Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye
<p>X-ray diffraction (XRD) of (<b>A</b>) BiOBr; (<b>B</b>) BWO and (<b>C</b>) BMO; transmission electron microscopy (TEM) images of (<b>D</b>) BiOBr, (<b>E</b>) BWO, and (<b>F</b>) BMO.</p> "> Figure 2
<p>Crystallites size analysis of (<b>A</b>) BWO and (<b>B</b>) BMO with Williamson–Hall method.</p> "> Figure 3
<p>Samples characterization with (<b>A</b>) FTIR spectra of BiOBr, BWO, and BMO photocatalysts, (<b>B</b>) TGA of BiOBr, BWO, and BMO, (<b>C</b>) DLS and ELS of BiOBr, BWO, and BMO (<b>D</b>) DRS of BiOBr, BWO, and BMO. Arrows indicate band edge wavelenghts.</p> "> Figure 4
<p>(<b>A</b>) Kinetic study for MG removal by BWO and (<b>B</b>) BMO. (<b>C</b>) Spectra of MG removal vs. time by BWO and (<b>D</b>) by BMO.</p> "> Figure 5
<p>(<b>A</b>) Spectra of MG degradation by BWO. (<b>B</b>) MG removal with BWO, without photocatalyst and with BMO (<b>C</b>) Spectra of MG degradation by BMO.</p> "> Figure 6
<p>(<b>A</b>) Reuse cycles of BWO and BMO photocatalysts; (<b>B</b>) UV-Vis spectra of MG solution before and after 10 cycles in contact with the photocatalyst.</p> "> Scheme 1
<p>(<b>A</b>) Structure of Aurivillius phase oxides; comparison between pseudo-perovskites layers and real perovskites [<a href="#B55-ijms-23-05422" class="html-bibr">55</a>]. (<b>B</b>) Methodologies employed for BWO and BMO synthesis from literature (red and green box) and by a new synthetic strategy (magenta box). BWO (Bi<sub>2</sub>WO<sub>6</sub>); BMO (Bi<sub>2</sub>MoO<sub>6</sub>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of BiOBr Nanosheets
2.3. Synthesis of BWO Nanosheets
2.4. Synthesis of BMO Nanosheets
2.5. Samples Characterizations
2.6. Photocatalytic Tests
2.7. Photocatalysts Reuse
3. Results and Discussion
3.1. Physico-Chemical Characterizations
3.1.1. XRD and TEM Analysis
Sample | Autoclave Time (h) | DXRD (nm) a |
---|---|---|
BiOBr | 3 | 14 |
BWO | 1 | 11 |
BMO-0 | 0 | 11 |
BMO-3 | 3 | 25 |
BMO | 24 | 60 |
3.1.2. FTIR Spectroscopy
3.1.3. TGA
3.1.4. DLS and ELS Analysis
3.1.5. DRS Analysis
3.2. Photocatalytic Removal of Malachite Green from Aqueous Solutions
3.2.1. Kinetic Analysis
3.2.2. Photocatalytic Tests
3.2.3. Reuse Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Makowska, M.; Sowinska, A. Characteristics of Organic Pollutants in Wastewater from Individual Treatment Systems. Desalin. Water Treat. 2020, 206, 22–26. [Google Scholar] [CrossRef]
- Frisbie, S.H.; Mitchell, E.J.; Sarkar, B. Urgent Need to Reevaluate the Latest World Health Organization Guidelines for Toxic Inorganic Substances in Drinking Water. Environ. Health 2015, 14, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachowicz, J.I.; Delpiano, G.R.; Zanda, D.; Piludu, M.; Sanjust, E.; Monduzzi, M.; Salis, A. Adsorption of Cu2+ and Zn2+ on SBA-15 Mesoporous Silica Functionalized with Triethylenetetramine Chelating Agent. J. Environ. Chem. Eng. 2019, 7, 103205. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, P.; Pal, A.K.; Mishra, V. Water Pollutants: Origin and Status. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp. 5–20. [Google Scholar] [CrossRef]
