Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases
<p>Summary of the functional role of Ssu72 phosphatase in transcription cycle. (<b>A</b>) During the initiation of transcription, Ssu72 can genetically and functionally interact with RNAPII subunits, TFIIB, and multiple kinases/phosphatases associated with carboxyl-terminal domain (CTD) modification, contributing to preinitiation complex (PIC) formation and transcription start site selection by RNA polymerase II (RNAPII). Furthermore, Ssu72 can regulate initiation–elongation and elongation–termination transitions by dephosphorylating both Ser5P and Ser7P. For example, Ssu72 along with Ser2P phosphatase Fcp1 can restore the hypophosphorylated form of CTD during elongation and induce Ser5P–Pro6 CTD conformation by interacting with Ess1, a proline isomerase, during transcription termination. (<b>B</b>) In the gene loop, Ssu72 can recycle RNAPII by negatively regulating the phosphorylation of Ser5P at the termination region. TFIIB directly binds to RNAPII associated with the terminator activated by Ssu72. In this way, Ssu72 can stabilize the promoter–terminator gene loop with TFIIB. In addition, Ssu72 affects promoter directionality in relation to gene loops. The ncRNA made by RNAPII often starts with bidirectional promoters that synthesize mRNA and ncRNA in opposite directions.</p> "> Figure 2
<p>Schematic representation of Ssu72 phosphatase that regulates sister chromatid segregation during cell cycle. During the G1 phase, cohesin is regulated for the loading and unloading actions of NIPBL–MAU2 and PDS5–WAPL, respectively. In the subsequent step, Esco1/2 acetylates K105 and K106 of SMC3. Sororin reinforces the loading action via the recruitment of Pds5. In the late S phase, Ssu72 phosphatase can counteract the SA2 hyperphosphorylation associated with Cdk1 and Plk1, thus maintaining sister chromatid cohesion. However, the S19 residue with Ssu72 phosphatase activity is dephosphorylated through Aurora B-mediated phosphorylation in late G2 phase and prophase. Additionally, SA2 phosphorylation mediated by Plk1 can lead to the dissociation of cohesin from sister chromatids. Sororin is removed from cohesin by Aurora B. Finally, unresolved cohesins can retain their ring structure until the cleavage of the RAD21 subunit by separase. They can be reused in interphase after HDAC8 deacetylates the acetyl group of SMC3.</p> "> Figure 3
<p>A physiopathological mechanism of Ssu72 regulating hepatic chromosome polyploidization and liver function during postnatal liver development. During postnatal development, Ssu72 plays an essential role in regulating hepatic chromosome polyploidization in a cell cycle-dependent manner. Depletion of Ssu72, which binds to and dephosphorylates Rb, contributes to the activation of E2F and then induces an aberrant DNA replication cycle by overriding the quiescence stage. Persistent elevation of the endoreplication process by Ssu72 depletion can facilitate the genesis of mononucleated polyploid hepatocytes, leading to extensive development of liver diseases such as NAFLD, fibrosis, and steatohepatitis. In addition, accumulation of liver damage such as from infection with HBV or HCV can affect the pathogenesis of HCC.</p> "> Figure 4
<p>Ssu72 regulates autoimmune disease by controlling the homeostatic balance of T cell subsets. (<b>A</b>) Ssu72 regulates inflammatory responses by binding directly to STAT3. In the presence of Ssu72, Treg cell differentiation is increased while Th17 cell differentiation is decreased. mRNA levels of genes encoding proinflammatory cytokines, TBK1, and IKBKE are also downregulated. (<b>B</b>) Ssu72 is activated by various T cell receptor signaling molecules, including T cell receptor (TCR) and IL-2R. Activated Ssu72 can form a complex with PLCγ1, which is required for the development and function of Tregs. NFAT and ERK/JNK, downstream signaling molecules of PLCγ1, are then activated, promoting Foxp3<sup>+</sup>Treg induction. Ssu72 deficiency can prevent CD4 + T cell differentiation into Tregs at the peripheral region by inducing IL-2 and IFNγ, thus promoting CD4 + T cell activation.</p> ">
