White Adipose Tissue Expansion in Multiple Symmetric Lipomatosis Is Associated with Upregulation of CK2, AKT and ERK1/2
"> Figure 1
<p>Lipomatous tissue (LT) displays a white morphology. (<b>A</b>,<b>B</b>) Representative photomicrographs of sections of LT, subcutaneous adipose tissue (SAT) of multiple symmetric lipomatosis (MSL) patients and perirenal adipose tissue (AT) of patients affected by pheochromocytoma (Pheo) stained with (<b>A</b>) hematoxylin and eosin (H&E) and (<b>B</b>) anti-UCP1 antibody. Scale bar: 100 µm. (<b>C</b>) Measurements of adipocyte area (µm<sup>2</sup>) in the LT (white boxes) harvested from neck (<span class="html-italic">n</span> = 2 patients) and arm (<span class="html-italic">n</span> = 3 patients) and paired SAT (black boxes). Data are representedk as box plot graphs with medians (lines), lowest and highest values (whiskers) and 5th and 95th percentiles (black circles). *** <span class="html-italic">p</span> < 0.001 LT vs. SAT, Mann-Whitney test. (<b>D</b>) <span class="html-italic">PPARG2</span>, <span class="html-italic">LEPTIN</span>, <span class="html-italic">EVA1</span>, <span class="html-italic">CIDEA</span> and <span class="html-italic">ELOVL3</span> mRNA levels in LT (white bars, <span class="html-italic">n</span> = 6 samples from 5 patients) reported as fold increase with respect to SAT (black bars, <span class="html-italic">n</span> = 5 patients). Data are reported as mean ± SD. (<b>E</b>) <span class="html-italic">UCP1</span> mRNA expression quantified in SAT (black circles, <span class="html-italic">n</span> = 5 patients), LT (white circles, <span class="html-italic">n</span> = 6 samples from 5 patients) and Pheo (grey triangle, <span class="html-italic">n</span> = 4 patients) normalized to <span class="html-italic">18S</span> rRNA content. Data (ratio of arbitrary units) are reported as single values of each subject and medians (solid lines). * <span class="html-italic">p</span> < 0.05 Pheo vs. SAT and Pheo vs. LT, Mann-Whitney test.</p> "> Figure 2
<p>Analysis of CK2, AKT, and ERK1/2 signaling activation. (<b>A</b>) Tissue extracts from LT and SAT of 5 patients were analyzed by Western blot with the indicated antibodies. β-actin represents the loading control. 2884, 3002 I, 2891 I, 5091 and 5937 indicate the patient ID numbers; number lanes 1–13 refer to the specific anatomical localization of the samples (see also Table 1 in Materials and Methods): 1, 4, 7, 9 and 12: SAT; 2 and 3: neck LT from two different sites of 2884; 5 and 6: arm and neck LT of 3002 I, respectively; 8: neck LT of 2891 I; 10 and 11: arm and neck LT of 5091, respectively, and 13: arm LT of 5937. (<b>B</b>) CK2α, CK2α′ and CK2β immunostained bands shown in (<b>A</b>) were quantified by densitometric analysis, and mean values of SAT (black bar) and LT (white bar) extracts ± SD are expressed in arbitrary units (a.u.). *** <span class="html-italic">p</span> < 0.001 LT vs. SAT, <span class="html-italic">t</span>-test. (<b>C</b>) CK2 activity was assayed in SAT (black bar) and LT (white bar) extracts from all 6 patients and expressed as cpm of <sup>33</sup>Pi transferred to the peptide substrate; data are presented as mean ± SD. * <span class="html-italic">p</span> < 0.05 LT vs. SAT, <span class="html-italic">t</span>-test. (<b>D</b>) The phosphorylation extent of AKT, PRAS40, GSK3 and ERK in SAT (black bar) and LT (white bar) samples from 5 MSL patients was determined by densitometric analysis of the immunostained bands (<b>A</b>) and expressed as a ratio of phosphorylated protein/total protein. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 LT vs. SAT, <span class="html-italic">t</span>-test.</p> "> Figure 3