- Nosuhi, M.; Nezamzadeh-Ejhieh, A. An Indirect Application Aspect of Zeolite Modified Electrodes for Voltammetric Determination of Iodate; Elsevier: Amsterdam, The Netherlands, 2018; Volume 810, ISBN 3153292515. [Google Scholar]
- Tamiji, T.; Nezamzadeh-Ejhieh, A. A Comprehensive Study on the Kinetic Aspects and Experimental Design for the Voltammetric Response of a Sn(IV)-Clinoptilolite Carbon Paste Electrode towards Hg(II). J. Electroanal. Chem. 2018, 829, 95–105. [Google Scholar] [CrossRef]
- Sacara, A.M.; Pitzalis, F.; Salis, A.; Turdean, G.L.; Muresan, L.M. Glassy Carbon Electrodes Modified with Ordered Mesoporous Silica for the Electrochemical Detection of Cadmium Ions. ACS Omega 2019, 4, 1410–1415. [Google Scholar] [CrossRef]
- Ahlström, L.-H.; Sparr Eskilsson, C.; Björklund, E. Determination of Banned Azo Dyes in Consumer Goods. TrAC Trends Anal. Chem. 2005, 24, 49–56. [Google Scholar] [CrossRef]
- Krishna Moorthy, A.; Govindarajan Rathi, B.; Shukla, S.P.; Kumar, K.; Shree Bharti, V. Acute Toxicity of Textile Dye Methylene Blue on Growth and Metabolism of Selected Freshwater Microalgae. Environ. Toxicol. Pharmacol. 2021, 82, 103552. [Google Scholar] [CrossRef]
- Deniz, F. An Economical and Effective Alternative to Commercial Activated Carbon for Treatment of Synthetic Dye Pollution in Aquatic Environment: Surfactant Modified Waste Product of Zostera Marina. Int. J. Phytoremediat. 2021, 23, 530–538. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, M.A.; Seo, J.; Khan, S.B. Pollution, Toxicity and Carcinogenicity of Organic Dyes and Their Catalytic Bio-Remediation Pollution, Toxicity and Carcinogenicity of Organic Dyes and Their Catalytic Bio-Remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef]
- Senobari, S.; Nezamzadeh-Ejhieh, A. A Comprehensive Study on the Photocatalytic Activity of Coupled Copper Oxide-Cadmium Sulfide Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Delpiano, G.R.; Tocco, D.; Medda, L.; Magner, E.; Salis, A. Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. Int. J. Mol. Sci. 2021, 22, 788. [Google Scholar] [CrossRef] [PubMed]
- Łuba, M.; Mikołajczyk, T.; Pierożyński, B.; Smoczyński, L.; Wojtacha, P.; Kuczyński, M. Electrochemical Degradation of Industrial Dyes in Wastewater through the Dissolution of Aluminum Sacrificial Anode of Cu/Al Macro-Corrosion Galvanic Cell. Molecules 2020, 25, 4108. [Google Scholar] [CrossRef] [PubMed]
- Seid, L.; Lakhdari, D.; Berkani, M.; Belgherbi, O.; Chouder, D.; Vasseghian, Y.; Lakhdari, N. High-Efficiency Electrochemical Degradation of Phenol in Aqueous Solutions Using Ni-PPy and Cu-PPy Composite Materials. J. Hazard. Mater. 2022, 423, 126986. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chang, C.F.; Liu, S.M. Partial Degradation Mechanisms of Malachite Green and Methyl Violet B by Shewanella Decolorationis NTOU1 under Anaerobic Conditions. J. Hazard. Mater. 2010, 177, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Sinha, R.; Roy, D. Toxicological Effects of Malachite Green. Aquat. Toxicol. 2004, 66, 319–329. [Google Scholar] [CrossRef]
- Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from Aqueous Solutions by Adsorption Using Cyclodextrin-Based Adsorbent: Kinetic and Equilibrium Studies. Sep. Purif. Technol. 2007, 53, 97–110. [Google Scholar] [CrossRef]
- Renita, A.A.; Vardhan, K.H.; Kumar, P.S.; Ngueagni, P.T.; Abilarasu, A.; Nath, S.; Kumari, P.; Saravanan, R. Effective Removal of Malachite Green Dye from Aqueous Solution in Hybrid System Utilizing Agricultural Waste as Particle Electrodes. Chemosphere 2021, 273, 129634. [Google Scholar] [CrossRef]
- Sacara, A.M.; Nairi, V.; Salis, A.; Turdean, G.L.; Muresan, L.M. Silica-Modified Electrodes for Electrochemical Detection of Malachite Green. Electroanalysis 2017, 29, 2602–2609. [Google Scholar] [CrossRef]
- Pérez-Estrada, L.A.; Agüera, A.; Hernando, M.D.; Malato, S.; Fernández-Alba, A.R. Photodegradation of Malachite Green under Natural Sunlight Irradiation: Kinetic and Toxicity of the Transformation Products. Chemosphere 2008, 70, 2068–2075. [Google Scholar] [CrossRef]
- Fischer, A.R.; Werner, P.; Goss, K. Photodegradation of Malachite Green and Malachite Green Carbinol under Irradiation with Different Wavelength Ranges. Chemosphere 2011, 82, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Zulmajdi, S.L.N.; Zamri, N.I.I.; Yasin, H.M.; Kusrini, E.; Hobley, J.; Usman, A. Comparative Study on the Adsorption, Kinetics, and Thermodynamics of the Photocatalytic Degradation of Six Different Synthetic Dyes on TiO2 Nanoparticles. React. Kinet. Mech. Catal. 2020, 129, 519–534. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, M. Ultrathin Two-Dimensional Semiconductors for Photocatalysis in Energy and Environment Applications. ChemCatChem 2019, 11, 6147–6165. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, D. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Adv. Energy Mater. 2017, 7, 1700841. [Google Scholar] [CrossRef] [Green Version]
- Huebener, R.P. Conductors, Semiconductors, Superconductors: An Introduction to Solid State Physics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319240084. [Google Scholar]
- Omrani, N.; Nezamzadeh-Ejhieh, A. A Comprehensive Study on the Enhanced Photocatalytic Activity of Cu2O/BiVO4/WO3 Nanoparticles. J. Photochem. Photobiol. A Chem. 2020, 389, 112223. [Google Scholar] [CrossRef]
- Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A Multi-Faceted Concept for Green Chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011. [Google Scholar] [CrossRef]
- Dutta, D.P.; Ballal, A.; Chopade, S.; Kumar, A. A Study on the Effect of Transition Metal (Ti4+, Mn2+, Cu2+ and Zn+)-Doping on Visible Light Photocatalytic Activity of Bi2MoO6 Nanorods. J. Photochem. Photobiol. A Chem. 2017, 346, 105–112. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Yang, H.G.; Cheng, H.M.; Lu, G.Q. Titania-Based Photocatalysts—Crystal Growth, Doping and Heterostructuring. J. Mater. Chem. 2010, 20, 831–843. [Google Scholar] [CrossRef]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. GC-MASS Detection of Methyl Orange Degradation Intermediates by AgBr/g-C3N4: Experimental Design, Bandgap Study, and Characterization of the Catalyst. Int. J. Hydrog. Energy 2020, 45, 24636–24656. [Google Scholar] [CrossRef]