Abstract
:1. Introduction
2. Mechanism by Which Ssu72 Phosphatase Regulates Gene Expression
2.1. Ssu72 Acts as an RNA Polymerase II CTD Phosphatase in the Transcription Cycle
2.2. 3′-end Cleavage and Polyadenylation by Ssu72 Phosphatase
2.2.1. mRNA 3′-end Processing
2.2.2. Gene Looping
3. Ssu72 in Chromosome Segregation, Telomere Regulation, and DNA Endoreplication
4. Disease Implications of Loss of Ssu72′s Function
4.1. Hepatic Chromosome Polyploidy and Liver Function
4.2. Autoimmune Regulation by Homeostatic Balancing of T Cells
5. Therapeutic Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.S.; Fernandes, G.; Lee, C.W. Protein phosphatases involved in regulating mitosis: Facts and hypotheses. Mol. Cells 2016, 39, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Fahs, S.; Lujan, P.; Kohn, M. Approaches to study phosphatases. ACS Chem. Biol. 2016, 11, 2944–2961. [Google Scholar] [CrossRef] [PubMed]
- Courtney, T.M.; Deiters, A. Optical control of protein phosphatase function. Nat. Commun. 2019, 10, 4384. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Kang, E.; Seo, J.; Cho, S. Phosphorylation dynamics of JNK signaling: Effects of dual-specificity phosphatases (DUSPs) on the JNK pathway. Int. J. Mol. Sci. 2019, 20, 6157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, S.; He, X.; Reyes-Reyes, M.; Moore, C.; Hampsey, M. Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 2004, 14, 387–394. [Google Scholar] [CrossRef]
- Rodriguez-Torres, A.M.; Lamas-Maceiras, M.; Garcia-Diaz, R.; Freire-Picos, M.A. Structurally conserved and functionally divergent yeast Ssu72 phosphatases. FEBS Lett. 2013, 587, 2617–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganem, C.; Devaux, F.; Torchet, C.; Jacq, C.; Quevillon-Cheruel, S.; Labesse, G.; Facca, C.; Faye, G. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J. 2003, 22, 1588–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, K.; Nagaike, T.; Xiang, S.; Kilic, T.; Beh, M.M.; Manley, J.L.; Tong, L. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010, 467, 729–733. [Google Scholar] [CrossRef]
- Wang, Y.T.; Hsiao, W.Y.; Wang, S.W. The fission yeast Pin1 peptidyl-prolyl isomerase promotes dissociation of Sty1 MAPK from RNA polymerase II and recruits Ssu72 phosphatase to facilitate oxidative stress induced transcription. Nucleic Acids Res. 2021, 49, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.W.; Mosley, A.L.; Ramisetty, S.R.; Rodríguez-Molina, J.B.; Washburn, M.P.; Ansari, A.Z. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J. Biol. Chem. 2012, 287, 8541–8551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinhart, A.; Silberzahn, T.; Cramer, P. The mRNA transcription/processing factor Ssu72 is a potential tyrosine phosphatase. J. Biol. Chem. 2003, 278, 15917–15921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.W.; Hampsey, M. Synthetic enhancement of a TFIIB defect by a mutation in SSU72, an essential yeast gene encoding a novel protein that affects transcription start site selection in vivo. Mol. Cell Biol. 1996, 16, 1557–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Khan, A.U.; Cheng, H.; Pappas, D.L., Jr.; Hampsey, M.; Moore, C.L. Functional interactions between the transcription and mRNA 3’ end processing machineries mediated by Ssu72 and Sub1. Genes Dev. 2003, 17, 1030–1042. [Google Scholar] [CrossRef] [Green Version]
