Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons
<p>Differentiation from human-induced pluripotent stem cells (hiPSCs) to neuronal cells. (<b>A</b>) Schematic diagram showing the differentiation protocol: from left to right, hiPSCs, Embyoid Bodies (EBs), Neuronal Rosettes, sun-shaped structure with rays from the center (Rosettes), Neuroprecursors (NPCs) and hiPSC-derived Neurons. Scale bar 10 µm. (<b>B</b>) Representative images of immunofluorescence (IF) of embryonic stem cell surface markers: Stage specific embryonic antigen-1 (SSEA1; green) and Octamer-binding transcription factor 4 (OCT4; red) (<b>top</b> image), and SRY-Box Transcription Factor 2 (SOX2; green) and T cell receptor alpha locus 1-60 (TRA-1-60; red) (<b>bottom</b> image). Cells were stained with nuclear marker 4′,6-diamidino-2-phenylindole, DAPI (blue). Scale bar 10 µm. (<b>C</b>) RT-qPCR shows upregulation of Sox1 and Pax6 in NPCs, as compared to hiPSCs. Nestin and Sox2 involved in pluripotency and neuronal differentiation are expressed in NPCs and hiPSCs. Bar graphs show the mean values ± SEM of relative expression, at least <span class="html-italic">n</span> = 3 replicate for each group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001, by one way ANOVA, Bonferroni’s multiple comparisons.</p> "> Figure 2
<p>hiPSC-derived neurons express neuronal markers. (<b>A</b>) Gene expression profiling of hiPSC-derived neurons by qRT-PCR showing upregulation of neuronal markers in neurons at mature stages (30–45 days of differentiation in vitro (DIV)). Neuronal markers: Tubulin Beta 3 Class III (Tubb3), Microtubule-associated protein 2 (Map2); synaptic markers: Synaptosome Associated Protein 25 (Snap25) (pre-synaptic), Vesicle Associated Membrane Protein 2 (Vamp2) (pre-synaptic), Synaptophysin (Syp) (pre-synaptic), Discs Large MAGUK Scaffold Protein 4 (Postsynaptic density protein 95) (Psd95) (post-synaptic); Vesicular Glutamate Transporters type: V-Glut2, V-Glut3; Calcium Voltage-Gated Channel Subunits Alpha1A,B,D,E: Cacna1a, Cacna1b, Cacna1d, Cacna1e. Bar graphs show the mean ± SEM of relative expression; at least <span class="html-italic">n</span> = 3 replicate for each group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001, by one way ANOVA, Bonferroni’s multiple comparisons tests. NPCs were used as negative control. (<b>B</b>) Representative images of western blot scans showing total PSD95, SV2A, V-GLUT2, TUBB3, SYP, and Glyceraldehyde-3 phosphate dehydrogenase (GAPDH) protein levels from hiPSC-derived neurons (30–45 DIV), NPCs and rat brain synaptosomes (RBS). (<b>C</b>) Western blot quantification of PSD95, SV2A, V-GLUT2, TUBB3, and SYP. Values were normalized on GAPDH expression. Bar graphs show the mean ± SEM of relative expression; at least <span class="html-italic">n</span> = 3 replicate for each group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, by one way ANOVA, Bonferroni’s multiple comparisons tests. NPCs were used as a negative control.</p> "> Figure 3
<p>Morphological analysis on hiPSC-derived neurons. (<b>A</b>) Sholl analysis showing an increase in branching at the analyzed time points: 7, 14, 21 DIV. (<b>B</b>) Area under the curve (AUC) from 10 µm to 80 µm graph showing significant increment of dendritic outgrowth at 7, 14, 21 DIV. Histogram values were means ± SEM. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001 by one way ANOVA, Bonferroni’s multiple comparisons tests.</p> "> Figure 4
<p>Expression of N-methyl-D-aspartate (NMDA) receptor, Muscarinic acetylcholine receptor (mAChR) and 5-Hydroxytryptamine receptor (5HTR) in NPC and hiPSC-derived neurons. Bar graphs showing RT-qPCR results for Glutamate Ionotropic Receptor NMDA Type Subunit 1 (Grin1; (<b>A</b>)), Cholinergic Receptor Muscarinic 3 (Chrm3; (<b>B</b>)), and 5-Hydroxytryptamine Receptor 2A (Htr2a; (<b>C</b>)) at 30 and 45 DIV. All receptors showed upregulation in hiPSC-derived neurons compared to NPCs. Histogram bars represent the mean values ± SEM of relative expression, at least <span class="html-italic">n</span> = 3 replicated for each group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001, by one way ANOVA, Bonferroni’s multiple comparisons.</p> "> Figure 5
