Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression
<p>Expression of scFV-58F intrabody induces fewer transcriptional changes than treatment with HAT inhibitors. (<b>A</b>) Hierarchical clustering of RNAseq data from three biological replicates for each analyzed condition in yeast cells (CUR = curcumin-treated cells, CPTH2 = CPTH2-treated cells, DMSO = DMSO-treated cells, 58F = cells expressing scFv-58F, 645 = cells expressing scFv-645) (<b>B</b>) Principal Component Analysis (PCA) of the RNAseq data from three experimental conditions 58F, CPTH2, and DMSO (negative control). For clarity, Curcumin-treated samples (which account for most of the variation) and the scFv-645 samples were omitted in this PCA plot and are reported in <a href="#app1-ijms-23-08892" class="html-app">Supplementary Figure S2A</a>. Among the remaining nine samples, the principal component of variation is accounted for by CPTH2 samples (75% of variance explained by the first principal component, i.e., PC1). (<b>C</b>,<b>D</b>) MA plot (i.e., log2 fold-changes on y-axis versus log average expression signal on x-axis) of the significantly differentially expressed genes (FDR = 0.05), for CPTH2-treated cells vs. the DMSO-treated control cells (<b>C</b>) and for scFv-58F expressing cells vs. the DMSO-treated control cells (<b>D</b>). The number of significantly up-/down-regulated genes (p.adj < 0.05 & FC cutoff = 1.5) is reported for both comparisons.</p> "> Figure 2
<p>The expression of scFv-58F intrabody modulates a small but largely overlapping subset of genes altered by HATis. (<b>A</b>) Heatmap of mRNAs (<span class="html-italic">n</span> = 435) that are significantly modulated after CPTH2 treatment. mRNAs are sorted by log2FC in CPTH2 vs. DMSO: expression patterns in the presence of CPTH2 and Curcumin show overall strong similarity. Statistical constraints: FC cut-off = 2; p.adj(CPTH2 vs. DMSO) < 0.05; p.adj(scFv-645 vs. DMSO) > 0.05. (<b>B</b>) Heatmap of mRNAs (<span class="html-italic">n</span> = 89) that are significantly modulated by scFv-58F. The genes modulated by the control intrabody scFv-645 were subtracted (see statistical constraints below). mRNAs are sorted by log2FC in scFv-58F vs. DMSO: expression patterns in the presence of scFv-58F and CPTH2 treatment are similar, while the expression pattern is opposite with Curcumin treatment. Swiss-Prot Entry names were provided in the heatmap where primary gene names were not available. Statistical constraints: FC cut-off = 1.5; p.adj(scFv-58F vs. DMSO) < 0.05; p.adj(scFv-58F vs. scFv-645) < 0.05; p.adj(scFv-645 vs. DMSO) > 0.05. (<b>C</b>). Venn diagram showing the overlap between DEGs in scFv-58F and CPTH2 treatments vs. DMSO (FC cutoff = 1.5). (<b>D</b>) Validation through RT-qPCR of selected candidate mRNAs identified from RNAseq data. Log2FC +/− SD values of real-time PCR (solid color) and RNAseq data (striped) for the four chosen differentially expressed genes in the presence of scFv-58F. Values for each treatment are representative of <span class="html-italic">n</span> = 3 biological replicates. For real-time PCR data: ΔCt = Ct GENE - Ct TUB1. log2(FC) = −ΔΔCt normalized on tubulin (TUB1) and DMSO control samples. SD = 2 var∆Ct DMSO + (var∆Ct TREATMENT), where “TREATMENT” represents each of the four different experimental conditions (CUR; CPTH2; scFv-58F; scFv-645). Student t-test (TREATMENT vs. DMSO, two tails) was performed on ΔCt values. Calculated <span class="html-italic">p</span> values were adjusted with the Benjamini–Hochberg procedure; the same statistical correction was applied for RNAseq data; * p.adj < 0.05, ** p.adj < 0.01, *** p.adj < 0.001.</p> "> Figure 3
