.000725 * DN + 0.018933 |
b761 | 933.6 | 64.9 | 0.936 | 0.080 | R = 0.000985 * DN + 0.015794 |
b802 | 733.6 | 76.8 | 0.941 | 0.082 | R = 0.001307 * DN − 0.018208 |
b831 | 722.7 | 71.6 | 0.943 | 0.083 | R = 0.001321 * DN − 0.011693 |
b861 | 765.1 | 82.6 | 0.945 | 0.084 | R = 0.001262 * DN − 0.020314 |
b899 | 656.6 | 75.7 | 0.947 | 0.084 | R = 0.001485 * DN − 0.028555 |
b953 | 499.0 | 64.6 | 0.945 | 0.080 | R = 0.001991 * DN − 0.048845 |
b471 | b515 | b551 | b613 | b658 | b713 | b761 | b802 | b831 | b861 | b899 | b953 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.16 | 0.10 | 0.04 | 0.19 | 0.40 | 0.11 | 0.88 | 0.91 | 0.90 | 0.89 | 0.88 | 0.84 |
RMSE | 0.001 | 0.003 | 0.007 | 0.004 | 0.003 | 0.016 | 0.028 | 0.025 | 0.026 | 0.027 | 0.027 | 0.027 |
MRE% | 51.2 | 104.4 | 58.0 | 33.0 | 82.6 | 22.7 | 4.0 | 3.6 | 4.3 | 3.8 | 4.4 | 4.6 |
Monitoring 2014 | UAV Mission (14-08-27) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Case | Terrain position | Soil type (FAO) | Dry phytomass | factor | Dry phytomass | C export | |||
4. harvest | per year | 4. harvest | 4. harvest | per year | |||||
[g·m−2] | [g·m−2] | [g·m−2] | [g·m−2] | [g·m−2] | CV [%] | ||||
C1 | Steep slope | Calcaric Regosol | 280 | 1409 | 5.03 | 288 | 124 | 624 | 21 |
C2 | Flat hilltop | Albic Cutanic Luvisol | 316 | 1452 | 4.60 | 363 | 156 | 718 | 17 |
C3 | Midslope/hollow | Calcic Cutanic Luvisol/Endogleyic Colluvic Regosol | 361 | 1556 | 4.32 | 376 | 161 | 697 | 14 |
C4 | Midslope | Calcic Cutanic Luvisol-manipulated | 307 | 1456 | 4.75 | 339 | 146 | 693 | 14 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehrhan, M.; Rauneker, P.; Sommer, M. UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area. Sensors 2016, 16, 255. https://doi.org/10.3390/s16020255
Wehrhan M, Rauneker P, Sommer M. UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area. Sensors. 2016; 16(2):255. https://doi.org/10.3390/s16020255
Chicago/Turabian StyleWehrhan, Marc, Philipp Rauneker, and Michael Sommer. 2016. "UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area" Sensors 16, no. 2: 255. https://doi.org/10.3390/s16020255
APA StyleWehrhan, M., Rauneker, P., & Sommer, M. (2016). UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area. Sensors, 16(2), 255. https://doi.org/10.3390/s16020255