- Dichtl, B.; Blank, D.; Ohnacker, M.; Friedlein, A.; Roeder, D.; Langen, H.; Keller, W. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol. Cell 2002, 10, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Allepuz-Fuster, P.; O’Brien, M.J.; González-Polo, N.; Pereira, B.; Dhoondia, Z.; Ansari, A.; Calvo, O. RNA polymerase II plays an active role in the formation of gene loops through the Rpb4 subunit. Nucleic Acids Res. 2019, 47, 8975–8987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zhang, W.; Xing, W. Diverse and conserved roles of the protein Ssu72 in eukaryotes: From yeast to higher organisms. Curr. Genet. 2020. [Google Scholar] [CrossRef]
- Jeronimo, C.; Collin, P.; Robert, F. The RNA polymerase II CTD: The increasing complexity of a low-complexity protein domain. J. Mol. Biol. 2016, 428, 2607–2622. [Google Scholar] [CrossRef]
- Gibbs, E.B.; Lu, F.; Portz, B.; Fisher, M.J.; Medellin, B.P.; Laremore, T.N.; Zhang, Y.J.; Gilmour, D.S.; Showalter, S.A. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat. Commun. 2017, 8, 15233. [Google Scholar] [CrossRef] [Green Version]
- Schüller, R.; Forné, I.; Straub, T.; Schreieck, A.; Texier, Y.; Shah, N.; Decker, T.M.; Cramer, P.; Imhof, A.; Eick, D. Heptad-specific phosphorylation of RNA polymerase II CTD. Mol. Cell 2016, 61, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Jeronimo, C.; Bataille, A.R.; Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev. 2013, 113, 8491–8522. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P. Organization and regulation of gene transcription. Nature 2019, 573, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Spector, B.M.; Turek, M.E.; Price, D.H. Functional interaction of human Ssu72 with RNA polymerase II complexes. PLoS ONE 2019, 14, e0213598. [Google Scholar] [CrossRef] [PubMed]
- Pappas, D.L., Jr.; Hampsey, M. Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell Biol. 2000, 20, 8343–8351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayfield, J.E.; Burkholder, N.T.; Zhang, Y.J. Dephosphorylating eukaryotic RNA polymerase II. Biochim. Biophys. Acta 2016, 1864, 372–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsin, J.P.; Li, W.; Hoque, M.; Tian, B.; Manley, J.L. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. eLife 2014, 3, e02112. [Google Scholar] [CrossRef]
- Cho, E.J.; Kobor, M.S.; Kim, M.; Greenblatt, J.; Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 2001, 15, 3319–3329. [Google Scholar] [CrossRef] [Green Version]
- Irani, S.; Sipe, S.N.; Yang, W.; Burkholder, N.T.; Lin, B.; Sim, K.; Matthews, W.L.; Brodbelt, J.S.; Zhang, Y. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription. J. Biol. Chem. 2019, 294, 8592–8605. [Google Scholar] [CrossRef]
- Rosado-Lugo, J.D.; Hampsey, M. The Ssu72 phosphatase mediates the RNA polymerase II initiation-elongation transition. J. Biol. Chem. 2014, 289, 33916–33926. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Reyes, M.; Hampsey, M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol. Cell Biol. 2007, 27, 926–936. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, S.; Ghazy, M.A.; Moore, C.; Hampsey, M. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Mol. Cell Biol. 2009, 29, 2925–2934. [Google Scholar] [CrossRef] [Green Version]
- Somesh, B.P.; Reid, J.; Liu, W.F.; Søgaard, T.M.; Erdjument-Bromage, H.; Tempst, P.; Svejstrup, J.Q. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 2005, 121, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Eick, D.; Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013, 113, 8456–8490. [Google Scholar] [CrossRef]