<p>Gene ontology enrichment analysis (<b>A</b>) Gene ontology enrichment analysis of the genes significantly modulated by scFv-58F expression. Dot plots depict the main significant terms for the categories “Biological Process” (<b>left</b>) and “Cellular Component” (<b>right</b>). (<b>B</b>) Cnet plot displaying genes involved in the gene-ontology significant terms, with log2 fold-change expression with respect to the control DMSO.</p> "> Figure 4
<p>SscFv-58F expression in the mammalian system. (<b>A</b>) Stably transfected HeLa cells expressing HA tagged scFv-58F-NLS (HeLa NLS 58F), HA tagged scFv-58F-Cyto (HeLa Cyto 58F), and WT HeLa cells not transfected (as control, HeLa ctrl) were used in the experiment. Lysates enriched in nucleosomes were prepared and subjected to immunoprecipitation (IP) with anti-total Histone H3 antibody (Anti-H3 Tot). Immunoprecipitated proteins were detected by western blot (WB) using the anti-HA antibody (right blot) or anti-H3 Tot antibody (middle blot). On the right the input non immunoprecipitated extract was blotted with the anti-HA antibody. (<b>B</b>) The same stably transfected HeLa cells and WT HeLa cells were used for this IP experiment. The nucleosome enriched lysates were immunoprecipitated with an antibody against the pan acetylated Histone H3 (anti-Pan AcKH3). Immunoprecipitated proteins were detected by western blot (WB) using the anti-HA antibody (right blot) or the anti-Pan AcKH3 antibody (middle blot). On the right, the input extract not immunoprecipitated were blotted with the anti-HA antibody. HeLa mix: a mix of nucleosome extract prepared from HeLa transfected with scFv-58F-NLS (HeLa NLS 58F), HeLa transfected with scFv-58F-Cyto (HeLa Cyto 58F), and not transfected WT HeLa cells (HeLa ctrl) immunoprecipitated with a specific-antibody isotype matched control immunoglobulin (IgG). (<b>C</b>) RNA was prepared from WT HeLa cells (WT), transfected HeLa cells stably expressing scFv-58F-NLS (58F-NLS), and transfected HeLa cells stably expressing scFv-645-NLS (645-NLS). qPCR analysis of SMAD3, SP2, and MKNK2 genes was performed. Data is represented as relative RNA levels of SMAD3, SP2, or MKNK2 normalized to beta actin (ACTB gene). (<span class="html-italic">n</span> = 6 per groups, one-way ANOVA, post-hoc Tukey’s multiple comparison test: WT vs. 58F-NLS <span class="html-italic">p</span> < 0.05 *, <span class="html-italic">p</span> < 0.01 **. All other comparisons are not significant). Error bars represent SEM, dots over the histogram represent individual biological replicates.</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Transcriptional Effects of the Anti-H3K9ac scFv-58F Intrabody in Comparison to Those Induced by HAT Inhibitors
2.2. A Large Fraction (~70%) of the Genes Specifically Modulated by the scFv-58F Intrabody Are Also Modulated by CPTH2 Treatment
2.3. Gene Ontology Enrichment Analysis Links H3K9ac-Specific Interference to Transcriptional Regulation of Ribosome-Related Genes
2.4. Gene Expression in Mammalian Cells Expressing scFv-58F
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Shvedunova, M.; Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 2022, 23, 329–349. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 2014, 13, 337–356. [Google Scholar] [CrossRef]
- Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic protein families: A new frontier for drug discovery. Nat. Rev. Drug Discov. 2012, 11, 384–400. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, N.; Sharma, A.R.; Baylin, S.B. Epigenetic Therapeutics: A New Weapon in the War Against Cancer. Annu. Rev. Med. 2016, 67, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Gillette, T.G.; Hill, J.A. Readers, Writers, and Erasers. Circ. Res. 2015, 116, 1245–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.Y.; Kim, H.; Li, W.; Kong, A.-N.T. Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers. Curr. Top. Med. Chem. 2015, 16, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Falkenberg, K.J.; Johnstone, R. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef]