<p>Expression of neuronal proteins in hiPSC-derived neurons. (<b>A</b>) Representative confocal images of hiPSC-derived neurons at 30–45 DIV showing expression of the neuronal markers TUBB3 and MAP2 and the astrocyte marker Glial Fibrillary Acidic Protein (GFAP). Scale bar 7.5 µm. (<b>B</b>) Synaptic proteins SV2A (green) and HOMER (red) co-localized at 30–45 DIV. Scale bar 7.5 µm. The rectangle frames are the regions of interest shown below at higher magnification.</p> "> Figure 6
<p>Exocytotic (Ca<sup>2+</sup>-dependent) release of glutamate from hiPSC-derived neurons at 30 and 45 DIV. (<b>A</b>) K<sup>+</sup>-evoked glutamate release from hiPSC-derived neurons in superfusion at 30 and 45 DIV. Data are expressed as mean ± SEM from three to seven different experiments. (<b>B</b>) 4AP-evoked glutamate release from hiPSC-derived neurons in superfusion at 30 and 45 DIV. Data are expressed as mean ± SEM from three to seven different experiments. (<b>A</b>) *** <span class="html-italic">p</span> < 0.001 vs. effect in NPCs, # <span class="html-italic">p</span> < 0.001 vs. K<sup>+</sup> in 1.2 mM Ca<sup>2+</sup> at the same day of differentiation and <span>$</span> <span class="html-italic">p</span> < 0.05 vs. K<sup>+</sup> in 1.2 mM Ca<sup>2+</sup> at 30 DIV; (<b>B</b>) *** <span class="html-italic">p</span> < 0.001 vs. 4-AP in NPCs, # <span class="html-italic">p</span> < 0.001 vs. 4-AP in 1.2 mM Ca<sup>2+</sup> at the same day of differentiation (one way ANOVA followed by Bonferroni’s post hoc test). For other experimental details see Materials and Methods.</p> "> Figure 7
<p>Time courses for the evoked glutamate release. (<b>A</b>,<b>B</b>). K<sup>+</sup>-evoked glutamate release from hiPSC-derived neurons in superfusion. Representative time-courses for the release of tritium from hiPSC derived neurons at 30 (<b>A</b>) and 45 (<b>B</b>) day of differentiation are shown. K<sup>+</sup> was added (3 min; black bar) during superfusion. (<b>C</b>,<b>D</b>). 4-AP-evoked glutamate release from hiPSC-derived neurons in superfusion. The representative time courses for the release of tritium from hiPSC-derived neurons at 30 (<b>C</b>) and 45 (<b>D</b>) days of differentiation are shown. 4-AP was added (3 min; black bar) during superfusion. For other experimental details see Materials and Methods.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Generation and Characterization of iPSCs and Neuronal Differentiation
2.2. mRNA Expression Profile of hiPSC-Derived Neurons
2.3. Morphological Analysis of hiPSC-DerivedNeurons
2.4. Analysis of NMDA, mAChRs and 5HT Receptors Expression in hiPSC-DerivedNeurons
2.5. Immunofluorescence Evaluation of the Synaptic Complex in hiPSC-DerivedNeurons
2.6. hiPSC-DerivedNeurons Release Glutamate in Response to Depolarization
3. Discussion
3.1. Feeder-Free hiPSC-DerivedNeurons Express Neuronal Markers and Morphology
3.2. hiPSC-DerivedNeurons Release Glutamate in Response to Depolarization
4. Materials and Methods
4.1. Generation and Maintenance of Human Induced Pluripotent Stem Cells (hiPSCs)
4.2. Array-CGH Assay
4.3. Feeder-Free Differentiation of hiPSC Clones into Neurons
4.4. qRT-PCR
4.5. Western Blot
4.6. Immunocytochemistry
4.7. Assessment of Glutamate Release
- Fx = fractional release in the fraction x
- Tx = tritium content in the fraction x
- Tcell = tritium content in the cells at the end of perfusion
- n = number of the fractions collected during perfusion
- 1 ≤ x ≤ n
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-AP | 4-Aminopyridine |
AUC | Area under the curve |
BDNF | Brain-Derived Neurotrophic Factor |
bFGF | basic fibroblast growth factor |
CACNA1 | Voltage-dependent calcium channels Alpha1 subunit |
ChR2 | Channelrhodopsin-2 |
CHRM3 | Cholinergic Receptor Muscarinic 3 |
CNS | Central Nervous System |
DAPI | 4′:6-diamidino-2-phenylindole |
DIV | Days of differentiation in vitro |
EBs | Embryoid bodies |
FBS | Foetal bovine serum |
GAPDH | Glyceraldehyde-3 phosphate dehydrogenase |
GDNF | Glial cell-derived neurotrophic factor |
GRIN1 | NMDA Type Subunit 1 |
hiPSCs | Human induced pluripotent stem cells |
HTR2A | 5-Hydroxytryptamine Receptor 2A |
IF | Immunofluorescence |
KLF4 | Kruppel Like Factor 4 |
mAChR | muscarinic acetylcholine receptors |
MAP2 | Microtubule-associated protein 2 |
NeuN | Neuronal nuclear protein |
NMDA | N-methyl-D-aspartate receptor |
NPCs | Neuroprecursors cells |
OCT4 | Octamer-binding transcription factor 4 |