- Harlen, K.M.; Churchman, L.S. The code and beyond: Transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 2017, 18, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, N.J. Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut. Science 2016, 352, aad9926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tudek, A.; Lloret-Llinares, M.; Jensen, T.H. The multitasking polyA tail: Nuclear RNA maturation, degradation and export. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018, 373, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkon, R.; Ugalde, A.P.; Agami, R. Alternative cleavage and polyadenylation: Extent, regulation and function. Nat. Rev. Genet. 2013, 14, 496–506. [Google Scholar] [CrossRef]
- Casanal, A.; Kumar, A.; Hill, C.H.; Easter, A.D.; Emsley, P.; Degliesposti, G.; Gordiyenko, Y.; Santhanam, B.; Wolf, J.; Wiederhold, K.; et al. Architecture of eukaryotic mRNA 3’-end processing machinery. Science 2017, 358, 1056–1059. [Google Scholar] [CrossRef] [Green Version]
- Lidschreiber, M.; Easter, A.D.; Battaglia, S.; Rodriguez-Molina, J.B.; Casanal, A.; Carminati, M.; Baejen, C.; Grzechnik, P.; Maier, K.C.; Cramer, P.; et al. The APT complex is involved in non-coding RNA transcription and is distinct from CPF. Nucleic Acids Res. 2018, 46, 11528–11538. [Google Scholar] [CrossRef]
- Ghazy, M.A.; He, X.; Singh, B.N.; Hampsey, M.; Moore, C. The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3’-end processing. Mol. Cell Biol. 2009, 29, 2296–2307. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.R.; Shevtsov, S.P.; Wu, Y.; Mascibroda, L.G.; Peart, N.J.; Huang, K.L.; Sawyer, I.A.; Tong, L.; Dundr, M.; Wagner, E.J. Integrator subunit 4 is a ‘Symplekin-like’ scaffold that associates with INTS9/11 to form the Integrator cleavage module. Nucleic Acids Res. 2018, 46, 4241–4255. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yogesha, S.D.; Cannon, J.R.; Yan, W.; Ellington, A.D.; Brodbelt, J.S.; Zhang, Y. novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72. ACS Chem. Biol. 2013, 8, 2042–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, A.M.; Garg, A.; Shuman, S.; Schwer, B. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3’ processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Nucleic Acids Res. 2020, 48, 4811–4826. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Manley, J.L.; Tong, L. An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes Dev. 2012, 26, 2265–2270. [Google Scholar] [CrossRef] [Green Version]
- Yurko, N.M.; Manley, J.L. The RNA polymerase II CTD “orphan” residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Transcription 2018, 9, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, J.E.; Fan, S.; Wei, S.; Zhang, M.; Li, B.; Ellington, A.D.; Etzkorn, F.A.; Zhang, Y.J. Chemical tools to decipher regulation of phosphatases by proline isomerization on eukaryotic RNA polymerase II. ACS Chem. Biol. 2015, 10, 2405–2414. [Google Scholar] [CrossRef] [Green Version]
- Schier, A.C.; Taatjes, D.J. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev. 2020, 34, 465–488. [Google Scholar] [CrossRef] [Green Version]
- Laine, J.P.; Singh, B.N.; Krishnamurthy, S.; Hampsey, M. A physiological role for gene loops in yeast. Genes Dev. 2009, 23, 2604–2609. [Google Scholar] [CrossRef] [Green Version]
- Lamas-Maceiras, M.; Singh, B.N.; Hampsey, M.; Freire-Picos, M.A. Promoter-terminator gene loops affect alternative 3’-end processing in yeast. J. Biol. Chem. 2016, 291, 8960–8968. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.N.; Hampsey, M. A transcription-independent role for TFIIB in gene looping. Mol. Cell 2007, 27, 806–816. [Google Scholar] [CrossRef]