<p>Features and quantification of adipose stem cells (ASCs). (<b>A</b>) Representative flow cytometric dot plots of surface markers CD34 vs. CD31, determining the percentage of adipose stem cells (ASCs) as CD45−CD31−CD34+ within stromal vascular fractions (SVFs) freshly isolated from neck LT and paired SAT. (<b>B</b>) Quantification of ASCs contained in the SVFs from neck LT (white box) and paired SAT (black box) of 4 patients affected by MSL. The percentage of ASCs are reported as box plot graphs with medians (lines) and single values of each patient (grey circles). * <span class="html-italic">p</span> < 0.05 LT vs. SAT, Mann-Whitney test. (<b>C</b>) Percentages of CD45−CD31−CD34+ cells expressing CD90, CD73, CD271 and CD146 antigens in LT and paired SAT SVFs of 4 MSL patients. Data are presented as median percentage (25th and 75th percentiles). (<b>D</b>) Representative images at optical microscopy (20× magnification) showing SAT- and LT-derived preadipocytes morphology after different culture passages (p0, p1 and p2). (<b>E</b>) Proliferation rate (fold increase) of SVF cells from LT (white bar) of 2 MSL patients with respect to paired SAT (black bar), determined using two different experimental methods. Data are reported as mean values ± SD. * <span class="html-italic">p</span> < 0.05 LT vs. SAT, <span class="html-italic">t</span>-test. (<b>F</b>) Gene expression analysis of freshly isolated SVF cells from SAT (black bars) and LT (white bars) of 4 subjects affected by MSL. <span class="html-italic">PPARG2</span>, <span class="html-italic">LEPTIN</span>, <span class="html-italic">EVA1</span>, <span class="html-italic">CIDEA</span>, <span class="html-italic">ELOVL3</span> and <span class="html-italic">CD137</span> mRNA levels, normalized to <span class="html-italic">18S</span> rRNA content, are expressed as a fold increase with respect to SAT-derived SVF cells. Data are reported as mean values ± SD. (<b>G</b>) <span class="html-italic">UCP1</span> mRNA levels in SAT-derived SVF (black circles, <span class="html-italic">n</span> = 4 patients), LT SVF (white circles, <span class="html-italic">n</span> = 5 samples from 4 patients) and Pheo SVF cells (grey triangles, <span class="html-italic">n</span> = 3 patients), normalized to <span class="html-italic">18S</span> rRNA content. Data (ratio of arbitrary units) are reported as values of each subjects (circles or triangles) and medians (solid lines). * <span class="html-italic">p</span> < 0.05 Pheo vs. LT, Mann-Whitney.</p> "> Figure 4
