PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation
<p>Schematic diagram of the ultrasonic wave sensing system.</p> "> Figure 2
<p>Variation of the reflection spectrum between two ports of the AWG filter.</p> "> Figure 3
<p>Flowchart of the proposed method.</p> "> Figure 4
<p>Graphical representation of a four-component PARAFAC model.</p> "> Figure 5
<p>Input wave signal: (<b>a</b>) time history and (<b>b</b>) power spectral density.</p> "> Figure 6
<p>Time histories of ports A1, A2, B1, and B2 for (<b>a</b>) the one-time measuring signal and (<b>b</b>) the 1024-data averaging signal.</p> "> Figure 7
<p>Core consistency for different numbers of atoms.</p> "> Figure 8
<p>Frequency profiles: (<b>a</b>) <span class="html-italic">ar<sub>f1</sub></span>, <span class="html-italic">ar<sub>f2</sub></span>, <span class="html-italic">ar<sub>f3</sub></span>, and <span class="html-italic">ar<sub>f4</sub></span> of the real part and (<b>b</b>) <span class="html-italic">ai<sub>f1</sub></span>, <span class="html-italic">ai<sub>f2</sub></span>, <span class="html-italic">ai<sub>f3</sub></span>, and <span class="html-italic">ai<sub>f4</sub></span> of the imaginary part.</p> "> Figure 9
<p>Temporal profiles: (<b>a</b>) <span class="html-italic">br<sub>t1</sub></span>, <span class="html-italic">br<sub>t2</sub></span>, <span class="html-italic">br<sub>t3</sub></span>, and <span class="html-italic">br<sub>t4</sub></span> of the real part and (<b>b</b>) <span class="html-italic">bi<sub>t1</sub></span>, <span class="html-italic">bi<sub>t2</sub></span>, <span class="html-italic">bi<sub>t3</sub></span>, and <span class="html-italic">bi<sub>t4</sub></span> of the imaginary part.</p> "> Figure 10
<p>Phase profiles: (<b>a</b>) <span class="html-italic">cr<sub>p1</sub></span>, <span class="html-italic">cr<sub>p2</sub></span>, <span class="html-italic">cr<sub>p3</sub></span>, and <span class="html-italic">cr<sub>p4</sub></span> of the real part and (<b>b</b>) <span class="html-italic">ci<sub>p1</sub></span>, <span class="html-italic">ci<sub>p2</sub></span>, <span class="html-italic">ci<sub>p3</sub></span>, and <span class="html-italic">ci<sub>p4</sub></span> of the imaginary part.</p> "> Figure 11
<p>Wavelet transforms at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 12
<p>Relative measuring error <span class="html-italic">Err</span><sup>m</sup> and relative analysis error <span class="html-italic">Err</span><sup>p</sup> for the different maximum input amplitudes.</p> "> Figure 13
<p>Wavelet transforms for the maximum input amplitude of 48 µε at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 14
<p>Wavelet transforms for the maximum input amplitude of 38 µε at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 15
<p>Wavelet transforms for the maximum input amplitude of 28 µε at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 16
<p>Wavelet transforms for the maximum input amplitude of 18 µε at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 17
<p>Relative measuring error <span class="html-italic">Err</span><sup>m</sup> and relative analysis error <span class="html-italic">Err</span><sup>p</sup> for the different analysis periods.</p> "> Figure 18
<p>Wavelet transforms for the analysis period of 75 µs at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 19
<p>Wavelet transforms for the analysis period of 105 µs at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 20
<p>Wavelet transforms for the analysis period of 135 µs at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 21
<p>Wavelet transforms for the analysis period of 195 µs at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 22
<p>Relative measuring error <span class="html-italic">Err</span><sup>m</sup> and relative analysis error <span class="html-italic">Err</span><sup>p</sup> for different input frequencies.</p> "> Figure 23
<p>Wavelet transforms for an input frequency of 60 kHz at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 24
<p>Wavelet transforms for an input frequency of 90 kHz at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> "> Figure 25
<p>Wavelet transforms for an input frequency of 300 kHz at AWG ports A1, A2, B1, and B2: (<b>a</b>) one-time measured signal (left); (<b>b</b>) one-time restored signal (middle); (<b>c</b>) 1024-time averaged signal (right).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ultrasonic Wave-Sensing System
2.2. Proposal
2.3. Signal Processing
2.4. Relative Error
3. Results and Discussions
3.1. Input and Output Signals
Port | A1 | A2 | B1 | B2 |
---|---|---|---|---|
A1 | 1.000 | −0.978 | 0.949 | −0.955 |
A2 | −0.978 | 1.000 | −0.950 | 0.949 |
B1 | 0.949 | −0.950 | 1.000 | −0.936 |
B2 | −0.955 | 0.949 | −0.936 | 1.000 |
3.2. PARAFAC Decomposition
3.3. Relative Error Evaluation
3.3.1. Input Signal Amplitude
3.3.2. Analysis Period
3.3.3. Input Signal Frequency
4. Conclusions
- (1)
- The study established a signal processing strategy that improves the signal-to-noise ratio of the one-time measured ultrasonic signal; meanwhile, a sound mathematical model was given to describe the signal processing procedure, which mainly includes complex wavelet transformation, PARAFAC decomposition, and relative error evaluation.