- Arumugam, M.; Natarajan, T.S.; Saelee, T.; Praserthdam, S.; Ashokkumar, M.; Praserthdam, P. Recent Developments on Bismuth Oxyhalides (BiOX; X = Cl, Br, I) Based Ternary Nanocomposite Photocatalysts for Environmental Applications. Chemosphere 2021, 282, 131054. [Google Scholar] [CrossRef]
- Arumugam, M.; Choi, M.Y. Recent Progress on Bismuth Oxyiodide (BiOI) Photocatalyst for Environmental Remediation. J. Ind. Eng. Chem. 2020, 81, 237–268. [Google Scholar] [CrossRef]
- Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications. Appl. Catal. A Gen. 2018, 555, 47–74. [Google Scholar] [CrossRef]
- Kodama, H.; Izumi, F.; Watanabe, A. New Members of a Family of Layered Bismuth Compounds. J. Solid State Chem. 1981, 36, 349–355. [Google Scholar] [CrossRef]
- Do Leandro, M.K.N.S.; Moura, J.V.B.; de Freire, P.T.C.; Vega, M.L.; da Lima, C.L.; Hidalgo, Á.A.; de Araújo, A.C.J.; Freitas, P.R.; Paulo, C.L.R.; de Sousa, A.K.; et al. Characterization and Evaluation of Layered Bi2WO6 Nanosheets as a New Antibacterial Agent. Antibiotics 2021, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Wu, J.; Hu, Z.; Zhang, H.; Yan, H. Ferroelectric and Photocatalytic Properties of Aurivillius Phase Ca2Bi4Ti5O18. J. Am. Ceram. Soc. 2021, 104, 322–328. [Google Scholar] [CrossRef]
- Kendall, K.R.; Navas, C.; Thomas, J.K.; zur Loye, H.-C. Recent Developments in Oxide Ion Conductors: Aurivillius Phases. Chem. Mater. 1996, 8, 642–649. [Google Scholar] [CrossRef]
- Li, H.; Li, K.; Wang, H. Hydrothermal Synthesis and Photocatalytic Properties of Bismuth Molybdate Materials. Mater. Chem. Phys. 2009, 116, 134–142. [Google Scholar] [CrossRef]
- Moure, A. Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System. Appl. Sci. 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Ruan, X.; Wen, X.; Liang, D.; Hu, Y. Hierarchically Peony-Analogous Bismuth Tungstate with Oxygen Vacancies for Enhanced Photocatalytic Degradation of Phenolic Compounds. J. Clean. Prod. 2021, 324, 129287. [Google Scholar] [CrossRef]
- Vahabirad, S.; Nezamzadeh-Ejhieh, A. Co-Precipitation Synthesis of BiOI/(BiO)2CO3: Brief Characterization and the Kinetic Study in the Photodegradation and Mineralization of Sulfasalazine. J. Solid State Chem. 2022, 310, 123018. [Google Scholar] [CrossRef]
- Guo, L.; Luo, J.; He, T.; Wei, S.; Li, S. Photocorrosion-Limited Maximum Efficiency of Solar Photoelectrochemical Water Splitting. Phys. Rev. Appl. 2018, 10, 064059. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.; Choi, K.; Jung, K.; Lee Hyeon-Yong, J.D. Ferroelectric Properties of Substituted Aurivillius Phases SrBi2Nb2-XMxO9 (M=Cr, Mo). Bull. Korean Chem. Soc. 2002, 23, 1463–1482. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; You, L.; Liu, J. Ferroelectrics in Photocatalysis. In Ferroelectric Materials for Energy Applications; Wiley: Weinheim, Germany, 2018; pp. 265–309. [Google Scholar]