<p>Adipogenic differentiation and browning of SVF cells derived from LT. (<b>A</b>) Representative photomicrographs (10× magnification) at the end of adipogenic differentiation of SAT and LT SVF cells at subsequent preliminary in vitro culture passages (p0–p3). (<b>B</b>,<b>C</b>) <span class="html-italic">PPARG2</span> and <span class="html-italic">LEPTIN</span> mRNA levels quantified in in vitro differentiated adipocytes obtained from SAT (black circles) and LT (white circles) of 3 MSL patients, normalized to the <span class="html-italic">18S</span> rRNA content (ratio of arbitrary units). Data are expressed as single values (circles) and medians (solid lines). * <span class="html-italic">p</span> < 0.05 SAT vs. LT, Mann-Whitney test. (<b>D</b>) <span class="html-italic">UCP1</span> expression upon stimulation of mature adipocytes from SAT (black bars) and LT (white bars) of 3 MSL patients with 10-µM Forskolin (+Forsk). <span class="html-italic">UCP1</span> levels are reported as fold increase with respect to control mature cells, untreated with Forskolin (AM). * <span class="html-italic">p</span> < 0.05 +Forsk vs. AM, Mann-Whitney test.</p> "> Figure 5
<p>Clonal analysis of ASCs. (<b>A</b>,<b>B</b>) Representative photomicrographs (20× magnification) of nonproliferating vs. proliferating (cell confluence) and nonadipogenic vs. adipogenic (adipogenesis > 20%) wells counted to determine, respectively, the clonogenic and adipogenic potential of LT precursor cells derived from MSL patient 2891 I. The log fraction plots of nonproliferating (<b>A</b>) and nonadipogenic (<b>B</b>) wells, indicated as nonresponding, vs. the number of SAT (red lines) and LT SVF cells (black lines) seeded per well, are shown. Slopes of solid and dotted lines represent the log-active cell fraction and 95% confidence intervals, respectively. Confidence intervals for clonogenic and adipogenic frequency in the tested group (1/) and <span class="html-italic">p</span>-value were calculated by ELDA software (<a href="http://bioinf.wehi.edu.au/software/elda/" target="_blank">http://bioinf.wehi.edu.au/software/elda/</a>).</p> "> Figure 6
<p>Signaling alterations in MSL LT. The figure depicts the anomalous hyperactivation of CK2, AKT and ERK1/2 (green hexagons) and the hyperphosphorylation of the AKT substrates PRAS40 and GSK3β (red hexagons) that we found in LT. Arrows and bar-headed lines indicate activation and inhibition, respectively. Black solid and grey dotted lines represent activated and inactivated pathways, respectively. HDAC: histone deacetylases.</p> "> Figure 7
<p>Features of type I MSL. Representative pictures of a patient affected by type I MSL. LT around the neck forms the so-called Madelung collar. LT involves the proximal arms and the upper trunk, sparing the abdomen and legs.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Morphological and Gene Expression Analyses Reveal White Features of LT
2.2. Protein Kinases CK2, AKT and ERK1/2 Are Hyperactivated in LT
2.3. Adipose Stem Cells Are More Abundant in LT Than in SAT
2.4. LT-Derived ASCs Display a Great In Vitro White Adipogenic Potential
2.5. The Clonogenic and Adipogenic Potential of LT Are Higher Compared to Healthy SAT
3. Discussion
4. Materials and Methods
4.1. Clinical Patient Characterization and Tissue Collection
4.2. Histological and IHC Analysis
4.3. RNA Extraction and Real-Time PCR
4.4. Protein Extraction
4.5. CK2 Kinase Activity Assay
4.6. Western Blot
4.7. Stromal Vascular Fraction (SVF) Isolation, Morphological Analysis and Adipogenic Differentiation
4.8. Flow Cytometric Analysis
4.9. Proliferation Assays
4.10. Limiting Dilution Analysis
4.11. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | Protein kinase B |
ALAT | Alanine aminotransferase |
