Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue
<p>Impact of ACE2 on the functionality of AT<sub>1</sub>R. HEK-293T cells were transfected with either 0.4 µg AT<sub>1</sub>R cDNA and 0.2 µg ACE2-HA cDNA (<b>A</b>,<b>B</b>,<b>F</b>,<b>G</b>), 0.5 µg AT<sub>1</sub>R-YFP cDNA, 0.2 µg ACE2-HA cDNA, and 0.5 µg β-arrestin II-RLuc cDNA (<b>C</b>), or 0.4 µg AT<sub>1</sub>R cDNA, 0.2 µg ACE2-HA cDNA, and 0.5 µg cDNA encoding the Ca<sup>2+</sup> sensor, GCaMP6 (<b>D</b>,<b>E</b>). After 48 h of incubation, cells were treated with increasing concentrations of the AT<sub>1</sub>R agonist, Ang II. Cyclic AMP was measured after 15 min in response to pre-treatment with 0.5 μM forskolin (<b>A</b>); as shown, this intervention resulted in approximately 4 nM cAMP, which corresponds to a 240% increase over baseline levels. Results from the evaluation of ERK1/2 phosphorylation (<b>B</b>), β-arrestin II recruitment (<b>C</b>) Ca<sup>2+</sup> levels (<b>D</b>,<b>E</b>), and DMR recordings (<b>F</b>,<b>G</b>) are presented as dose-response curves. Where indicated, cells were pre-treated with the selective AT<sub>1</sub>R receptor antagonist, candesartan (1 µM), before challenge with the receptor agonist. Values shown are the mean ± SEM of 8 independent experiments each performed in triplicate.</p> "> Figure 2
<p>Impact of ACE2 on the functionality of AT<sub>2</sub>R. HEK-293T cells were transfected with either 0.3 µg AT<sub>2</sub>R cDNA and 0.2 µg ACE2-HA cDNA (<b>A</b>,<b>B</b>,<b>F</b>,<b>G</b>), 0.4 µg AT<sub>2</sub>R-YFP cDNA, 0.2 µg ACE2-HA cDNA, and 0.5 µg β-arrestin II-RLuc cDNA (<b>C</b>), or 0.3 µg AT<sub>2</sub>R cDNA, 0.2 µg ACE2-HA cDNA, and 0.5 µg cDNA encoding the Ca<sup>2+</sup>sensor, GCaMP6 (<b>D</b>,<b>E</b>). After 48 h of incubation, cells were treated with increasing concentrations of the selective AT<sub>2</sub>R agonist, CGP. Cyclic AMP was measured after 15 min in response to pre-treatment with 0.5 μM forskolin (<b>A</b>); see also Legend to <a href="#ijms-21-09602-f001" class="html-fig">Figure 1</a>. Results from the evaluation of ERK1/2 phosphorylation (<b>B</b>), β-arrestin II recruitment (<b>C</b>), Ca<sup>2+</sup> levels (<b>D</b>,<b>E</b>), and DMR recordings (<b>F</b>,<b>G</b>) are presented as dose-response curves. Where indicated, cells were pre-treated with selective AT<sub>2</sub>R receptor antagonist, PD123319 (PD; 1 µM), before challenge with the receptor agonist. Values are the mean ± SEM of 8 independent experiments each performed in triplicate.</p> "> Figure 3
<p>Impact of ACE2 on the functionality of MasR. HEK-293T cells were transfected with 0.5 µg MasR cDNA and 0.2 µg ACE2-HA cDNA (<b>A</b>,<b>B</b>,<b>F</b>,<b>G</b>), 0.6 µg MasR-YFP cDNA, 0.2 µg ACE2-HA cDNA, and 0.5 µg encoding β-arrestin II-RLuc cDNA (<b>C</b>), or 0.5 µg MasR cDNA, 0.2 µg ACE2-HA cDNA, and 0.5 µg cDNA encoding the Ca<sup>2+</sup> sensor, GCaMP6 (<b>D</b>,<b>E</b>). After 48 h of incubation, cells were treated with increasing concentrations of the selective MasR agonist, Ang 1-7. Cyclic AMP was measured after 15 min in response to pre-treatment with 0.5 μM forskolin (<b>A</b>); see also Legend