- Perkins, K.J.; Lusic, M.; Mitar, I.; Giacca, M.; Proudfoot, N.J. Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Mol. Cell 2008, 29, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Richard Boland, C. Non-coding RNA: It’s not junk. Dig. Dis. Sci. 2017, 62, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Tan-Wong, S.M.; Zaugg, J.B.; Camblong, J.; Xu, Z.; Zhang, D.W.; Mischo, H.E.; Ansari, A.Z.; Luscombe, N.M.; Steinmetz, L.M.; Proudfoot, N.J. Gene loops enhance transcriptional directionality. Science 2012, 338, 671–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlmann, F. SMC complexes: From DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 2016, 17, 399–412. [Google Scholar] [CrossRef]
- Murayama, Y.; Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 2014, 505, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurokawa, Y.; Murayama, Y. DNA binding by the Mis4(Scc2) loader promotes topological DNA entrapment by the cohesin ring. Cell Rep. 2020, 33, 108357. [Google Scholar] [CrossRef] [PubMed]
- Kojic, A.; Cuadrado, A.; De Koninck, M.; Giménez-Llorente, D.; Rodríguez-Corsino, M.; Gómez-López, G.; Le Dily, F.; Marti-Renom, M.A.; Losada, A. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat. Struct. Mol. Biol. 2018, 25, 496–504. [Google Scholar] [CrossRef]
- Kim, H.S.; Baek, K.H.; Ha, G.H.; Lee, J.C.; Kim, Y.N.; Lee, J.; Park, H.Y.; Lee, N.R.; Lee, H.; Cho, Y.; et al. The hsSsu72 phosphatase is a cohesin-binding protein that regulates the resolution of sister chromatid arm cohesion. EMBO J. 2010, 29, 3544–3557. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Kim, S.-H.; Park, H.-Y.; Lee, J.; Yoon, J.H.; Choi, S.; Ryu, S.H.; Lee, H.; Cho, H.-S.; Lee, C.-W. Functional interplay between Aurora B kinase and Ssu72 phosphatase regulates sister chromatid cohesion. Nat. Commun. 2013, 4, 2631. [Google Scholar] [CrossRef] [Green Version]
- Losada, A.; Hirano, M.; Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 2002, 16, 3004–3016. [Google Scholar] [CrossRef] [Green Version]
- Losada, A. Cohesin in cancer: Chromosome segregation and beyond. Nat. Rev. Cancer 2014, 14, 389–393. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, X.; Li, Y.; Kim, B.J.; Jia, J.; Huang, Z.; Yang, T.; Fu, X.; Jung, S.Y.; Wang, Y.; et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 2008, 31, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Unal, E.; Heidinger-Pauli, J.M.; Kim, W.; Guacci, V.; Onn, I.; Gygi, S.P.; Koshland, D.E. A molecular determinant for the establishment of sister chromatid cohesion. Science 2008, 321, 566–569. [Google Scholar] [CrossRef]
- Alomer, R.M.; da Silva, E.M.L.; Chen, J.; Piekarz, K.M.; McDonald, K.; Sansam, C.G.; Sansam, C.L.; Rankin, S. Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Proc. Natl. Acad. Sci. USA 2017, 114, 9906–9911. [Google Scholar] [CrossRef] [Green Version]
- Shintomi, K.; Hirano, T. Releasing cohesin from chromosome arms in early mitosis: Opposing actions of Wapl-Pds5 and Sgo1. Genes Dev. 2009, 23, 2224–2236. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, T.; Ladurner, R.; Schmitz, J.; Kreidl, E.; Schleiffer, A.; Bhaskara, V.; Bando, M.; Shirahige, K.; Hyman, A.A.; Mechtler, K.; et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 2010, 143, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Ladurner, R.; Kreidl, E.; Ivanov, M.P.; Ekker, H.; Idarraga-Amado, M.H.; Busslinger, G.A.; Wutz, G.; Cisneros, D.A.; Peters, J.M. Sororin actively maintains sister chromatid cohesion. EMBO J. 2016, 35, 635–653. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Sykora, M.M.; Huis in ‘t Veld, P.J.; Mechtler, K.; Peters, J.M. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc. Natl. Acad. Sci. USA 2013, 110, 13404–13409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumara, I.; Vorlaufer, E.; Stukenberg, P.T.; Kelm, O.; Redemann, N.; Nigg, E.A.; Peters, J.M. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 2002, 9, 515–525. [Google Scholar] [CrossRef]
- Liu, H.; Rankin, S.; Yu, H. Phosphorylation-enabled binding of SGO1–PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 2013, 15, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 2020. [Google Scholar] [CrossRef]