PAX6 | Paired box 6 |
PBS | Phosphate Buffered Saline |
PCR | Polymerase Chain Reaction |
PPIA | Peptidylprolyl isomerase A |
PSD95 | Discs Large MAGUK Scaffold Protein 4 |
RA | Retinoic acid |
RBS | Rat Brain Synaptosome |
RPL13A | Ribosomal Protein L13A |
SMAD | Small mother against decapentaplegic |
SNAP25 | Synaptosome Associated Protein 25 |
SOX1 and 2 | SRY-Box Transcription Factor 1 and 2 |
SSEA1 | Stage specific embryonic antigen-1 |
SV2A | Synaptic vesicle glycoprotein 2A |
SYP | Synaptophysin |
TGF-b | Transforming Growth Factor-β |
Tra1-60 | T cell receptor alpha locus1-60 |
TUBB3 | Tubulin Beta 3 Class III |
VAMP2 | Vesicle Associated Membrane Protein 2 |
VGLUT (2 and 3) | Vesicular glutamate transporters (type 2 and 3) |
References
- Bal-Price, A.; Pistollato, F.; Sachana, M.; Bopp, S.K.; Munn, S.; Worth, A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol. Appl. Pharmacol. 2018, 354, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Acosta, D., Jr.; Andersen, M.; Anderson, H.; Bailar, J.C., 3rd; Boekelheide, K.; Brent, R.; Charnley, G.; Cheung, V.G.; Green, S., Jr.; et al. Toxicity testing in the 21st century: A vision and a strategy. J. Toxicol. Environ. Health B Crit. Rev. 2010, 13, 51–138. [Google Scholar] [CrossRef] [PubMed]
- Baumann, J.; Gassmann, K.; Masjosthusmann, S.; DeBoer, D.; Bendt, F.; Giersiefer, S.; Fritsche, E. Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch. Toxicol. 2016, 90, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; de Gyves, E.M.; Carpi, D.; Bopp, S.K.; Nunes, C.; Worth, A.; Bal-Price, A. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ. Health 2020, 19, 23. [Google Scholar] [CrossRef]
- Consiglio, E.D.; Pistollato, F.; Gyves, E.M.-D.; Bal-Price, A.; Testai, E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod. Toxicol. 2020, 98, 174–188. [Google Scholar] [CrossRef]
- Pistollato, F.; Carpi, D.; Gyves, E.M.-D.; Paini, A.; Bopp, S.K.; Worth, A.; Bal-Price, A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod. Toxicol. 2021, 105, 101–119. [Google Scholar] [CrossRef]
- Mattis, V.B.; Tom, C.; Akimov, S.; Saeedian, J.; Østergaard, M.E.; Southwell, A.L.; Doty, C.N.; Ornelas, L.; Sahabian, A.; Lenaeus, L.; et al. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum. Mol. Genet. 2015, 24, 3257–3271. [Google Scholar] [CrossRef]
- Mertens, J.; Reid, D.; Lau, S.; Kim, Y.; Gage, F.H. Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases. Annu. Rev. Genet. 2018, 52, 271–293. [Google Scholar] [CrossRef]
- Vasan, L.; Park, E.; David, L.A.; Fleming, T.; Schuurmans, C. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application. Front. Cell Dev. Biol. 2021, 9, 681087. [Google Scholar] [CrossRef]
- Bonaventura, G.; Iemmolo, R.; Attaguile, G.A.; Cognata, V.L.; Pistone, B.S.; Raudino, G.; D’Agata, V.; Cantarella, G.; Barcellona, M.L.; Cavallaro, S. iPSCs: A Preclinical Drug Research Tool for Neurological Disorders. Int. J. Mol. Sci. 2021, 22, 4596. [Google Scholar] [CrossRef]
- Grunwald, L.M.; Stock, R.; Haag, K.; Buckenmaier, S.; Eberle, M.C.; Wildgruber, D.; Storchak, H.; Kriebel, M.; Weissgraeber, S.; Mathew, L.; et al. Comparative characterization of human induced pluripotent stem cells (hipsc) derived from patients with schizophrenia and autism. Transl. Psychiatry 2019, 9, 179. [Google Scholar] [CrossRef]
- Brennand, K.J.; Simone, A.; Jou, J.; Gelboin-Burkhart, C.; Tran, N.; Sangar, S.; Li, Y.; Mu, Y.; Chen, G.; Yu, D.; et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011, 473, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jia, X.; Wu, H.; Xun, G.; Ou, J.; Zhang, Q.; Li, H.; Bai, T.; Hu, Z.; Zou, X.; et al. Genotype and phenotype correlations for shank3 de novo mutations in neurodevelopmental disorders. Am. J. Med. Genet. A 2018, 176, 2668–2676. [Google Scholar] [PubMed]
- Page, S.C.; Sripathy, S.R.; Farinelli, F.; Ye, Z.; Wang, Y.; Hiler, D.J.; Pattie, E.A.; Nguyen, C.V.; Tippani, M.; Moses, R.L.; et al. Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc. Natl. Acad. Sci. USA 2022, 119, e2109395119. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vadodaria, K.; Beltrao-Braga, P.; Trujillo, C.A.; Mendes, A.P.D.; Padmanabhan, K.; et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 2017, 22, 820–835. [Google Scholar] [CrossRef] [PubMed]