to <a href="#ijms-21-09602-f001" class="html-fig">Figure 1</a>. Results from the evaluation of ERK1/2 phosphorylation (B), β-arrestin II recruitment (<b>C</b>), Ca<sup>2+</sup> levels (<b>D</b>,<b>E</b>), and DMR recordings (<b>F</b>,<b>G</b>) are presented as dose-response curves. Where indicated, cells were pre-treated with the selective MasR receptor antagonist, A779 (1 µM), before challenge with the receptor agonist. Values presented are the mean ± SEM of 6 independent experiments each performed in triplicate.</p> "> Figure 4
<p>Interactions of RAS receptors and ACE2 as assessed by Bioluminescence Resonance Energy Transfer (BRET) assays. BRET assays were performed in HEK-293T cells transfected with constant amounts of cDNA encoding AT<sub>1</sub>R-RLuc (0.5 µg) (<b>A</b>), AT<sub>2</sub>R-RLuc (0.4 µg) (<b>B</b>), MasR-RLuc (0.6 µg) (<b>C</b>), or GHS-R1a-RLuc (0.3 µg; negative control) (<b>D</b>) together with increasing amounts of cDNA encoding ACE2-eGFP (0.1 to 1 µg). Cells were treated (red symbols) or not (black symbols) for 25 min with selective antagonists (candesartan for AT<sub>1</sub>R, PD123319 for AT<sub>2</sub>R or A779 for MasR, both at 1 µM; red symbols) or selective agonists (Ang II for AT<sub>1</sub>R, CGP for AT<sub>2</sub>R or Ang 1-7 for MasR, all at 100 nM; green symbols). Values correspond to experimental points from 6 independent experiments each performed in quadruplicate. BRET<sub>50</sub> and BRET<sub>max</sub> values were calculated by non-linear regression using Prism GraphPad software; specific parameters are as described in the text.</p> "> Figure 5
<p>RAS receptors regulate cell surface expression of ACE2. (<b>A</b>) Immunocytochemistry assays were performed in HEK-293T cells expressing ACE2-eGFP together with AT<sub>1</sub>R-RLuc, AT<sub>2</sub>R-RLuc, or MasR-RLuc and activated with the respective agonists. Cells that expressed each RAS receptor were treated with their respective selective agonist. ACE2-eGFP expression was evaluated quantitatively via green fluorescence. The RLuc-containing receptors were detected by an anti-RLuc primary antibody and a secondary Cy3-conjugated anti-mouse antibody (red-staining). Colocalization is shown in yellow. Scale bar = 10 µm. (<b>B</b>–<b>G</b>) Biotinylation experiments were performed in HEK-293T cells transfected with cDNA encoding AT<sub>1</sub>R-RLuc (1 µg; <b>B</b>,<b>E</b>), AT<sub>2</sub>R-RLuc (1 µg; <b>C</b>,<b>F</b>) or MasR-RLuc (1 µg; <b>D</b>,<b>G</b>) with or without 0.8 μg of ACE2-HA cDNA. Images from a representative experiment are shown (expansion of the image areas in <a href="#ijms-21-09602-f005" class="html-fig">Figure 5</a> and position of the MW from this representative experiment appear in <a href="#app1-ijms-21-09602" class="html-app">Supplementary Figure S1</a>). Immunoreactive bands from 6 independent experiments were quantified. Values presented are the mean ± SD. One-way ANOVA followed by Bonferroni’s multiple comparison posthoc tests were used for statistical analysis; * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001 vs. ACE2-HA singly-transfected cells.</p> "> Figure 5 Cont.