ASC | Adipose Stem Cell |
AT | Adipose Tissue |
BAT | Brown Adipose Tissue |
BMI | Body Mass Index |
BSA | Bovine Serum Albumin |
CAPSL | Calcyphosin-like |
CIDEA | Cell death inducing DFFA like effector A |
CK2 | Casein kinase 2 |
EDTA | Ethylenediaminetetraacetic acid |
ELOVL3 | Elongation of very long chain fatty acid-like 3 |
ERK1/2 | Extracellular signal-regulated kinase 1/2 |
EVA1 | Epithelial V-like antigen 1 |
GGT | Gamma-glutamyl transpeptidase |
GSK3β | Glycogen synthase kinase-3 beta |
h-AdM | Human Adipogenic Medium |
H&E | Hematoxylin and Eosin |
h-SdM | Human Standard Medium |
IBMX | 3-Isobutyl-1-methylxanthine |
IHC | Immunohistochemistry |
LT | Lipomatous Tissue |
MFNT2 | Mitofusin 2 |
MSL | Multiple Symmetric Lipomatosis |
mTOR | Mammalian target of rapamycin |
PBS | Phosphate-buffered saline |
PCR | Polymerase Chain reaction |
PPARG2 | Peroxisome proliferator-activated receptor gamma |
PRAS40 | Proline-rich AKT substrate |
PTEN | Phosphatase and tensin homolog |
RhoA | Ras Homolog Family Member A |
ROCK | Rho-associated protein kinase |
SAT | Subcutaneous Adipose Tissue |
SVF | Stromal Vascular Fraction |
TBS | Tris-buffered saline |
T2D | Type 2 diabetes mellitus |
UCP1 | Uncoupling Protein 1 |
WAT | White Adipose Tissue |
References
- Enzi, G.; Busetto, L.; Ceschin, E.; Coin, A.; Digito, M.; Pigozzo, S. Multiple symmetric lipomatosis: Clinical aspects and outcome in a long-term longitudinal study. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 253–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busetto, L.; Sträter, D.; Enzi, G.; Coin, A.; Sergi, G.; Inelmen, E.M.; Pigozzo, S. Differential clinical expression of multiple symmetric lipomatosis in men and women. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1419–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enzi, G.; Busetto, L.; Sergi, G.; Coin, A.; Inelmen, E.M.; Vindigni, V.; Bassetto, F.; Cinti, S. Multiple symmetric lipomatosis: A rare disease and its possible links to brown adipose tissue. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Bianchi, M.C.; Santorelli, F.M.; Tessa, A.; Casali, C.; Murri, L.; Siciliano, G. Encephalomyopathy with multiple mitochondrial DNA deletions and multiple symmetric lipomatosis: Further evidence of a possible association. J. Neurol. 1999, 246, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- López-Blanco, R.; Rojo-Sebastián, A.; Torregrosa-Martínez, M.H.; Blazquez, A. Beyond cervical lipomas: Myoclonus, gait disorder and multisystem involvement leading to mitochondrial disease. BMJ Case Rep. 2017. [Google Scholar] [CrossRef]
- Musumeci, O.; Barca, E.; Lamperti, C.; Servidei, S.; Comi, G.P.; Moggio, M.; Mongini, T.; Siciliano, G.; Filosto, M.; Pegoraro, E.; et al. Lipomatosis Incidence and Characteristics in an Italian Cohort of Mitochondrial Patients. Front. Neurol. 2019, 10, 160. [Google Scholar] [CrossRef]
- López-Gallardo, E.; Cammarata-Scalisi, F.; Emperador, S.; Hernández-Ainsa, C.; Habbane, M.; Vela-Sebastián, A.; Bayona-Bafaluy, M.P.; Montoya, J.; Ruiz-Pesini, E. Mitochondrial DNA pathogenic mutations in multiple symmetric lipomatosis. Clin. Genet. 2020, 97, 731–735. [Google Scholar] [CrossRef]