- Heider, J.; Vogel, S.; Volkmer, H.; Breitmeyer, R. Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. Int. J. Mol. Sci. 2021, 22, 10254. [Google Scholar] [CrossRef] [PubMed]
- Lepski, G.; Maciaczyk, J.; Jannes, C.E.; Maciaczyk, D.; Bischofberger, J.; Nikkhah, G. Delayed Functional Maturation of Human Neuronal Progenitor Cells in Vitro. Mol. Cell Neurosci. 2011, 47, 36–44. [Google Scholar] [CrossRef]
- Telias, M.; Segal, M.; Ben-Yosef, D. Electrical Maturation of Neurons Derived from Human Embryonic Stem Cells. F1000Resarch 2014, 3, 196. [Google Scholar] [CrossRef]
- Belinsky, G.S.; Rich, M.T.; Sirois, C.L.; Short, S.M.; Pedrosa, E.; Lachman, H.M.; Antic, S.D. Patch-Clamp Recordings and Calcium Imaging Followed by Single-Cell Pcr Reveal the Developmental Profile of 13 Genes in Ipsc-Derived Human Neurons. Stem Cell Res. 2014, 12, 101–118. [Google Scholar] [CrossRef]
- Tofoli, F.A.; Chien, H.F.; Barbosa, E.R.; Pereira, L.V. Generation of 5 hiPSC lines derived from three unrelated idiopathic Parkinson disease patients and two unrelated healthy control individuals. Stem Cell Res. 2019, 41, 101640. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, K.; Zhou, L.; Gao, X.; Wang, J.; Yao, Y.; He, F.; Luo, Y.; Yu, Y.; Li, S.; et al. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation. Protein Cell 2016, 7, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, P.; Turner-Bridger, B.; Peter, M.; Momoh, A.; Arambepola, D.; Robinson, H.P.; Livesey, F.J. Development and Function of Human Cerebral Cortex Neural Networks from Pluripotent Stem Cells In Vitro. Development 2015, 142, 3178–3187. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Hartfield, E.M.; Yamasaki-Mann, M.; Fernandes, H.J.R.; Vowles, J.; James, W.S.; Cowley, S.A.; Wade-Martins, R. Physiological Characterisation of Human Ips-Derived Dopaminergic Neurons. PLoS ONE 2014, 9, e87388. [Google Scholar] [CrossRef] [PubMed]
- Antonov, S.A.; Novosadova, E.V.; Kobylyansky, A.G.; Illarioshkin, S.N.; Tarantul, V.Z.; Grivennikov, I.A. Expression and Functional Properties of Nmda and Gaba(a) Receptors During Differentiation of Human Induced Pluripotent Stem Cells into Ventral Mesencephalic Neurons. Biochemistry 2019, 84, 310–320. [Google Scholar] [PubMed]
- Antonov, S.A.; Novosadova, E.V. Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson’s Disease Drug Development. Int. J. Mol. Sci. 2021, 22, 3381. [Google Scholar] [CrossRef] [PubMed]
- Ruden, J.B.; Dixit, M.; Zepeda, J.C.; Grueter, B.A.; Dugan, L.L. Robust Expression of Functional NMDA Receptors in Human Induced Pluripotent Stem Cell-Derived Neuronal Cultures Using an Accelerated Protocol. Front. Mol. Neurosci. 2021, 14, 777049. [Google Scholar] [CrossRef]
- Cline, H.; Haas, K. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: A review of the synaptotrophic hypothesis. J. Physiol. 2008, 586, 1509–1517. [Google Scholar] [CrossRef]
- Gambrill, A.C.; Barria, A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc. Natl. Acad. Sci. USA 2011, 108, 5855–5860. [Google Scholar] [CrossRef]
- Fedorova, V.; Vanova, T.; Elrefae, L.; Pospisil, J.; Petrasova, M.; Kolajova, V.; Hudacova, Z.; Baniariova, J.; Barak, M.; Peskova, L.; et al. Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res. 2019, 40, 101563. [Google Scholar] [CrossRef]
- Engle, S.J.; Blaha, L.; Kleiman, R.J. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron 2018, 100, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Cox, W.G.; Hemmati-Brivanlou, A. Caudalization of neural fate by tissue recombination and bFGF. Development 1995, 121, 4349–4358. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, B.; Bolado, J., Jr.; Moreno, T.A.; Kintner, C.; Evans, R.M.; Papalopulu, N. An essential role for retinoid signaling in anteroposterior neural patterning. Development 1997, 124, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Kiecker, C.; Niehrs, C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 2001, 128, 4189–4201. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Elkabetz, Y.; Panagiotakos, G.; Shamy, G.A.; Socci, N.D.; Tabar, V.; Studer, L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Gene. Dev. 2008, 22, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.G.; Stice, S.S. Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Rev. 2006, 2, 67–77. [Google Scholar] [CrossRef]