<p>RAS receptors regulate cell surface expression of ACE2. (<b>A</b>) Immunocytochemistry assays were performed in HEK-293T cells expressing ACE2-eGFP together with AT<sub>1</sub>R-RLuc, AT<sub>2</sub>R-RLuc, or MasR-RLuc and activated with the respective agonists. Cells that expressed each RAS receptor were treated with their respective selective agonist. ACE2-eGFP expression was evaluated quantitatively via green fluorescence. The RLuc-containing receptors were detected by an anti-RLuc primary antibody and a secondary Cy3-conjugated anti-mouse antibody (red-staining). Colocalization is shown in yellow. Scale bar = 10 µm. (<b>B</b>–<b>G</b>) Biotinylation experiments were performed in HEK-293T cells transfected with cDNA encoding AT<sub>1</sub>R-RLuc (1 µg; <b>B</b>,<b>E</b>), AT<sub>2</sub>R-RLuc (1 µg; <b>C</b>,<b>F</b>) or MasR-RLuc (1 µg; <b>D</b>,<b>G</b>) with or without 0.8 μg of ACE2-HA cDNA. Images from a representative experiment are shown (expansion of the image areas in <a href="#ijms-21-09602-f005" class="html-fig">Figure 5</a> and position of the MW from this representative experiment appear in <a href="#app1-ijms-21-09602" class="html-app">Supplementary Figure S1</a>). Immunoreactive bands from 6 independent experiments were quantified. Values presented are the mean ± SD. One-way ANOVA followed by Bonferroni’s multiple comparison posthoc tests were used for statistical analysis; * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001 vs. ACE2-HA singly-transfected cells.</p> "> Figure 6
<p>Detection of AT<sub>1</sub>R-ACE2, AT<sub>2</sub>R-ACE2, and MasR-ACE2 complexes in mouse lung tissue. Proximity Ligation Assays (PLAs) were performed using lung sections of adult (<b>A</b>–<b>C</b>) or 19-day fetal CD-1 mice (<b>D</b>–<b>F</b>) as described in the Methods. Cell nuclei were stained with Hoechst (blue). Protein complexes appear as red clusters or dots. Representative images corresponding to stacks of 4 sequential planes are shown. Graphs (<b>G</b>,<b>H</b>) display the number of clusters and spots in spot-containing cells. Values presented are the mean ± SEM of 5 independent experiments.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Expression of ACE2 Downregulates AT1R-Mediated Signaling Induced by Ang II
2.2. Expression of ACE2 Downregulates AT2R-Mediated Signaling Induced by Ang II
2.3. Expression of ACE2 Potentiates MasR-Mediated Signaling
2.4. ACE2 Interacts Directly with AT1R, AT2R, and MasR
2.5. Cell Surface Expression of ACE2 Following Activation of AT1R and AT2R
2.6. Detection of AT1R-ACE2, AT2R-ACE2, and MasR-ACE2 Complexes in the Lungs of Adult Mice
3. Discussion
4. Material and Methods
4.1. Reagents
4.2. Expression Vectors
4.3. Cell Culture and Transient Transfection
4.4. Bioluminescence Resonance Energy Transfer (BRET) Assays
4.5. Immunostaining Procedures
4.6. cAMP Determination
4.7. ERK Phosphorylation Assays
4.8. β-Arrestin 2 Recruitment
4.9. Cytoplasmic Ca2+ Detection
4.10. Dynamic Mass Redistribution (DMR) Assays
4.11. Immunoblotting
4.12. Biotinylation Experiments
4.13. In Situ Proximity Ligation Assays (PLA)
4.14. Validation of Antibody Specificity
4.15. Data Analysis
4.16. Nomenclature of Targets and Ligands
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Declaration of Transparency and Scientific Rigor
References
- Clarke, N.E.; Turner, A.J. Angiotensin-Converting Enzyme 2: The First Decade. Int. J. Hypertens. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, J.H.; Li, W.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell. Mol. Life Sci. 2004, 61, 2738–2743. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Moore, M.J.; Vasllieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greeneugh, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 2019, 176, S21–S141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, M.; Alenina, N.; Young, D.; Santos, R.A.S.; Touyz, R.M. The meaning of mas. Hypertension 2018, 72, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.L.; Duchene, J.; Todiras, M.; Azevedo, L.C.P.; Costa-Neto, C.M.; Alenina, N.; Santos, R.A.; Bader, M. Receptor mas protects mice against hypothermia and mortality induced by endotoxemia. Shock 2014, 41, 331–336. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA 2003, 100, 8258–8263. [Google Scholar] [CrossRef] [Green Version]