- Sawyer, S.L.; Cheuk-Him, N.A.; Innes, A.M.; Wagner, J.D.; Dyment, D.A.; Tetreault, M.; Care4Rare Canada Consortium; Majewski, J.; Boycott, K.M.; Screaton, R.A.; et al. Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy. Hum. Mol. Genet. 2015, 24, 5109–5114. [Google Scholar] [CrossRef] [Green Version]
- Plummer, C.; Spring, P.J.; Marotta, R.; Chin, J.; Taylor, G.; Sharpe, D.; Athanasou, N.A.; Thyagarajan, D.; Berkovic, S.F. Multiple Symmetrical Lipomatosis-a mitochondrial disorder of brown fat. Mitochondrion 2013, 13, 269–276. [Google Scholar] [CrossRef]
- Schiltz, D.; Tschernitz, S.; Ortner, C.; Anker, A.; Klein, S.; Felthaus, O.; Biermann, N.; Schreml, J.; Prantl, L.; Schreml, S. Adipose Tissue in Multiple Symmetric Lipomatosis Shows Features of Brown/Beige Fat. Aesthetic. Plast. Surg. 2020, 44, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Coin, A.; Enzi, G.; Bussolotto, M.; Ceschin, E.; Difito, M.; Angelini, C. Multiple symmetric lipomatosis: Evidence for mitochondrial dysfunction. J. Clin. Neuromuscul. Dis. 2000, 1, 124–130. [Google Scholar] [CrossRef]
- Vilà, M.R.; Gámez, J.; Solano, A.; Playán, A.; Schwartz, S.; Santorelli, F.M.; Cervera, C.; Casali, C.; Montoya, J.; Villarroya, F. Uncoupling protein-1 mRNA expression in lipomas from patients bearing pathogenic mitochondrial DNA mutations. Biochem. Biophys. Res. Commun. 2000, 278, 800–802. [Google Scholar] [CrossRef]
- Nisoli, E.; Regianini, L.; Briscini, L.; Bulbarelli, A.; Busetto, L.; Coin, A.; Enzi, G.; Carruba, M.O. Multiple symmetric lipomatosis may be the consequence of defective noradrenergic modulation of proliferation and differentiation of brown fat cells. J. Pathol. 2002, 198, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Gurmaches, J.; Hung, C.M.; Sparks, C.A.; Tang, Y.; Li, H.; Guertin, D.A. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 2012, 16, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Keppler-Noreuil, K.M.; Parker, V.E.; Darling, T.N.; Martinez-Agosto, J.A. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am. J. Med. Genet. C Semin. Med. Genet. 2016, 172, 402–421. [Google Scholar] [PubMed] [Green Version]
- Chen, K.; He, H.; Xie, Y.; Zhao, L.; Zhao, S.; Wan, X.; Yang, W.; Mo, Z. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Sci. Rep. 2015, 5, 11909. [Google Scholar] [CrossRef] [Green Version]
- Lindner, A.; Marbach, F.; Tschernitz, S.; Ortner, C.; Berneburg, M.; Felthaus, O.; Prantl, L.; Kye, M.J.; Rappl, G.; Altmüller, J.; et al. Calcyphosine-like (CAPSL) is regulated in Multiple Symmetric Lipomatosis and is involved in Adipogenesis. Sci. Rep. 2019, 9, 8444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frontini, A.; Vitali, A.; Perugini, J.; Murano, I.; Romiti, C.; Ricquier, D.; Guerrieri, M.; Cinti, S. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim. Biophys. Acta 2013, 1831, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Di Franco, A.; Guasti, D.; Mazzanti, B.; Ercolino, T.; Francalanci, M.; Nesi, G.; Bani, D.; Forti, G.; Mannelli, M.; Valeri, A.; et al. Dissecting the origin of inducible brown fat in adult humans through a novel adipose stem cell model from adipose tissue surrounding pheochromocytoma. J. Clin. Endocrinol. Metab. 2014, 99, E1903–E1912. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Seale, P. Control of brown and beige fat development. Nat. Rev. Mol. Cell Biol. 2016, 17, 691–702. [Google Scholar] [CrossRef]
- Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Biol. 2006, 7, 85–96. [Google Scholar] [CrossRef]
- Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell 2007, 129, 1261–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiza, C.; Nascimento, E.B.; Ouwens, D.M. Role of PRAS40 in Akt and mTOR signaling in health and disease. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1453–E1460. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Yu, S.X.; Lu, Y.; Bast, R.C., Jr.; Woodgett, J.R.; Mills, G.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA 2000, 97, 11960–11965. [Google Scholar] [CrossRef] [Green Version]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Cinti, S.; Enzi, G.; Cigolini, M.; Bosello, O. Ultrastructural features of cultured mature adipocyte precursors from adipose tissue in multiple symmetric lipomatosis. Ultrastruct. Pathol. 1983, 5, 145–152. [Google Scholar] [CrossRef]
- Chen, K.; Xie, Y.; Hu, P.; Zhao, S.; Mo, Z. Multiple symmetric lipomatosis: Substantial subcutaneous adipose tissue accumulation did not induce glucose and lipid metabolism dysfunction. Ann. Nutr. Metab. 2010, 57, 68–73. [Google Scholar] [CrossRef]
- Zancanaro, C.; Sbarbati, A.; Morroni, M.; Carraro, R.; Cigolini, M.; Enzi, G.; Cinti, S. Multiple symmetric lipomatosis. Ultrastructural investigation of the tissue and preadipocytes in primary culture. Lab. Investig. 1990, 63, 253–258. [Google Scholar]
- Kazumi, T.; Ricquier, D.; Maeda, T.; Masuda, T.; Hozumi, T.; Ishida, Y.; Yoshida, M. Failure to detect brown adipose tissue uncoupling protein mRNA in benign symmetric lipomatosis (Madelung’s disease). Endocr. J. 1994, 41, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Wang, L.; Yang, W.; Wang, C.; Hu, G.; Mo, Z. Profiling of differentially expressed genes in adipose tissues of multiple symmetric lipomatosis. Mol. Med. Rep. 2017, 16, 6570–6579. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Molina, A.; Efeyan, A.; Lopez-Guadamillas, E.; Muñoz-Martin, M.; Gómez-López, G.; Cañamero, M.; Mulero, F.; Pastor, J.; Martinez, S.; Romanos, E.; et al. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 2012, 15, 382–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgo, C.; Milan, G.; Favaretto, F.; Stasi, F.; Fabris, R.; Salizzato, V.; Cesaro, L.; Belligoli, A.; Sanna, M.; Foletto, M.; et al. CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Sci. Rep. 2017, 7, 17569. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, K.; Ohyama, K.; Hasegawa, Y.; Chang, H.Y.; Ogura, M.; Sato, A.; Hong, H.; Hosono, T.; Sharp, L.Z.; Scheel, D.W.; et al. Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure. Cell Metab. 2015, 22, 997–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, T.; Kitamura, Y.; Kuroda, S.; Hino, Y.; Ando, M.; Kotani, K.; Konishi, H.; Matsuzaki, H.; Kikkawa, U.; Ogawa, W.; et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell. Biol. 1999, 19, 6286–6296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancak, Y.; Thoreen, C.C.; Peterson, T.R.; Lindquist, R.A.; Kang, S.A.; Spooner, E.; Carr, S.A.; Sabatini, D.M. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25, 903–915. [Google Scholar] [CrossRef]