- Dasgupta, T.; Antony, J.; Braithwaite, A.W.; Horsfield, J.A. HDAC8 inhibition blocks SMC3 deacetylation and delays cell cycle progression without affecting cohesin-dependent transcription in MCF7 cancer cells. J. Biol. Chem. 2016, 291, 12761–12770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escandell, J.M.; Carvalho, E.S.; Gallo-Fernandez, M.; Reis, C.C.; Matmati, S.; Luís, I.M.; Abreu, I.A.; Coulon, S.; Ferreira, M.G. Ssu72 phosphatase is a conserved telomere replication terminator. EMBO J. 2019, 38, 476. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef]
- Louzon, M.; Coeurdassier, M.; Gimbert, F.; Pauget, B.; de Vaufleury, A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. Environ. Int. 2019, 131, 105025. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Zakian, V.A. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 1996, 93, 13760–13765. [Google Scholar] [CrossRef] [Green Version]
- Surovtseva, Y.V.; Churikov, D.; Boltz, K.A.; Song, X.; Lamb, J.C.; Warrington, R.; Leehy, K.; Heacock, M.; Price, C.M.; Shippen, D.E. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 2009, 36, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Y.; Redon, S.; Lingner, J. The human CST complex is a terminator of telomerase activity. Nature 2012, 488, 540–544. [Google Scholar] [CrossRef]
- Si-Tayeb, K.; Lemaigre, F.P.; Duncan, S.A. Organogenesis and development of the liver. Dev. Cell 2010, 18, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.K.; Westendorp, B.; de Bruin, A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol. 2013, 23, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Gentric, G.; Desdouets, C. Polyploidization in liver tissue. Am. J. Pathol. 2014, 184, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.W. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin. Cell Dev. Biol. 2013, 24, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Storchova, Z.; Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 2004, 5, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lin, Y.H.; Tarlow, B.; Zhu, H. The origins and functions of hepatic polyploidy. Cell Cycle 2019, 18, 1302–1315. [Google Scholar] [CrossRef]
- Donne, R.; Saroul-Aïnama, M.; Cordier, P.; Celton-Morizur, S.; Desdouets, C. Polyploidy in liver development, homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-J.; Chen, F.; Lau, J.T.Y.; Hu, Y.-P. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis. 2017, 8, e2805. [Google Scholar] [CrossRef]
- Mayhew, C.N.; Bosco, E.E.; Fox, S.R.; Okaya, T.; Tarapore, P.; Schwemberger, S.J.; Babcock, G.F.; Lentsch, A.B.; Fukasawa, K.; Knudsen, E.S. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res. 2005, 65, 4568–4577. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, M.R.; Ow, J.R.; Zafer, G.; van Hul, N.K.M.; Wollmann, H.; Bisteau, X.; Brough, D.; Choi, H.; Kaldis, P. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020, 16, e1009084. [Google Scholar] [CrossRef]
- Kent, L.N.; Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 2019, 19, 326–338. [Google Scholar] [CrossRef]
- Li, D.; Cen, J.; Chen, X.; Conway, E.M.; Ji, Y.; Hui, L. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice. Hepatology 2013, 58, 2109–2121. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeon, Y.; Kim, H.S.; Lee, J.K.; Lim, H.J.; Kang, D.; Cho, H.; Park, C.K.; Lee, H.; Lee, C.W. Hepatocyte homeostasis for chromosome ploidization and liver function is regulated by Ssu72 protein phosphatase. Hepatology 2016, 63, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xu, M.J.; Gao, B. Hepatocytes: A key cell type for innate immunity. Cell Mol. Immunol. 2016, 13, 301–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentric, G.; Celton-Morizur, S.; Desdouets, C. Polyploidy and liver proliferation. Clin. Res. Hepatol. Gastroenterol. 2012, 36, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 2000, 10, 161–171. [Google Scholar] [CrossRef]