- Villela, D.; Leonhardt, J.; Patel, N.; Joseph, J.; Kirsch, S.; Hallberg, A.; Unger, T.; Bader, M.; Santos, R.A.; Sumners, C.; et al. Angiotensin type 2 receptor (AT 2 R) and receptor Mas: A complex liaison. Clin. Sci. 2015, 128, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Berger, E.A.; Murphy, P.M.; Farber, J.M. Chemokine Receptors as HIV-1 Coreceptors: Roles in Viral Entry, Tropism, and Disease. Annu. Rev. Immunol. 1999, 17, 657–700. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Finzi, A.; Sodroski, J. The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cammack, N. Human immunodeficiency virus type 1 entry and chemokine receptors: A new therapeutic target. Antivir. Chem. Chemother. 1999, 10, 53–62. [Google Scholar] [CrossRef]
- Hoxie, J.A.; Labranche, C.C.; Endres, M.J.; Turner, J.D.; Berson, J.F.; Doms, R.W.; Matthews, T.J. CD4-independent utilization of the CXCR4 chemokine receptor by HIV-1 and HIV-2. J. Reprod. Immunol. 1998, 41, 197–211. [Google Scholar] [CrossRef]
- Clapham, P.R.; Reeves, J.D.; Simmons, G.; Dejucq, N.; Hibbitts, S.; McKnight, Á. HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands. In Molecular Membrane Biology; Taylor and Francis Ltd.: Abingdon, UK, 1999; Volume 16, pp. 49–55. [Google Scholar]
- Choe, H. Chemokine receptors in HIV-1 and SIV infection. Arch. Pharm. Res. 1998, 21, 634–639. [Google Scholar] [CrossRef]
- Howard, O.M.Z.; Korte, T.; Tarasova, N.I.; Grimm, M.; Turpin, J.A.; Rice, W.G.; Michejda, C.J.; Blumenthal, R.; Oppenheim, J.J. Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor- mediated function. J. Leukoc. Biol. 1998, 64, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Shioda, T.; Kato, H.; Ohnishi, Y.; Tashiro, K.; Ikegawa, M.; Nakayama, E.E.; Hu, H.; Kato, A.; Sakai, Y.; Liu, H.; et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1α (SDF-1α) and SDF-1β are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc. Natl. Acad. Sci. USA 1998, 95, 6331–6336. [Google Scholar] [CrossRef] [Green Version]
- Herrera, C.; Morimoto, C.; Blanco, J.; Mallol, J.; Arenzana, F.; Lluis, C.; Franco, R. Comodulation of CXCR4 and CD26 in Human Lymphocytes. J. Biol. Chem. 2001, 276, 19532–19539. [Google Scholar] [CrossRef] [Green Version]
- Yuzawa, Y.; Brentjens, J.R.; Brett, J.; Caldwell, P.R.; Esposito, C.; Fukatsu, A.; Godman, G.; Stern, D.; Andres, G. Antibody-mediated redistribution and shedding of endothelial antigens in the rabbit. J. Immunol. 1993, 150, 5633–5646. [Google Scholar]
- Yamaguchi, N.; Plant, C.; Biancone, L.; Bachovchin, W.; Mccluskey, R.; Andres, G. In vivo modulation of CD26 (dipeptidyl peptidase IV) in the mouse: Effects of polyreactive and monoreactive antibodies. Transplantation 1996, 62, 973–985. [Google Scholar] [CrossRef]
- Blanco, J.; Valenzuela, A.; Herrera, C.; Lluís, C.; Hovanessian, A.G.; Franco, R. The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett. 2000, 477, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Zhou, Q. Structure of dimeric full-length human ACE2 in complex with B0AT1. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Subbarao, K. The Immunobiology of SARS. Annu. Rev. Immunol. Doremalen 2007, 25, 443–472. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Li, W.; Peng, G.; Li, F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. USA 2009, 106, 19970–19974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef]
- Escriche, M.; Burgueño, J.; Ciruela, F.; Canela, E.I.; Mallol, J.; Enrich, C.; Lluís, C.; Franco, R. Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: Morphological evidence of endosomal sorting and receptor recycling. Exp. Cell Res. 2003, 285, 72–90. [Google Scholar] [CrossRef]
- Ginés, S.; Ciruela, F.; Burgueño, J.; Casadó, V.; Canela, E.I.I.; Mallol, J.; Lluís, C.; Franco, R. Involvement of caveolin in ligand-induced recruitment and internalization of A(1) adenosine receptor and adenosine deaminase in an epithelial cell line. Mol. Pharmacol. 2001, 59, 1314–1323. [Google Scholar] [CrossRef]
- Wu, D.-F.; Yang, L.-Q.; Goschke, A.; Stumm, R.; Brandenburg, L.-O.; Liang, Y.-J.; Höllt, V.; Koch, T. Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J. Neurochem. 2008, 104, 1132–1143. [Google Scholar] [CrossRef]