- Di, A.; García-lópez, E.; Marcì, G.; Palmisano, L. A Survey of Photocatalytic Materials for Environmental Remediation. J. Hazard. Mater. 2012, 211–212, 3–29. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Somaudon, V.; Watcharakitti, J.; Piyavarakorn, V.; Nanan, S. Performance of Solvothermally Grown Bi2MoO6 Photocatalyst toward Degradation of Organic Azo Dyes and Fluoroquinolone Antibiotics. Mater. Lett. 2020, 258, 126764. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Zhu, C.; Ji, M.; Xia, J.; Yan, C.; Hao, W.; Li, S.; Li, H.; Liu, Z. Bismuth Vacancy Mediated Single Unit Cell Bi2WO6 Nanosheets for Boosting Photocatalytic Oxygen Evolution. Appl. Catal. B Environ. 2018, 238, 119–125. [Google Scholar] [CrossRef]
- Yin, S.; Chen, Y.; Li, M.; Hu, Q.; Ding, Y.; Shao, Y.; Di, J. Construction of NH2-MIL-125(Ti)/Bi2WO6 Composites with Accelerated Charge Separation for Degradation of Organic Contaminants under Visible Light Irradiation. Green Energy Environ. 2020, 5, 203–213. [Google Scholar] [CrossRef]
- Bresolin, B.; Park, Y.; Bahnemann, D. Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts 2020, 10, 709. [Google Scholar] [CrossRef]
- Balachandran, S.; Swaminathan, M. Facile Fabrication of Heterostructured Bi2O3–ZnO Photocatalyst and Its Enhanced Photocatalytic Activity. J. Phys. Chem. C 2012, 116, 26306–26312. [Google Scholar] [CrossRef]
- Yu, Z.B.; Xie, Y.P.; Liu, G.; Lu, G.Q.; Ma, X.L.; Cheng, H.M. Self-Assembled CdS/Au/ZnO Heterostructure Induced by Surface Polar Charges for Efficient Photocatalytic Hydrogen Evolution. J. Mater. Chem. A 2013, 1, 2773–2776. [Google Scholar] [CrossRef]
- Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W. A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11, 5262–5271. [Google Scholar] [CrossRef]
- Zhong, C.; Kato, D.; Takeiri, F.; Fujii, K.; Yashima, M.; Nishiwaki, E.; Fujii, Y.; Koreeda, A.; Tassel, C.; Abe, R.; et al. Single Crystal Growth of Sillén–Aurivillius Perovskite Oxyhalides Bi4NbO8X (X = Cl, Br). Inorganics 2018, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Atomically-Thin Bi2MoO6 Nanosheets with Vacancy Pairs for Improved Photocatalytic CO2 Reduction. Nano Energy 2019, 61, 54–59. [Google Scholar] [CrossRef]
- Ingham, B.; Toney, M.F. X-Ray Diffraction for Characterizing Metallic Films. In Metallic Films for Electronic, Optical and Magnetic Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–38. [Google Scholar]
- Warren, B.E. X Ray Diffraction; Addison-Wesley: Reading, MA, USA, 1969; ISBN 9780486663173. [Google Scholar]
- Raeisi-Kheirabadi, N.; Nezamzadeh-Ejhieh, A. A Z-Scheme g-C3N4/Ag3PO4 Nanocomposite: Its Photocatalytic Activity and Capability for Water Splitting. Int. J. Hydrog. Energy 2020, 45, 33381–33395. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Hemmatpour, P.; Nezamzadeh-Ejhieh, A.; Ershadi, A. A Brief Study on the Eriochrome Black T Photodegradation Kinetic by CdS/BiVO4 Coupled Catalyst. Mater. Res. Bull. 2022, 151, 111830. [Google Scholar] [CrossRef]
- Wei, W.; Gao, J.; Jiang, Z.; Lü, X.; Xie, J. Transforming MoO3 Macrorods into Bismuth Molybdate Nanoplates via the Surfactant-Assisted Hydrothermal Method. Ceram. Int. 2015, 41, 11471–11481. [Google Scholar] [CrossRef]
- Xia, J.; Di, J.; Yin, S.; Xu, H.; Zhang, J.; Xu, Y.; Xu, L.; Li, H.; Ji, M. Facile Fabrication of the Visible-Light-Driven Bi2WO6/BiOBr Composite with Enhanced Photocatalytic Activity. RSC Adv. 2014, 4, 82–90. [Google Scholar] [CrossRef]