- Zhang, S.C.; Wernig, M.; Duncan, I.D.; Brüstle, O.; Thomson, J.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 2001, 19, 1129–1133. [Google Scholar] [CrossRef]
- O’Neill, K.M.; Akum, B.F.; Dhawan, S.T.; Kwon, M.; Langhammer, C.G.; Firestein, B.L. Assessing effects on dendritic arborization using novel Sholl analyses. Front. Cell Neurosci. 2015, 9, 285. [Google Scholar] [CrossRef]
- Gensel, J.C.; Schonberg, D.L.; Alexander, J.K.; McTigue, D.M.; Popovich, P.G. Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia. J. Neurosci. Methods 2010, 190, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Bird, A.D.; Cuntz, H. Dissecting Sholl Analysis into Its Functional Components. Cell Rep. 2019, 27, 3081–3096. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 2007, 27, 2846–2857. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.L.; Castillo, P.E. Synaptic plasticity of NMDA receptors: Mechanisms and functional implications. Curr. Opin. Neurobiol. 2012, 22, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Luscher, C.; Malenka, R.C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 2012, 4, a0057. [Google Scholar] [CrossRef]
- Chakraborty, A.; Murphy, S.; Coleman, N. The role of NMDA receptors in neural stem cell proliferation and differentiation. Stem Cells Dev. 2017, 26, 798–807. [Google Scholar] [CrossRef]
- Anderson, N.C.; Chen, P.F.; Meganathan, K.; Saber, W.A.; Petersen, A.J.; Bhattacharyya, A.; Kroll, K.L.; Sahin, M. Cross-IDDRC Human Stem Cell Working Group. Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Rep. 2021, 16, 1446–1457. [Google Scholar] [CrossRef]
- Nakagawa, M.; Taniguchi, Y.; Senda, S.; Takizawa, N.; Ichisaka, T.; Asano, K.; Morizane, A.; Doi, D.; Takahashi, J.; Nishizawa, M.; et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 2014, 4, 3594. [Google Scholar] [CrossRef]
- Yuan, F.; Fang, K.H.; Cao, S.Y.; Qu, Z.Y.; Li, Q.; Krencik, R.; Xu, M.; Bhattacharyya, A.; Su, Y.W.; Zhu, D.Y.; et al. Efficient generation of region-specific forebrain neurons from human pluripotent stem cells under highly defined condition. Sci. Rep. 2015, 5, 18550. [Google Scholar] [CrossRef]
- Aprile, D.; Fruscione, F.; Baldassari, S.; Fadda, M.; Ferrante, D.; Falace, A.; Buhler, E.; Sartorelli, J.; Represa, A.; Baldelli, P.; et al. TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death Differ. 2019, 26, 2464–2478. [Google Scholar] [CrossRef]
- Anderson, S.; Vanderhaeghen, P. Cortical neurogenesis from pluripotent stem cells: Complexity emerging from simplicity. Curr. Opin. Neurobiol. 2014, 27, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Gaspard, N.; Bouschet, T.; Hourez, R.; Dimidschstein, J.; Naeije, G.; van den Ameele, J.; Espuny-Camacho, I.; Herpoel, A.; Passante, L.; Schiffmann, S.N.; et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 2008, 455, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Barak, M.; Fedorova, V.; Pospisilova, V.; Raska, J.; Vochyanova, S.; Sedmik, J.; Hribkova, H.; Klimova, H.; Vanova, T.; Bohaciakova, D. Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: From Neural Stem Cells to Cerebral Organoids. Stem Cell Rev. Rep. 2022, 18, 792–820. [Google Scholar] [CrossRef] [PubMed]
- Koch, P.; Opitz, T.; Steinbeck, J.A.; Ladewig, J.; Brustle, O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc. Natl. Acad. Sci. USA 2009, 106, 3225–3230. [Google Scholar] [CrossRef] [PubMed]
- Grabiec, M.; Hříbková, H.; Vařecha, M.; Střítecká, D.; Hampl, A.; Dvořák, P.; Sun, Y.M. Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Res. 2016, 17, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Bohaciakova, D.; Hruska-Plochan, M.; Tsunemoto, R.; Gifford, W.D.; Driscoll, S.P.; Glenn, T.D.; Wu, S.; Marsala, S.; Navarro, M.; Tadokoro, T.; et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 2019, 10, 83. [Google Scholar] [CrossRef]
- Kim, Y.H.; Chung, J.-I.; Woo, H.G.; Jung, Y.S.; Lee, S.H.; Moon, C.-H.; Suh-Kim, H.; and Baik, E.J. Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway. Stem Cells 2010, 28, 1816–1828. [Google Scholar] [CrossRef]
- Yin, X.; Xu, J.C.; Cho, G.S.; Kwon, C.; Dawson, T.M.; Dawson, V.L. Neurons Derived from Human Induced Pluripotent Stem Cells Integrate into Rat Brain Circuits and Maintain Both Excitatory and Inhibitory Synaptic Activities. eNeuro 2019, 6, 0148-19. [Google Scholar] [CrossRef]