- (2)
- The experimental investigation validated that the signal-to-noise ratio for a one-time measured signal can be improved through a comparison of relative measurement and relative analysis errors for different input amplitudes, analysis periods, and input frequencies of the ultrasonic wave signals. The relative measuring errors increased greatly, whereas the relative analysis errors increased gradually following increases in the analysis period and input frequency and decreases in the input amplitude.
- (3)
- All frequency distributions of wavelet transforms were demonstrated for the one-time measured signals, one-time restored signals, and 1024-time averaged signals. It was validated that the proposed method is applicable and reliable for most experimental conditions.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Majumder, M.; Gangopadhyay, K.T.; Chakraborty, K.A.; Dasgupta, K.; Bhattacharys, K.D. Fiber Brag gratings in structural health monitoring-present status and application. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber optic sensors for structural health monitoring of air platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef] [PubMed]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.Z.; Zhao, P.; Sun, F.G.; Lu, Z.G.; Zhang, Z.Y.; Grover, C.P. Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings. Opt. Lett. 2004, 29, 2222–2224. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Huang, X.G. A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing. Opt. Commun. 2007, 275, 196–200. [Google Scholar] [CrossRef]
- Takeda, N.; Okabe, Y.; Kuwahara, J.; Kojima, S.; Ogisu, T. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using ultrasonic wave sensing. Compos. Sci. Technol. 2005, 65, 2575–2587. [Google Scholar] [CrossRef]
- Okabe, Y.; Kuwahara, J.; Natori, K.; Takeda, N.; Ogisu, T.; Kojima, S.; Komatsuzaki, S. Evaluation of debonding progress in composite bonded structures using ultrasonic waves received in fiber Bragg grating sensors. Smart Mater. Struct. 2007, 16, 1370–1378. [Google Scholar] [CrossRef]
- Okabe, Y.; Fujibayashi, K.; Shimazaki, M.; Soejima, H.; Ogisu, T. Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves. Smart Mater. Struct. 2010, 19, 1–12. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 2012, 20, 28353–28362. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Okabe, Y.; Saito, K.; Yu, F. Sensitivity distribution properties of a phase-shifted fiber Bragg grating sensor to ultrasonic waves. Sensors 2014, 14, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Yang, Q.; Jones, B.E.; Jackson, P.R. Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing. IEEE Trans. Instrum. Meas. 2002, 51, 622–627. [Google Scholar]
- Jiang, J.; Liu, T.; Zhang, Y.; Liu, L.; Zha, Y.; Zhang, F.; Wang, Y.; Long, P. Parallel demodulation system and signal-processing method for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors. Opt. Lett. 2005, 30, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C.; Jin, W.; Demokan, M.S. Enhancement of measurement accuracy in fiber Bragg grating sensors by using digital signal processing. Opt. Laser Technol. 1999, 31, 299–307. [Google Scholar] [CrossRef]
- Harshman, A.R.; Lundy, E.M. PARAFAC: Parallel factor analysis. Comput. Stat. Data Anal. 1994, 18, 39–72. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial & applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar]
- Miwakeichi, F.; Martinez-Montes, E.; Valdes-Sosa, P.A.; Nishiyama, N.; Mizuhara, H.; Yamaguchi, Y. Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis. NeuroImage 2004, 22, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Mørup, M.; Hansen, L.K.; Herrmann, C.S.; Parnas, J.; Arnfred, M. Parallel factor analysis as an exploratory tool for transformed event-related EEG. NeuroImage 2006, 29, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.E.; Valdés, S.A.P.; Miwakeichi, F.; Goldman, I.R.; Cohen, S.M. Concurrent EEG/fMRI analysis by multiway partial least squares. NeuroImage 2004, 22, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K. Application of parallel factor analysis to modal analysis in mechanics. In Proceedings of Noise and Vibration, Emerging Methods, Oxford, UK, 5–8 April 2009.