- Mills, J.S. Peptides derived from HIV-1, HIV-2, Ebola virus, SARS coronavirus and coronavirus 229E exhibit high affinity binding to the formyl peptide receptor. Biochim. Biophys. Acta 2006, 1762, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.C.; Wang, J.M.; Lahey, E.; Rabin, R.L.; Kelsall, B.L. Activation of the formyl peptide receptor by the HIV-derived peptide T-20 suppresses interleukin-12 p70 production by human monocytes. Blood 2001, 97, 3531–3536. [Google Scholar] [CrossRef] [Green Version]
- Blanco, J.; Nguyen, C.; Callebaut, C.; Jacotot, E.; Krust, B.; Mazaleyrat, J.-P.; Wakselman, M.; Hovanessian, A.G. Dipeptidyl-peptidase IV-beta. Further characterization and comparison to dipeptidyl-peptidase IV activity of CD26. Eur. J. Biochem. 1998, 256, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, A.; Blanco, J.; Callebaut, C.; Jacotot, E.; Lluis, C.; Hovanessian, A.G.; Franco, R. Adenosine Deaminase Binding to Human CD26 Is Inhibited by HIV-1 Envelope Glycoprotein gp120 and Viral Particles. J. Immunol. 1997, 158, 3721–3729. [Google Scholar]
- Franco, R.; Rivas-Santisteban, R.; Serrano-Marín, J.; Rodríguez-Pérez, A.; Labandeira-García, J.; Navarro, G. SARS-CoV-2 as a Factor to Disbalance the Renin–Angiotensin System: A Suspect in the Case of Exacerbated IL-6 Production. J. Immunol. 2020, ji2000642. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, Y.; Zhang, W.; Chen, A.F.; Lin, S.; Morris, M. RNA interference shows interactions between mouse brainstem angiotensin AT1 receptors and angiotensin-converting enzyme 2. Exp. Physiol. 2008, 93, 676–684. [Google Scholar] [CrossRef]
- Deshotels, M.R.; Xia, H.; Sriramula, S.; Lazartigues, E.; Filipeanu, C.M. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an Angiotensin II type I receptor-dependent mechanism. Hypertension 2014, 64, 1368–1375. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Pang, X.F.; Zhang, L.H.; Wang, N.P.; McKallip, R.J.; Garner, R.E.; Zhao, Z.Q. Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis. Life Sci. 2016, 153, 141–152. [Google Scholar] [CrossRef]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Hellmuth, J.C.; Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 8, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. medRxiv 2020. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Yang, Y.; Ma, H.; Li, Z.; Zhang, J.; Cheng, J.; Zhang, X.; Zhao, Y.; Xia, Z.; et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol. Med. 2020, 2, e12421. [Google Scholar] [CrossRef]
- Gong, J.; Dong, H.; Xia, S.Q.; Huang, Y.Z.; Wang, D.; Zhao, Y.; Liu, W.; Tu, S.; Zhang, M.; Wang, Q.; et al. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Kondo, A.; Koshihara, Y.; Togari, A. Signal Transduction System for Interleukin-6 Synthesis Stimulated by Lipopolysaccharide in Human Osteoblasts. J. Interf. Cytokine Res. 2001, 21, 943–950. [Google Scholar] [CrossRef]
- Modat, G.; Dornand, J.; Bernad, N.; Junquero, D.; Mary, A.; Muller, A.; Bonne, C. LPS-stimulated bovine aortic endothelial cells produce IL-1 and IL-6 like activities. Agents Actions 1990, 30, 403–411. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Lukassen, S.; Chua, R.L.; Trefzer, T.; Kahn, N.C.; Schneider, M.A.; Muley, T.; Winter, H.; Meister, M.; Veith, C.; Boots, A.W.; et al. SARS -CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020, 39, e105114. [Google Scholar] [CrossRef] [PubMed]
- Warner, F.J.; Lew, R.A.; Smith, A.I.; Lambert, D.W.; Hooper, N.M.; Turner, A.J. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J. Biol. Chem. 2005, 280, 39353–39362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borroto-Escuela, D.O.; Hagman, B.; Woolfenden, M.; Pinton, L.; Jiménez-Beristain, A.; Oflijan, J.; Narvaez, M.; Di Palma, M.; Feltmann, K.; Sartini, S.; et al. In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. Neuromethods 2016, 110, 109–124. [Google Scholar]