- Song, J.-M.; Mao, C.-J.; Niu, H.-L.; Shen, Y.-H.; Zhang, S.-Y. Hierarchical Structured Bismuth Oxychlorides: Self-Assembly from Nanoplates to Nanoflowers via a Solvothermal Route and Their Photocatalytic Properties. CrystEngComm 2010, 12, 3875. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Mera, A.C.; Váldes, H.; Jamett, F.J.; Meléndrez, M.F. BiOBr Microspheres for Photocatalytic Degradation of an Anionic Dye. Solid State Sci. 2017, 65, 15–21. [Google Scholar] [CrossRef]
- Allagui, L.; Chouchene, B.; Gries, T.; Medjahdi, G.; Girot, E.; Framboisier, X.; Ben, A.; Balan, L.; Schneider, R. Core/Shell RGO/BiOBr Particles with Visible Photocatalytic Activity towards Water Pollutants. Appl. Surf. Sci. 2019, 490, 580–591. [Google Scholar] [CrossRef]
- Sun, M.; Ding, Z.; Wang, H.; Yu, G.; Li, B.; Li, M.; Zhen, M. Antifungal Effects of BiOBr Nanosheets Carrying Surfactant Cetyltrimethylammonium Bromide. J. Biomed. Res. 2018, 32, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Priscilla, D.T.; Nadhiya, D.; Priya, S.; Jayabharathi, P.; Srinivasan, G. Solvothermal Synthesis and Material Characterization of Bismuth Tungstate (Bi2WO6) Micro/Nanoparticles: A Comparative Study Solvothermal Synthesis and Material Characterization. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2265, pp. 2–6. [Google Scholar]
- Ghattavi, S.; Nezamzadeh-Ejhieh, A. A Visible Light Driven AgBr/g-C3N4 Photocatalyst Composite in Methyl Orange Photodegradation: Focus on Photoluminescence, Mole Ratio, Synthesis Method of g-C3N4 and Scavengers. Compos. Part B Eng. 2020, 183, 107712. [Google Scholar] [CrossRef]
- Omrani, N.; Nezamzadeh-Ejhieh, A. Focus on Scavengers’ Effects and GC-MASS Analysis of Photodegradation Intermediates of Sulfasalazine by Cu2O/CdS Nanocomposite. Sep. Purif. Technol. 2020, 235, 116228. [Google Scholar] [CrossRef]
- Rezaei, M.; Nezamzadeh-Ejhieha, A. The ZnO-NiO Nano-Composite: A Brief Characterization, Kinetic and Thermodynamic Study and Study the Arrhenius Model on the Sulfasalazine Photodegradation. Int. J. Hydrog. Energy 2020, 45, 24749–24764. [Google Scholar] [CrossRef]
- Abhilash, M.R.; Akshatha, G.; Srikantaswamy, S. Photocatalytic Dye Degradation and Biological Activities of the Fe2O3/Cu2O Nanocomposite. RSC Adv. 2019, 9, 8557–8568. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Jiang, F.; Kalkanis, S.N.; Zhang, Z.G.; Zhang, X.; Zheng, X.; Jiang, H.; Chopp, M. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in Gas Phase. Laser Med Sci. 2009, 24, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Salmanderis, S.; Nezamzadeh-Ejhieh, A. Visible Light-Driven Ag2S–PbS Photocatalyst for Photocatalytic Degradation of Phenazopyridine in Aqueous Solution. Desalin. Water Treat. 2020, 197, 200–212. [Google Scholar] [CrossRef]
- Pare, B.; Sarwan, B.; Jonnalagadda, S.B. Photocatalytic Mineralization Study of Malachite Green on the Surface of Mn-Doped BiOCl Activated by Visible Light under Ambient Condition. Appl. Surf. Sci. 2011, 258, 247–253. [Google Scholar] [CrossRef]