- Nion, D.; Mokios, N.K.; Sidiropoulos, D.N.; Potamianos, A. Batch and adaptive PARAFAC-based blind separation of convolutive speech mixtures. IEEE Trans. Audio Speech Lang. Process. 2010, 18, 1193–1207. [Google Scholar] [CrossRef]
- Prada, A.M.; Toivola, J.; Kullaa, J.; Hollmén, J. Three-way analysis of structural health monitoring data. Neurocomputing 2012, 80, 119–128. [Google Scholar] [CrossRef]
- Abazarsa, F.; Nateghi, F.; Ghahari, F.S.; Taciroglu, E. Blind modal identification of non-classically damped system from free or ambient vibration records. Earthq. Spectra 2013, 29, 1137–1157. [Google Scholar] [CrossRef]
- Sadhu, A.; Goldack, A.; Narasimhan, S. Ambient modal identification using multi-rank parallel factor decomposition. Struct. Control Health Monit. 2014. [Google Scholar] [CrossRef]
- Liu, X.; Bourennane, S.; Fossati, C. Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3717–3724. [Google Scholar] [CrossRef]
- Lin, T.; Bourennane, S. Hyperspectral image processing by jointly filtering wavelet component tensor. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3529–3541. [Google Scholar] [CrossRef]
- Nakano, K.; Ohashi, R.; Okabe, Y.; Shimazaki, M.; Nakamura, H.; Watanabe, N. Detection of output of fiber-optic Bragg grating sensor using parallel analysis. Trans. JSME 2012, 78, 1410–1419. [Google Scholar] [CrossRef]
- Williams, R.B.; Inman, D.J.; Schultz, M.; Hyer, M.W. Nonlinear tensile and shear behavior of macro fiber composite actuators. J. Compos. Mater. 2004, 38, 855–869. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Burlington, MA, USA, 1998. [Google Scholar]
- Beckmann, F.C.; Smith, M.S. Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage 2005, 25, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Bro, R.; Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Kolda, G.T.; Bader, W.B. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Nakano, K.; Ohashi, R.; Okabe, Y.; Shimazaki, M.; Nakamura, H.; Wu, Q. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation. Sensors 2015, 15, 16388-16411. https://doi.org/10.3390/s150716388
Zheng R, Nakano K, Ohashi R, Okabe Y, Shimazaki M, Nakamura H, Wu Q. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation. Sensors. 2015; 15(7):16388-16411. https://doi.org/10.3390/s150716388
Chicago/Turabian StyleZheng, Rencheng, Kimihiko Nakano, Rui Ohashi, Yoji Okabe, Mamoru Shimazaki, Hiroki Nakamura, and Qi Wu. 2015. "PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation" Sensors 15, no. 7: 16388-16411. https://doi.org/10.3390/s150716388
APA StyleZheng, R., Nakano, K., Ohashi, R., Okabe, Y., Shimazaki, M., Nakamura, H., & Wu, Q. (2015). PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation. Sensors, 15(7), 16388-16411. https://doi.org/10.3390/s150716388