- Wilkinson, P.D.; Delgado, E.R.; Alencastro, F.; Leek, M.P.; Roy, N.; Weirich, M.P.; Stahl, E.C.; Otero, P.A.; Chen, M.I.; Brown, W.K.; et al. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. Hepatology 2019, 69, 1242–1258. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, P.D.; Alencastro, F.; Delgado, E.R.; Leek, M.P.; Weirich, M.P.; Otero, P.A.; Roy, N.; Brown, W.K.; Oertel, M.; Duncan, A.W. Polyploid hepatocytes facilitate adaptation and regeneration to chronic liver injury. Am. J. Pathol. 2019, 189, 1241–1255. [Google Scholar] [CrossRef]
- Celton-Morizur, S.; Merlen, G.; Couton, D.; Margall-Ducos, G.; Desdouets, C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J. Clin. Invest. 2009, 119, 1880–1887. [Google Scholar] [CrossRef] [Green Version]
- Gentric, G.; Maillet, V.; Paradis, V.; Couton, D.; L’Hermitte, A.; Panasyuk, G.; Fromenty, B.; Celton-Morizur, S.; Desdouets, C. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J. Clin. Invest. 2015, 125, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Ying, L.; Marino, J.; Hussain, S.P.; Khan, M.A.; You, S.; Hofseth, A.B.; Trivers, G.E.; Dixon, D.A.; Harris, C.C.; Hofseth, L.J. Chronic inflammation promotes retinoblastoma protein hyperphosphorylation and E2F1 activation. Cancer Res. 2005, 65, 9132–9136. [Google Scholar] [CrossRef] [Green Version]
- Brown, V.D.; Phillips, R.A.; Gallie, B.L. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol. Cell Biol. 1999, 19, 3246–3256. [Google Scholar] [CrossRef] [Green Version]
- McNair, C.; Xu, K.; Mandigo, A.C.; Benelli, M.; Leiby, B.; Rodrigues, D.; Lindberg, J.; Gronberg, H.; Crespo, M.; De Laere, B.; et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Investig. 2018, 128, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Lehman, H.K. Autoimmunity and immune dysregulation in primary immune deficiency disorders. Curr. Allergy Asthma Rep. 2015, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Liu, C.Y.; Shao, Z.H. Advances in the role of helper T cells in autoimmune diseases. Chin. Med. J. 2020, 133, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Salaman, M.R.; Gould, K.G. Breakdown of T-cell ignorance: The tolerance failure responsible for mainstream autoimmune diseases? J. Transl. Autoimmun. 2020, 3, 100070. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, A.H. Differential diagnosis of rheumatoid arthritis. Am. J. Med. 1988, 85, 2–11. [Google Scholar] [CrossRef]
- Wang, W.; Shao, S.; Jiao, Z.; Guo, M.; Xu, H.; Wang, S. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol. Int. 2012, 32, 887–893. [Google Scholar] [CrossRef]
- Gharibi, T.; Babaloo, Z.; Hosseini, A.; Abdollahpour-Alitappeh, M.; Hashemi, V.; Marofi, F.; Nejati, K.; Baradaran, B. Targeting STAT3 in cancer and autoimmune diseases. Eur. J. Pharmacol. 2020, 878, 173107. [Google Scholar] [CrossRef]
- Fasching, P.; Stradner, M.; Graninger, W.; Dejaco, C.; Fessler, J. therapeutic potential of targeting the TH17/TREG axis in autoimmune disorders. Molecules 2017, 22, 134. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, J.S.; Byun, J.K.; Jhun, J.; Jung, K.; Seo, H.B.; Moon, Y.M.; Kim, H.Y.; Park, S.H.; Cho, M.L. PTEN ameliorates autoimmune arthritis through down-regulating STAT3 activation with reciprocal balance of Th17 and Tregs. Sci. Rep. 2016, 6, 34617. [Google Scholar] [CrossRef]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, E.K.; Kwon, J.E.; Lee, J.K.; Lee, D.; Kim, S.Y.; Seo, H.B.; Na, H.S.; Jung, K.; Kwok, S.K.; et al. Ssu72 attenuates autoimmune arthritis via targeting of STAT3 signaling and Th17 activation. Sci. Rep. 2017, 7, 5506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanford, S.M.; Svensson, M.N.; Sacchetti, C.; Pilo, C.A.; Wu, D.J.; Kiosses, W.B.; Hellvard, A.; Bergum, B.; Muench, G.R.; Elly, C.; et al. Receptor protein tyrosine phosphatase alpha-mediated enhancement of rheumatoid synovial fibroblast signaling and promotion of arthritis in mice. Arthritis Rheumatol. 