- Felthaus, O.; Schön, T.; Schiltz, D.; Aung, T.; Kühlmann, B.; Jung, F.; Anker, A.; Klein, S.; Prantl, L. Adipose tissue-derived stem cells from affected and unaffected areas in patients with multiple symmetric lipomatosis show differential regulation of mTOR pathway genes. Clin. Hemorheol. Microcirc. 2018, 69, 141–151. [Google Scholar] [CrossRef]
- Kim, K.H.; Song, M.J.; Yoo, E.J.; Choe, S.S.; Park, S.D.; Kim, J.B. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J. Biol. Chem. 2004, 279, 51999–512006. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, A.; Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 2014, 10, 24–36. [Google Scholar] [CrossRef]
- Shinoda, K.; Luijten, I.H.; Hasegawa, Y.; Hong, H.; Sonne, S.B.; Kim, M.; Xue, R.; Chondronikola, M.; Cypess, A.M.; Tseng, Y.H.; et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 2015, 21, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Bettini, S.; Favaretto, F.; Compagnin, C.; Belligoli, A.; Sanna, M.; Fabris, R.; Serra, R.; Dal Prà, C.; Prevedello, L.; Foletto, M.; et al. Resting Energy Expenditure, Insulin Resistance and UCP1 Expression in Human Subcutaneous and Visceral Adipose Tissue of Patients with Obesity. Front. Endocrinol. 2019, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Prantl, L.; Schreml, J.; Gehmert, S.; Klein, S.; Bai, X.; Zeitler, K.; Schreml, S.; Alt, E.; Gehmert, S.; Felthaus, O. Transcription Profile in Sporadic Multiple Symmetric Lipomatosis Reveals Differential Expression at the Level of Adipose Tissue-Derived Stem Cells. Plast. Reconstr. Surg. 2016, 137, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Salizzato, V.; Borgo, C.; Cesaro, L.; Pinna, L.A.; Donella-Deana, A. Inhibition of protein kinase CK2 by CX-5011 counteracts imatinib-resistance preventing rpS6 phosphorylation in chronic myeloid leukaemia cells: New combined therapeutic strategies. Oncotarget 2016, 7, 18204–18218. [Google Scholar] [CrossRef] [PubMed]
- Sanna, M.; Franzin, C.; Pozzobon, M.; Favaretto, F.; Rossi, C.A.; Calcagno, A.; Scarda, A.; Dal Prà, C.; Pilon, C.; Milan, G.; et al. Adipogenic potential of skeletal muscle satellite cells. Clin. Lipidol. 2009, 4, 245–265. [Google Scholar] [CrossRef]
- Belligoli, A.; Compagnin, C.; Sanna, M.; Favaretto, F.; Fabris, R.; Busetto, L.; Foletto, M.; Dal Prà, C.; Serra, R.; Prevedello, L.; et al. Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci. Rep. 2019, 9, 11333. [Google Scholar] [CrossRef]
- Zimmerlin, L.; Donnenberg, V.S.; Rubin, J.P.; Donnenberg, A.D. Mesenchymal markers on human adipose stem/progenitor cells. Cytom. A 2013, 83, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Guimarães-Camboa, N.; Evans, S.M. Are Perivascular Adipocyte Progenitors Mural Cells or Adventitial Fibroblasts? Cell Stem Cell 2017, 20, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Smyth, G.K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 2009, 347, 70–78. [Google Scholar] [CrossRef]
(A) | |||||||
ID | Gender | Age | MSL Type | LT Site | SAT | T2D | BMI |
2884 | M | 58 | I | Neck | Abdominal | no | 22.5 |
2891 I | M | 62 | I | Neck | Abdominal | no | 26.6 |
2891 II | M | 63 | I | Neck | Abdominal | no | 26.5 |
3002 I | M | 64 | I | Neck and upper arm | Lumbar region | no | 29.7 |
3002 II | M | 67 | I | Upper arm | Lower limb | no | 33 |
3030 | M | 49 | I | Upper arm | Abdominal | yes | 29.4 |
5091 | M | 70 | I | Neck and upper arm | Abdominal | no | 28.3 |
5937 | F | 63 | I | Upper arm | Abdominal | yes | 33.8 |