- Fremeau, R.T., Jr.; Voglmaier, S.; Seal, R.P.; Edwards, R.H. VGLUTs define subsets of ex-citatory neurons and suggest novel roles for glutamate. Trends Neurosci. 2004, 27, 98–103. [Google Scholar] [CrossRef]
- D’Aiuto, L.; Zhi, Y.; Kumar Das, D.; Wilcox, M.R.; Johnson, J.W.; McClain, L.; MacDon-ald, M.L.; Di Maio, R.; Schurdak, M.E.; Piazza, P.; et al. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 2014, 10, 365–377. [Google Scholar] [CrossRef]
- Togo, K.; Fukusumi, H.; Shofuda, T.; Ohnishi, H.; Yamazaki, H.; Hayashi, M.K.; Kawasaki, N.; Takei, N.; Nakazawa, T.; Saito, Y.; et al. Postsynaptic structure formation of human iPS cell-derived neurons takes longer than presynaptic formation during neural differentiation in vitro. Mol. Brain 2021, 14, 149. [Google Scholar] [CrossRef]
- Setien, M.B.; Smith, K.R.; Howard, K.; Williams, K.; Suhr, S.T.; Purcell, E.K. Differentia-tion and characterization of neurons derived from rat iPSCs. J. Neurosci. Methods 2020, 338, 108693. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C. Functions of Presynaptic Voltage-gated Calcium Channels. Function 2021, 2, zqaa027. [Google Scholar] [CrossRef] [PubMed]
- Resende, R.R.; Adhikari, A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun. Signal 2009, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Villaça, Y.; Filgueiras, C.C.; Manhães, A.C. Developmental aspects of the cholinergic system. Behav. Brain Res. 2011, 221, 367–378. [Google Scholar] [CrossRef]
- Azmitia, E.C. Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 2001, 56, 413–424. [Google Scholar] [CrossRef]
- Xing, L.; Kalebic, N.; Namba, T.; Vaid, S.; Wimberger, P.; Huttner, W. Serotonin receptor 2A activation promotes evolutionarily relevant basal progenitor proliferation in the developing neocortex. Neuron 2020, 108, 1113–1129. [Google Scholar] [CrossRef]
- Weber, E.T.; Andrade, R. Htr2a Gene and 5-HT(2A) Receptor Expression in the Cerebral Cortex Studied Using Genetically Modified Mice. Front. Neurosci. 2010, 4, 36. [Google Scholar]
- Tu, J.C.; Xiao, B.; Naisbitt, S.; Yuan, J.P.; Petralia, R.S.; Brakeman, P.; Doan, A.; Aakalu, V.K.; Lanahan, A.A.; Sheng, M.; et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999, 23, 583–592. [Google Scholar] [CrossRef]
- Cervetto, C.; Maura, G.; Marcoli, M. Inhibition of presynaptic release-facilitatory kainate autoreceptors by extracellular cyclic GMP. J. Pharmacol. Exp. Ther. 2010, 332, 210–219. [Google Scholar] [CrossRef]
- Caiazzo, M.; Dell’Anno, M.T.; Dvoretskova, E.; Lazarevic, D.; Taverna, S.; Leo, D.; Sotnikova, T.D.; Menegon, A.; Roncaglia, P.; Colciago, G.; et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 2011, 476, 224–227. [Google Scholar] [CrossRef]
- Hook, V.; Brennand, K.J.; Kim, Y.; Toneff, T.; Funkelstein, L.; Lee, K.C.; Ziegler, M.; Gage, F.H. Human iPSC neurons display activity-dependent neurotransmitter secretion: Aberrant catecholamine levels in schizophrenia neurons. Stem Cell Rep. 2014, 3, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, E.; Nihira, T.; Uchino, A.; Imaizumi, Y.; Okada, Y.; Akamatsu, W.; Takahashi, K.; Hayakawa, H.; Nagai, M.; Ohyama, M.; et al. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Hum. Mol. Genet. 2015, 24, 4879–4900. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Liu, Y.; Huang, J.; Zhang, X.; Wei, C. Current Approaches and Molecular Mechanisms for Directly Reprogramming Fibroblasts Into Neurons and Dopamine Neurons. Front. Aging Neurosci. 2021, 13, 738529. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, R.; Wu, X.; Zhao, Y.; Fan, Y.; Xiao, Z.; Han, J.; Sun, L.; Wang, X.; Dai, J. Rapid and Efficient Conversion of Human Fibroblasts into Functional Neurons by Small Molecules. Stem Cell Rep. 2019, 3, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Autar, K.; Guo, X.; Rumsey, J.W.; Long, C.J.; Akanda, N.; Jackson, M.; Narasimhan, N.S.; Caneus, J.; Morgan, D.; Hickman, J.J. A functional hiPSC-cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Rep. 2022, 17, 96–109. [Google Scholar] [CrossRef]
- Wen, Z.; Nguyen, H.N.; Guo, Z.; Lalli, M.A.; Wang, X.; Su, Y.; Kim, N.S.; Yoon, K.J.; Shin, J.; Zhang, C.; et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 2014, 515, 414–418. [Google Scholar] [CrossRef]
- Cao, S.Y.; Hu, Y.; Chen, C.; Yuan, F.; Xu, M.; Li, Q.; Fang, K.H.; Chen, Y.; Liu, Y. Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule. Sci. Rep. 2017, 7, 3282. [Google Scholar] [CrossRef]