- Muller, S.; Filippakopoulos, P.; Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 2011, 13, e29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, M.F.; Cuendet, M.; Bertrand, P. HDAC inhibitors: A 2013–2017 patent survey. Expert Opin. Ther. Patents 2018, 28, 365–381. [Google Scholar] [CrossRef]
- Manzo, F.; Tambaro, F.P.; Mai, A.; Altucci, L. Histone acetyltransferase inhibitors and preclinical studies. Expert Opin. Ther. Patents 2009, 19, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.L.; Nelson, K.M.; Strasser, J.M.; Barsyte-Lovejoy, D.; Szewczyk, M.M.; Organ, S.; Cuellar, M.; Singh, G.; Shrimp, J.H.; Nguyen, N.; et al. Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors. Nat. Commun. 2017, 8, 1527. [Google Scholar] [CrossRef] [Green Version]
- Allis, C.D.; Berger, S.L.; Cote, J.; Dent, S.; Jenuwien, T.; Kouzarides, T.; Pillus, L.; Reinberg, D.; Shi, Y.; Shiekhattar, R.; et al. New Nomenclature for Chromatin-Modifying Enzymes. Cell 2007, 131, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.Y.; Zhao, Y.; LaMonica, J.M.; Zhou, Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 2017, 8, 15315. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-C.; Liu, C.-Y.; Lin, T.E.; Hsieh, J.-H.; Sung, T.-Y.; Tseng, H.-J.; Yang, J.-M.; Huang, W.-J. Novel Class IIa-Selective Histone Deacetylase Inhibitors Discovered Using an in Silico Virtual Screening Approach. Sci. Rep. 2017, 7, 3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biocca, S.; Neuberger, M.; Cattaneo, A. Expression and targeting of intracellular antibodies in mammalian cells. EMBO J. 1990, 9, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Biocca, S.; Cattaneo, A. Intracellular immunization: Antibody targeting to subcellular compartments. Trends Cell Biol. 1995, 5, 248–252. [Google Scholar] [CrossRef]
- Visintin, M.; Tse, E.; Axelson, H.; Rabbitts, T.H.; Cattaneo, A. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc. Natl. Acad. Sci. USA 1999, 96, 11723–11728. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.R. A new means of inducibly inactivating a cellular protein. Mol. Cell. Biol. 1988, 8, 2638–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirichella, M.; Lisi, S.; Fantini, M.; Goracci, M.; Calvello, M.; Brandi, R.; Arisi, I.; D’Onofrio, M.; Di Primio, C.; Cattaneo, A. Post-translational selective intracellular silencing of acetylated proteins with de novo selected intrabodies. Nat. Chem. Biol. 2017, 14, 279–282. [Google Scholar] [CrossRef]
- Cattaneo, A.; Chirichella, M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol. 2018, 37, 578–591. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, F.; Bizzarri, B.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Fioravanti, R.; Granese, A.; Carradori, S.; Tosi, F.; et al. A Novel Histone Acetyltransferase Inhibitor Modulating Gcn5 Network: Cyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl)hydrazone. J. Med. Chem. 2008, 52, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Yu, L.-R.; Wang, L.; Zhang, Z.; Kasper, L.H.; Lee, J.-E.; Wang, C.; Brindle, P.; Dent, S.; Ge, K. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 2010, 30, 249–262. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci. 2017, 131, 1781–1799. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Park, B.; Goel, A.; Aggarwal, B.B. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011, 6, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Verza, F.A.; Das, U.; Fachin, A.L.; Dimmock, J.R.; Marins, M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers 2020, 12, 1664. [Google Scholar] [CrossRef]
- Hatamipour, M.; Johnston, T.P.; Sahebkar, A. One Molecule, Many Targets and Numerous Effects: The Pleiotropy of Curcumin Lies in its Chemical Structure. Curr. Pharm. Des. 2018, 24, 2129–2136. [Google Scholar] [CrossRef]