- Yong, L.; Zhanqi, G.; Yuefei, J.; Xiaobin, H.; Cheng, S.; Shaogui, Y.; Lianhong, W.; Qingeng, W.; Die, F. Photodegradation of Malachite Green under Simulated and Natural Irradiation: Kinetics, Products, and Pathways. J. Hazard. Mater. 2015, 285, 127–136. [Google Scholar] [CrossRef]
- Kumar, R.; Raizada, P.; Khan, A.A.P.; Nguyen, V.H.; Van Le, Q.; Ghotekar, S.; Selvasembian, R.; Gandhi, V.; Singh, A.; Singh, P. Recent Progress in Emerging BiPO4-Based Photocatalysts: Synthesis, Properties, Modification Strategies, and Photocatalytic Applications. J. Mater. Sci. Technol. 2022, 108, 208–225. [Google Scholar] [CrossRef]
- Nasir, A.M.; Jaafar, J.; Aziz, F.; Yusof, N.; Salleh, W.N.W.; Ismail, A.F.; Aziz, M. A Review on Floating Nanocomposite Photocatalyst: Fabrication and Applications for Wastewater Treatment. J. Water Process Eng. 2020, 36, 101300. [Google Scholar] [CrossRef]
- Vergis, B.R.; Hari Krishna, R.; Kottam, N.; Nagabhushana, B.M.; Sharath, R.; Darukaprasad, B. Removal of Malachite Green from Aqueous Solution by Magnetic CuFe2O4 Nano-Adsorbent Synthesized by One Pot Solution Combustion Method. J. Nanostructure Chem. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Charanpahari, A.; Ghugal, S.G.; Umare, S.S.; Sasikala, R. Mineralization of Malachite Green Dye over Visible Light Responsive Bismuth Doped TiO2-ZrO2 Ferromagnetic Nanocomposites. New J. Chem. 2015, 39, 3629–3638. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K. Occurrences, Toxicities, and Ecological Risks of Benzophenone-3, a Common Component of Organic Sunscreen Products: A Mini-Review. Environ. Int. 2014, 70, 143–157. [Google Scholar] [CrossRef]
- Omrani, N.; Nezamzadeh-Ejhieh, A.; Alizadeh, M. Brief Study on the Kinetic Aspect of Photodegradation of Sulfasalazine Aqueous Solution by Cuprous Oxide/Cadmium Sulfide Nanoparticles. Desalin. Water Treat. 2019, 162, 290–302. [Google Scholar] [CrossRef]
- Mehrali-Afjani, M.; Nezamzadeh-Ejhieh, A.; Aghaei, H. A Brief Study on the Kinetic Aspect of the Photodegradation and Mineralization of BiOI-Ag3PO4 towards Sodium Diclofenac. Chem. Phys. Lett. 2020, 759, 137873. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir-Hinshelwood Kinetics—A Theoretical Study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Fu, J.; Ji, M.; Wang, Z.; Jin, L.; An, D. A New Submerged Membrane Photocatalysis Reactor (SMPR) for Fulvic Acid Removal Using a Nano-Structured Photocatalyst. J. Hazard. Mater. 2006, 131, 238–242. [Google Scholar] [CrossRef]
- Huang, X.; Leal, M.; Li, Q. Degradation of Natural Organic Matter by TiO2 Photocatalytic Oxidation and Its Effect on Fouling of Low-Pressure Membranes. Water Res. 2008, 42, 1142–1150. [Google Scholar] [CrossRef]
- Choo, K.-H. Modeling Photocatalytic Membrane Reactors. In Current Trends and Future Developments on (Bio-)Membranes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 297–316. ISBN 9780128135495. [Google Scholar]
- Saad, A.M.; Abukhadra, M.R.; Abdel-Kader Ahmed, S.; Elzanaty, A.M.; Mady, A.H.; Betiha, M.A.; Shim, J.J.; Rabie, A.M. Photocatalytic Degradation of Malachite Green Dye Using Chitosan Supported ZnO and Ce–ZnO Nano-Flowers under Visible Light. J. Environ. Manag. 2020, 258, 110043. [Google Scholar] [CrossRef] [PubMed]