- Dong, Y.; Xiong, M.; Chen, Y.; Tao, Y.; Li, X.; Bhattacharyya, A.; Zhang, S.C. Plasticity of Synaptic Transmission in Human Stem Cell-Derived Neural Networks. iScience 2020, 23, 100829. [Google Scholar] [CrossRef]
- Meldrum, B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 2000, 130, 1007S–1015S. [Google Scholar] [CrossRef]
- Cheung, G.; Bataveljic, D.; Visser, J.; Kumar, N.; Moulard, J.; Dallérac, G.; Mozheiko, D.; Rollenhagen, A.; Ezan, P.; Mongin, C.; et al. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat. Commun. 2022, 13, 753. [Google Scholar] [CrossRef]
- Lewerenz, J.; Maher, P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front. Neurosci. 2015, 9, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal-Price, A.; Meek, M.E. Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity. Pharmacol. Ther. 2017, 179, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Induced Pluripotent Stem Cell-Derived Human Glutamatergic Neurons as a Platform for Mechanistic Assessment of Inducible Excitotoxicity in Drug Discovery. In Neurotoxins; McDuffie, J.E., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Shirakawa, T.; Suzuki, I. Approach to Neurotoxicity using Human iPSC Neurons: Consortium for Safety Assessment using Human iPS Cells. Curr. Pharm. Biotechnol. 2020, 21, 780–786. [Google Scholar] [CrossRef]
- Qian, L.; TCW, J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int. J. Mol. Sci. 2021, 22, 1203. [Google Scholar] [CrossRef]
- Eriksen, J.; Li, F.; Edwards, R.H. The mechanism and regulation of vesicular glutamate transport: Coordination with the synaptic vesicle cycle. Biochim. Biophys. Acta BBA Biomembr. 2020, 1862, 183259. [Google Scholar] [CrossRef] [PubMed]
- Phillis, J.W.; Ren, J.; O’Regan, M.H. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: Studies with DL-threo-beta-benzyloxyaspartate. Brain Res. 2000, 868, 105–112. [Google Scholar] [CrossRef]
- Bridges, R.J.; Natale, N.R.; Patel, S.A. System xc− cystine/glutamate antiporter: An update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 2012, 165, 20–34. [Google Scholar] [CrossRef]
- Cervetto, C.; Alloisio, S.; Frattaroli, D.; Mazzotta, M.C.; Milanese, M.; Gavazzo, P.; Passalacqua, M.; Nobile, M.; Maura, G.; Marcoli, M. The P2X7 receptor as a route for non-exocytotic glutamate release: Dependence on the carboxyl tail. J. Neurochem. 2013, 124, 821–831. [Google Scholar] [CrossRef]
- Mannelli, L.D.C.; Marcoli, M.; Micheli, L.; Zanardelli, M.; Maura, G.; Ghelardini, C.; Cervetto, C. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: A pain mechanism mediated by Pannexin 1. Neuropharmacology 2015, 97, 133–141. [Google Scholar] [CrossRef]
- Naito, S.; Ueda, T. Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 1985, 44, 99–109. [Google Scholar] [CrossRef]
- Nicholls, D.; Attwell, D. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 1990, 11, 462–468. [Google Scholar] [CrossRef]
- Gundersen, V.; Chaudhry, F.A.; Bjaalie, J.G.; Fonnum, F.; Ottersen, O.P.; Storm-Mathisen, J. Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: A quantitative immunogold analysis in rat hippocampus. J. Neurosci. 1998, 18, 6059–6070. [Google Scholar] [CrossRef] [PubMed]
- Morland, C.; Nordengen, K.; Larsson, M.; Prolo, L.M.; Farzampour, Z.; Reimer, R.J.; Gundersen, V. Vesicular uptake and exocytosis of L-aspartate is independent of sialin. FASEB J. 2013, 27, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Herring, B.E.; Silm, K.; Edwards, R.H.; Nicoll, R.A. Is aspartate an excitatory neurotransmitter? J. Neurosci. 2015, 35, 10168–10171. [Google Scholar] [CrossRef]
- Gras, C.; Amilhon, B.; Lepicard, E.M.; Poirel, O.; Vinatier, J.; Herbin, M.; Dumas, S.; Tzavara, E.T.; Wade, M.R.; Nomikos, G.G.; et al. The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat. Neurosci. 2008, 11, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Amilhon, B.; Lepicard, E.; Renoir, T.; Mongeau, R.; Popa, D.; Poirel, O.; Miot, S.; Gras, C.; Gardier, A.M.; Gallego, J.; et al. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci. 2010, 30, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Vigneault, É.; Poirel, O.; Riad, M.; Prud’homme, J.; Dumas, S.; Turecki, G.; Fasano, C.; Mechawar, N.; El Mestikawy, S. Distribution of vesicular glutamate transporters in the human brain. Front. Neuroanat. 2015, 9, 23. [Google Scholar] [CrossRef]