- Curtis, M.J.; Alexander, S.; Cirino, G.; Docherty, J.R.; George, C.H.; Giembycz, M.A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; Ji, Y.; et al. Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. Br. J. Pharmacol. 2018, 175, 987–993. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.P.H.; Roberts, R.E.; Broughton, B.R.S.; Sobey, C.G.; George, C.H.; Stanford, S.C.; Cirino, G.; Docherty, J.R.; Giembycz, M.A.; Hoyer, D.; et al. Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. Br. J. Pharmacol. 2018, 175, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Navarro, G.; Hradsky, J.; Lluís, C.; Casadó, V.; McCormick, P.J.; Kreutz, M.R.; Mikhaylova, M. NCS-1 associates with adenosine A(2A) receptors and modulates receptor function. Front. Mol. Neurosci. 2012, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, J.; Navarro, G.; Casadó-Anguera, V.; Azdad, K.; Rea, W.; Moreno, E.; Brugarolas, M.; Mallol, J.; Canela, E.I.; Lluís, C.; et al. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc. Natl. Acad. Sci. USA 2015, 112, E3609–E3618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Pinilla, E.; Rodríguez-Pérez, A.I.I.; Navarro, G.; Aguinaga, D.; Moreno, E.; Lanciego, J.L.L.; Labandeira-García, J.L.L.; Franco, R. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem. Pharmacol. 2015, 96, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.; et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciruela, F.; Soloviev, M.M.; Jeffrey McIlninney, R.A. Co-expression of metabotropic glutamate receptor type 1α with Homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochem. J. 1999, 341, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Canals, M.; Burgueño, J.; Marcellino, D.; Cabello, N.; Canela, E.I.; Mallol, J.; Agnati, L.; Ferré, S.; Bouvier, M.; Fuxe, K.; et al. Homodimerization of adenosine A2A receptors: Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Neurochem. 2004, 88, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Obermüller, N.; Gentili, M.; Gauer, S.; Gretz, N.; Weigel, M.; Geiger, H.; Gassler, N. Immunohistochemical and mRNA Localization of the Angiotensin II Receptor Subtype 2 (AT2) in Follicular Granulosa Cells of the Rat Ovary. J. Histochem. Cytochem. 2004, 52, 545–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, M.E.; Fernley, R.T.; Nakamura, Y.; Moeller, I.; Aldred, G.P.; Ferraro, T.; Penschow, J.D.; McKinley, M.J.; Oldfield, B.J. Characterization of a specific antibody to the rat angiotensin II AT1 receptor. J. Histochem. Cytochem. 1999, 47, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Perez, A.I.; Valenzuela, R.; Villar-Cheda, B.; Guerra, M.J.; Lanciego, J.L.; Labandeira-Garcia, J.L. Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson’s disease. Exp. Neurol. 2010, 224, 517–526. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.; Esteban, V.; Suzuki, Y.; Ruperez, M.; Mezzano, S.; Ardiles, L.; Justo, P.; Ortiz, A.; Egido, J. Renal expression of angiotensin type 2 (AT2) receptors during kidney damage. In Kidney International, Supplement; Blackwell Publishing Inc.: Malden, MA, USA, 2003; Volume 64. [Google Scholar]
- Valenzuela, R.; Costa-Besada, M.A.M.A.; Iglesias-Gonzalez, J.; Perez-Costas, E.; Villar-Cheda, B.; Garrido-Gil, P.; Melendez-Ferro, M.; Soto-Otero, R.; Lanciego, J.L.J.L.; Henrion, D.; et al. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. 2016, 7, e2427. [Google Scholar] [CrossRef] [Green Version]
- Harding, S.D.; Sharman, J.L.; Faccenda, E.; Southan, C.; Pawson, A.J.; Ireland, S.; Gray, A.J.G.; Bruce, L.; Alexander, S.P.H.; Anderton, S.; et al. The IUPHAR/BPS Guide to Pharmacology in 2018: Updates and expansion to encompass the new guide to immunopharmacology. Nucleic Acids Res. 2018, 46, D1091–D1106. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, R.; Lillo, A.; Rivas-Santisteban, R.; Rodríguez-Pérez, A.I.; Reyes-Resina, I.; Labandeira-García, J.L.; Navarro, G. Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue. Int. J. Mol. Sci. 2020, 21, 9602. https://doi.org/10.3390/ijms21249602
Franco R, Lillo A, Rivas-Santisteban R, Rodríguez-Pérez AI, Reyes-Resina I, Labandeira-García JL, Navarro G. Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue. International Journal of Molecular Sciences. 2020; 21(24):9602. https://doi.org/10.3390/ijms21249602
Chicago/Turabian StyleFranco, Rafael, Alejandro Lillo, Rafael Rivas-Santisteban, Ana I. Rodríguez-Pérez, Irene Reyes-Resina, José L. Labandeira-García, and Gemma Navarro. 2020. "Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue" International Journal of Molecular Sciences 21, no. 24: 9602. https://doi.org/10.3390/ijms21249602
APA StyleFranco, R., Lillo, A., Rivas-Santisteban, R., Rodríguez-Pérez, A. I., Reyes-Resina, I., Labandeira-García, J. L., & Navarro, G. (2020). Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue. International Journal of Molecular Sciences, 21(24), 9602. https://doi.org/10.3390/ijms21249602