- Gates, L.A.; Shi, J.; Rohira, A.D.; Feng, Q.; Zhu, B.; Bedford, M.T.; Sagum, C.A.; Jung, S.Y.; Qin, J.; Tsai, M.-J.; et al. Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J. Biol. Chem. 2017, 292, 14456–14472. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Maertens, A.M.; Hyland, E.M.; Dai, J.; Norris, A.; Boeke, J.D.; Bader, J.S. HistoneHits: A database for histone mutations and their phenotypes. Genome Res. 2009, 19, 674–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Sutter, B.M.; Li, B.; Tu, B.P. Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes. Mol. Cell 2011, 42, 426–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; McCormick, M.A.; Kennedy, B.K.; Tu, B.P. Integration of Multiple Nutrient Cues and Regulation of Lifespan by Ribosomal Transcription Factor Ifh1. Cell Rep. 2013, 4, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanyam, K.; Altaf, M.; Varier, R.A.; Swaminathan, V.; Ravindran, A.; Sadhale, P.P.; Kundu, T.K. Polyisoprenylated Benzophenone, Garcinol, a Natural Histone Acetyltransferase Inhibitor, Represses Chromatin Transcription and Alters Global Gene Expression. J. Biol. Chem. 2004, 279, 33716–33726. [Google Scholar] [CrossRef] [Green Version]
- Rothbart, S.B.; Strahl, B.D. Interpreting the Language of Histone and DNA Modifications. Biochim. Biophys. Acta Gene Regul. Mech. 2014, 1839, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, W.-C.; Sutter, B.M.; Ruess, H.; Barnes, S.D.; Malladi, V.S.; Correspondence, B.P.T. Glucose Starvation Induces a Switch in the Histone Acetylome for Activation of Gluconeogenic and Fat Metabolism Genes. Mol. Cell 2022, 82, 60–74.e5. [Google Scholar] [CrossRef]
- Bora-Tatar, G.; Dayangaç-Erden, D.; Demir, A.S.; Dalkara, S.; Yelekçi, K.; Erdem-Yurter, H. Molecular Modifications on Carboxylic Acid Derivatives as Potent Histone Deacetylase Inhibitors: Activity and Docking Studies. Bioorg. Med. Chem. 2009, 17, 5219–5228. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, Z.; Jones, W.; Pavlovicz, R.E.; Liu, S.; Yu, J.; Li, P.-K.; Lin, J.; Fuchs, J.R.; Marcucci, G.; et al. Curcumin is a potent DNA hypomethylation agent. Bioorganic Med. Chem. Lett. 2009, 19, 706–709. [Google Scholar] [CrossRef]
- Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K.R.; Harris, D.H.; Kurzrock, R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 2008, 7, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, T.; Ti, X.; Shi, J.; Wu, C.; Ren, X.; Yin, H. Curcumin Promotes Apoptosis in A549/DDP Multidrug-Resistant Human Lung Adenocarcinoma Cells through an MiRNA Signaling Pathway. Biochem. Biophys. Res. Commun. 2010, 399, 1–6. [Google Scholar] [CrossRef]
- Kuo, Y.-M.; Andrews, A.J. Quantitating the Specificity and Selectivity of Gcn5-Mediated Acetylation of Histone H3. PLoS ONE 2013, 8, e54896. [Google Scholar] [CrossRef]
- Dekker, F.J.; Van Den Bosch, T.; Martin, N.I. Small Molecule Inhibitors of Histone Acetyltransferases and Deacetylases Are Potential Drugs for Inflammatory Diseases. Drug Discov. Today 2014, 19, 654–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, B.; Puigserver, P. GCN5 Acetyltransferase in Cellular Energetic and Metabolic Processes. Biochim. Biophys. Acta Gene Regul. Mech. 2021, 1864, 194626. [Google Scholar] [CrossRef]
- Chen, L.-F.; Fischle, W.; Verdin, E.; Greene, W.C. Duration of Nuclear NF-κB Action Regulated by Reversible Acetylation. Science 2001, 293, 1653–1657. [Google Scholar] [CrossRef] [Green Version]
- Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; et al. Selective Inhibition of BET Bromodomains. Nature 2010, 468, 1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrieu, G.; Belkina, A.C.; Denis, G.V. Clinical Trials for BET Inhibitors Run Ahead of the Science. Drug Discov. Today. Technol. 2016, 19, 45. [Google Scholar] [CrossRef] [Green Version]