2016, 68, 359–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.P.; Wu, H.J.; Benoist, C.; Mathis, D. IL-17-producing T cells can augment autoantibody-induced arthritis. Proc. Natl. Acad. Sci. USA 2009, 106, 21789–21794. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Liu, L.; Ji, X.; Gao, Y.; Chen, X.; Liu, Y.; Liu, Y.; Zhao, X.; Li, Y.; Li, Y.; et al. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat. Immunol. 2015, 16, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ullah, U.; Khan, M.H.; Kong, L.; Moulder, R.; Valikangas, T.; Bhosale, S.D.; Komsi, E.; Rasool, O.; Chen, Z.; et al. CIP2A constrains Th17 differentiation by modulating STAT3 signaling. iScience 2020, 23, 100947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaborators, G.B.D.I.B.D. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-K.; Koo, S.-Y.; Nam, H.-M.; Lee, J.-B.; Ko, J.; Kim, K.-M.; Park, E.-J.; Kim, T.J.; Lee, H.; Go, H.; et al. Ssu72 is a T cell receptor-responsive modifier which is indispensable for regulatory T cells. Cell. Mol. Immunol. 2021, in press. [Google Scholar]
- Lee, S.; Park, K.; Kim, J.; Min, H.; Seong, R.H. Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments. EMBO Rep. 2018, 19, 95. [Google Scholar] [CrossRef]
- Bacher, P.; Scheffold, A. Antigen-specific regulatory T-cell responses against aeroantigens and their role in allergy. Mucosal Immunol. 2018, 11, 1537–1550. [Google Scholar] [CrossRef] [Green Version]
- Yadav, L.; Tamene, F.; Göös, H.; van Drogen, A.; Katainen, R.; Aebersold, R.; Gstaiger, M.; Varjosalo, M. Systematic analysis of human protein phosphatase interactions and dynamics. Cell Syst 2017, 4, 430–444.e435. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Chen, M.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol. 2018, 19, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Wlodarchak, N.; Xing, Y. PP2A as a master regulator of the cell cycle. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Estarás, C.; Choi, S.H.; Moreno, L., Jr.; Karn, J.; Moresco, J.J.; Yates, J.R., 3rd; Jones, K.A. A gene-specific role for the Ssu72 RNAPII CTD phosphatase in HIV-1 Tat transactivation. Genes Dev. 2014, 28, 2261–2275. [Google Scholar] [CrossRef] [Green Version]
- Lukarska, M.; Fournier, G.; Pflug, A.; Resa-Infante, P.; Reich, S.; Naffakh, N.; Cusack, S. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 2017, 541, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.D.; Koh, J.; Ko, J.S.; Kim, S.; Jung, K.C.; Jeon, Y.K.; Kim, H.Y.; Lee, H.; Lee, C.W.; Chung, D.H. Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.; Kim, M.-H.; Lee, C.-W. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. Int. J. Mol. Sci. 2021, 22, 3791. https://doi.org/10.3390/ijms22073791
Hwang S, Kim M-H, Lee C-W. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. International Journal of Molecular Sciences. 2021; 22(7):3791. https://doi.org/10.3390/ijms22073791
Chicago/Turabian StyleHwang, Soeun, Min-Hee Kim, and Chang-Woo Lee. 2021. "Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases" International Journal of Molecular Sciences 22, no. 7: 3791. https://doi.org/10.3390/ijms22073791
APA StyleHwang, S., Kim, M.-H., & Lee, C.-W. (2021). Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. International Journal of Molecular Sciences, 22(7), 3791. https://doi.org/10.3390/ijms22073791