- Stensrud, M.J.; Sogn, C.J.; Gundersen, V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J. Comp. Neurol. 2015, 523, 2698–2713. [Google Scholar] [CrossRef]
- Gajera, C.R.; Fernandez, R.; Postupna, N.; Montine, K.S.; Fox, E.J.; Tebaykin, D.; Angelo, M.; Bendall, S.C.; Keene, C.D.; Montine, T.J. Mass synaptometry: High-dimensional multi parametric assay for single synapses. J. Neurosci. Methods 2019, 312, 73–83. [Google Scholar] [CrossRef]
- Gajera, C.R.; Fernandez, R.; Postupna, N.; Montine, K.S.; Keene, C.D.; Bendall, S.C.; Montine, T.J. Mass Synaptometry: Applying Mass Cytometry to Single Synapse Analysis. Methods Mol. Biol. 2022, 2417, 69–88. [Google Scholar]
- Amaroli, A.; Marcoli, M.; Venturini, A.; Passalacqua, M.; Agnati, L.F.; Signore, A.; Raffetto, M.; Maura, G.; Benedicenti, S.; Cervetto, C. Near-infrared laser photons induce glutamate release from cerebrocortical nerve terminals. J. Biophotonics 2018, 11, e201800102. [Google Scholar] [CrossRef] [PubMed]
- Cervetto, C.; Vergani, L.; Passalacqua, M.; Ragazzoni, M.; Venturini, A.; Cecconi, F.; Berretta, N.; Mercuri, N.; D’Amelio, M.; Maura, G.; et al. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromol. Med. 2016, 18, 50–68. [Google Scholar] [CrossRef]
- Phongpreecha, T.; Gajera, C.R.; Liu, C.C.; Vijayaragavan, K.; Chang, A.L.; Becker, M.; Fallahzadeh, R.; Fernandez, R.; Postupna, N.; Sherfield, E.; et al. Single-synapse analyses of Alzheimer’s disease implicate pathologic tau, DJ1, CD47, and ApoE. Sci. Adv. 2021, 7, eabk0473. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, D.; Shang, Y.; Qi, X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2020, 1866, 165431. [Google Scholar] [CrossRef] [PubMed]
- Fruscione, F.; Valente, P.; Sterlini, B.; Romei, A.; Baldassari, S.; Fadda, M.; Prestigio, C.; Giansante, G.; Sartorelli, J.; Rossi, P.; et al. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 2018, 141, 1000–1016. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Schmuck, M.R.; Keil, K.P.; Sethi, S.; Morgan, R.K.; Lein, P.J. Automated high content image analysis of dendritic arborization in primary mouse hippocampal and rat cortical neurons in culture. J. Neurosci. Methods 2020, 341, 108793. [Google Scholar] [CrossRef] [PubMed]
- Benfenati, V.; Caprini, M.; Nicchia, G.P.; Rossi., A.; Dovizio, M.; Cervetto, C.; Nobile, M.; Ferroni, S. Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia. Channels 2009, 3, 323–336. [Google Scholar] [CrossRef]
- Pietropaoli, S.; Leonetti, A.; Cervetto, C.; Venturini, A.; Mastrantonio, R.; Baroli, G.; Persichini, T.; Colasanti, M.; Maura, G.; Marcoli, M.; et al. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression. Mol. Neurobiol. 2018, 55, 7259–7270. [Google Scholar] [CrossRef]
- Marcoli, M.; Cervetto, C.; Paluzzi, P.; Guarnieri, S.; Raiteri, M.; Maura, G. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: Control by presynaptic 5-HT1D receptors. Neurochem. Int. 2006, 49, 12–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldassari, S.; Cervetto, C.; Amato, S.; Fruscione, F.; Balagura, G.; Pelassa, S.; Musante, I.; Iacomino, M.; Traverso, M.; Corradi, A.; et al. Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. Int. J. Mol. Sci. 2022, 23, 10545. https://doi.org/10.3390/ijms231810545
Baldassari S, Cervetto C, Amato S, Fruscione F, Balagura G, Pelassa S, Musante I, Iacomino M, Traverso M, Corradi A, et al. Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. International Journal of Molecular Sciences. 2022; 23(18):10545. https://doi.org/10.3390/ijms231810545
Chicago/Turabian StyleBaldassari, Simona, Chiara Cervetto, Sarah Amato, Floriana Fruscione, Ganna Balagura, Simone Pelassa, Ilaria Musante, Michele Iacomino, Monica Traverso, Anna Corradi, and et al. 2022. "Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons" International Journal of Molecular Sciences 23, no. 18: 10545. https://doi.org/10.3390/ijms231810545
APA StyleBaldassari, S., Cervetto, C., Amato, S., Fruscione, F., Balagura, G., Pelassa, S., Musante, I., Iacomino, M., Traverso, M., Corradi, A., Scudieri, P., Maura, G., Marcoli, M., & Zara, F. (2022). Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. International Journal of Molecular Sciences, 23(18), 10545. https://doi.org/10.3390/ijms231810545