- Maria Magdalane, C.; Kaviyarasu, K.; Judith Vijaya, J.; Jayakumar, C.; Maaza, M.; Jeyaraj, B. Photocatalytic Degradation Effect of Malachite Green and Catalytic Hydrogenation by UV–Illuminated CeO2/CdO Multilayered Nanoplatelet Arrays: Investigation of Antifungal and Antimicrobial Activities. J. Photochem. Photobiol. B Biol. 2017, 169, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Ghobara, M.M.; Abdelmaksoud, M.K.; Mohamed, G.G. A Novel and Highly Efficient Photocatalytic Degradation of Malachite Green Dye via Surface Modified Polyacrylonitrile Nanofibers/Biogenic Silica Composite Nanofibers. Sep. Purif. Technol. 2019, 210, 935–942. [Google Scholar] [CrossRef]
- Hosseini, A.; Karimi, H.; Foroughi, J.; Sabzehmeidani, M.M.; Ghaedi, M. Heterogeneous Photoelectro-Fenton Using ZnO and TiO2 Thin Film as Photocatalyst for Photocatalytic Degradation Malachite Green. Appl. Surf. Sci. Adv. 2021, 6, 100126. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Liu, C.; Lu, A.; Zhang, W. Photodegradation of Malachite Green by Nanostructured BiWO Visible Light-Induced Photocatalyst. Int. J. Photoenergy 2012, 2012, 510158. [Google Scholar] [CrossRef]
- Pathania, D.; Katwal, R.; Sharma, G.; Naushad, M.; Khan, M.R.; Al-Muhtaseb, A.H. Novel Guar Gum/Al2O3 Nanocomposite as an Effective Photocatalyst for the Degradation of Malachite Green Dye. Int. J. Biol. Macromol. 2016, 87, 366–374. [Google Scholar] [CrossRef]
- Modwi, A.; Abbo, M.A.; Hassan, E.A.; Al-Duaij, O.K.; Houas, A. Adsorption Kinetics and Photocatalytic Degradation of Malachite Green (MG) via Cu/ZnO Nanocomposites. J. Environ. Chem. Eng. 2017, 5, 5954–5960. [Google Scholar] [CrossRef]
- Rabie, A.M.; Abukhadra, M.R.; Rady, A.M.; Ahmed, S.A.; Labena, A.; Mohamed, H.S.H.; Betiha, M.A.; Shim, J.J. Instantaneous Photocatalytic Degradation of Malachite Green Dye under Visible Light Using Novel Green Co–ZnO/Algae Composites. Res. Chem. Intermed. 2020, 46, 1955–1973. [Google Scholar] [CrossRef]
Sample | MG (mg/mL) [a] | MG Removal (%) [b] | Adsorption Contribution (%) [c] |
---|---|---|---|
BWO | 6.97 | 89 | 51 |
BMO | 6.97 | 91 | 19 |
BMO-0 | 6.68 | 85 | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collu, D.A.; Carucci, C.; Piludu, M.; Parsons, D.F.; Salis, A. Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. Int. J. Mol. Sci. 2022, 23, 5422. https://doi.org/10.3390/ijms23105422
Collu DA, Carucci C, Piludu M, Parsons DF, Salis A. Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. International Journal of Molecular Sciences. 2022; 23(10):5422. https://doi.org/10.3390/ijms23105422
Chicago/Turabian StyleCollu, David A., Cristina Carucci, Marco Piludu, Drew F. Parsons, and Andrea Salis. 2022. "Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye" International Journal of Molecular Sciences 23, no. 10: 5422. https://doi.org/10.3390/ijms23105422
APA StyleCollu, D. A., Carucci, C., Piludu, M., Parsons, D. F., & Salis, A. (2022). Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. International Journal of Molecular Sciences, 23(10), 5422. https://doi.org/10.3390/ijms23105422