- Winter, G. Harnessing Evolution to Make Medicines (Nobel Lecture). Angew. Chemie Int. Ed. 2019, 58, 14438–14445. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, A.R.M.; Sidhu, S.; Dübel, S.; McCafferty, J. Beyond Natural Antibodies: The Power of in Vitro Display Technologies. Nat. Biotechnol. 2011, 29, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Melchionna, T.; Cattaneo, A. A Protein Silencing Switch by Ligand-Induced Proteasome-Targeting Intrabodies. J Mol Biol 2007, 374, 641–654. [Google Scholar] [CrossRef]
- Clift, D.; McEwan, W.A.; Labzin, L.I.; Konieczny, V.; Mogessie, B.; James, L.C.; Schuh, M. A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell 2017, 171, 1692. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, R.; Pfaendler, R.; Ambrosi, C.; Butz, S.; Giuliani, S.; Bryan, E.; Sheahan, T.W.; Gable, A.L.; Schmolka, N.; Manzo, M.; et al. ChromID Identifies the Protein Interactome at Chromatin Marks. Nat. Biotechnol. 2020, 38, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Mukai, M.; Ueda, J.; Muraki, M.; Stasevich, T.J.; Horikoshi, N.; Kujirai, T.; Kita, H.; Kimura, T.; Hira, S.; et al. Genetically Encoded System to Track Histone Modification in Vivo. Sci. Rep. 2013, 3, srep02436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardiu, M.E.; Washburn, M.P. Building Protein-Protein Interaction Networks with Proteomics and Informatics Tools. J. Biol. Chem. 2011, 286, 23645–23651. [Google Scholar] [CrossRef] [Green Version]
- Quevedo, C.E.; Cruz-Migoni, A.; Bery, N.; Miller, A.; Tanaka, T.; Petch, D.; Bataille, C.J.R.; Lee, L.Y.W.; Fallon, P.S.; Tulmin, H.; et al. Small Molecule Inhibitors of RAS-Effector Protein Interactions Derived Using an Intracellular Antibody Fragment. Nat. Commun. 2018, 9, 3169. [Google Scholar] [CrossRef]
- Henikoff, S.; Shilatifard, A. Histone Modification: Cause or Cog? Trends Genet. 2011, 27, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Patil, V.; Gehre, M.; Noh, K.M. Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020, 9, 2716. [Google Scholar] [CrossRef] [PubMed]
- Visintin, M.; Meli, G.A.; Cannistraci, I.; Cattaneo, A. Intracellular Antibodies for Proteomics. J. Immunol. Methods 2004, 290, 135–153. [Google Scholar] [CrossRef]
- Hollenberg, S.M.; Sternglanz, R.; Cheng, P.F.; Weintraub, H. Identification of a New Family of Tissue-Specific Basic Helix-Loop-Helix Proteins with a Two-Hybrid System. Mol. Cell. Biol. 1995, 15, 3813–3822. [Google Scholar] [CrossRef] [Green Version]
- Gietz, D.; Jean, A.S.; Woods, R.A.; Schiestl, R.H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992, 20, 1425. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry. Nature 2008, 456, 53. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisi, S.; Trovato, M.; Vitaloni, O.; Fantini, M.; Chirichella, M.; Tognini, P.; Cornuti, S.; Costa, M.; Groth, M.; Cattaneo, A. Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. Int. J. Mol. Sci. 2022, 23, 8892. https://doi.org/10.3390/ijms23168892
Lisi S, Trovato M, Vitaloni O, Fantini M, Chirichella M, Tognini P, Cornuti S, Costa M, Groth M, Cattaneo A. Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. International Journal of Molecular Sciences. 2022; 23(16):8892. https://doi.org/10.3390/ijms23168892
Chicago/Turabian StyleLisi, Simonetta, Matteo Trovato, Ottavia Vitaloni, Marco Fantini, Michele Chirichella, Paola Tognini, Sara Cornuti, Mario Costa, Marco Groth, and Antonino Cattaneo. 2022. "Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression" International Journal of Molecular Sciences 23, no. 16: 8892. https://doi.org/10.3390/ijms23168892
APA StyleLisi, S., Trovato, M., Vitaloni, O., Fantini, M., Chirichella, M., Tognini, P., Cornuti, S., Costa, M., Groth, M., & Cattaneo, A. (2022). Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. International Journal of Molecular Sciences, 23(16), 8892. https://doi.org/10.3390/ijms23168892