(B) | |||||||
ID | Alcohol | Alcohol Amount (L/Day) | Smoking Status | Smoking Frequency (Cigarettes/Day) | |||
2884 | yes | - | never | - | |||
2891 | yes | 2 (red wine) | current | 15 | |||
3002 | yes | - | never | - | |||
3030 | no | - | current | 20 | |||
5091 | yes | 1 (red wine) | previous | - | |||
5937 | yes | - | never | - | |||
(C) | |||||||
ID | FPG (mmol/L) | Total Chol (mg/dL) | LDL-Chol (mg/dL) | HDL-Chol (mg/dL) | Triglycerides (mg/dL) | ALAT (UI/L) | GGT (UI/L) |
2884 | 4.9 | 200 | 139 | 41 | 150 | 18 | - |
2891 | 4.2 | 148 | 61 | 52 | 170 | - | 47 |
3002 | 5.9 | 152 | 109 | 24 | 95 | 23 | 45 |
3030 | 8.5 | 191 | 129 | 46 | 80 | 26 | 22 |
5091 | 5.4 | 151 | 39 | 92 | 105 | 23 | 79 |
5937 | 6.3 | 183 | 109 | 36 | 189 | 26 | 32 |
Gene | Forward (5′-3′) Reverse (5′-3′) | Annealing (°C) | Primers (F/R nM) | Amplicon (bp) |
---|---|---|---|---|
PPARG2 | ACCCAGAAAGCGATTCCTTCA AGTGGTCTTCCATTACGGAGAGATC | 60 | 900/900 | 87 |
LEPTIN | GTGCGGATTCTTGTGGCTTT GGAATGAAGTCCAAACCGGTG | 63 | 100/100 | 174 |
UCP1 | CTACGACACGGTCCAGGAGT AGTGGCAGTATTCATTGGGC | 60 | 300/300 | 110 |
CIDEA | ACGTGAAGGCCACCATGTATGA TGCCCAGATAGATGAGAAACTGTCC | 62 | 300/300 | 141 |
ELOVL3 | CCTTGCAATCTTCAGTATCCTGG GATGAAGTTGATGAAGCACACG | 60 | 300/300 | 146 |
EVA1 | CAGTTCGACGACAATGGGACAT AGAGAAGCGTACAGTGTGCACGA | 60 | 300/300 | 108 |
CD137 | CGACCCTGGACAAACTGTTCTTT AAGGAGATGATCTGCGGAGAGTGT | 63 | 300/300 | 170 |
18S | CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT | 60 | 100/100 | 186 |
Samples | FITC | PE | perCP-Cy5.5 | APC |
---|---|---|---|---|
Unstained | - | - | - | - |
Negative | IgG1 | IgG1 | IgG1 | IgG1 |
Sample 1 | CD45 | CD31 | CD34 | - |
Sample 2 | CD45 CD31 | CD90 | CD34 | CD73 |
Sample 3 | CD45 CD31 | CD146 | CD34 | CD271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanna, M.; Borgo, C.; Compagnin, C.; Favaretto, F.; Vindigni, V.; Trento, M.; Bettini, S.; Comin, A.; Belligoli, A.; Rugge, M.; et al. White Adipose Tissue Expansion in Multiple Symmetric Lipomatosis Is Associated with Upregulation of CK2, AKT and ERK1/2. Int. J. Mol. Sci. 2020, 21, 7933. https://doi.org/10.3390/ijms21217933
Sanna M, Borgo C, Compagnin C, Favaretto F, Vindigni V, Trento M, Bettini S, Comin A, Belligoli A, Rugge M, et al. White Adipose Tissue Expansion in Multiple Symmetric Lipomatosis Is Associated with Upregulation of CK2, AKT and ERK1/2. International Journal of Molecular Sciences. 2020; 21(21):7933. https://doi.org/10.3390/ijms21217933
Chicago/Turabian StyleSanna, Marta, Christian Borgo, Chiara Compagnin, Francesca Favaretto, Vincenzo Vindigni, Mariangela Trento, Silvia Bettini, Alessandra Comin, Anna Belligoli, Massimo Rugge, and et al. 2020. "White Adipose Tissue Expansion in Multiple Symmetric Lipomatosis Is Associated with Upregulation of CK2, AKT and ERK1/2" International Journal of Molecular Sciences 21, no. 21: 7933. https://doi.org/10.3390/ijms21217933
APA StyleSanna, M., Borgo, C., Compagnin, C., Favaretto, F., Vindigni, V., Trento, M., Bettini, S., Comin, A., Belligoli, A., Rugge, M., Bassetto, F., Donella-Deana, A., Vettor, R., Busetto, L., & Milan, G. (2020). White Adipose Tissue Expansion in Multiple Symmetric Lipomatosis Is Associated with Upregulation of CK2, AKT and ERK1/2. International Journal of Molecular Sciences, 21(21), 7933. https://doi.org/10.3390/ijms21217933