Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis
<p>PAS Effects in RR-MS Patients and Controls. <a href="#ijms-21-06982-f001" class="html-fig">Figure 1</a> legend. In healthy subjects, PAS elicited the expected homosynaptic LTP-like effect in the APB muscle (<b>left panel</b>), whereas in MS patients, PAS elicited heterosynaptic LTP in the ADM muscle (<b>right panel</b>). <b>*</b> <span class="html-italic">p</span> ≤ 0.05; <b>**</b> <span class="html-italic">p</span> ≤0.01. The <span class="html-italic">p</span> values refer to the comparisons between pre and post 0, post 15, and post 30 in each muscle. All <span class="html-italic">p</span> values were adjusted by Benjamini–Hochberg correction. Abbreviations: APB (abductor pollicis brevis); ADM (abductor digiti minimi); MEP (motor-evoked potential); PAS (paired associative stimulation); RR-MS (relapsing-remitting multiple sclerosis).</p> "> Figure 2
<p>Correlation between IL-1β CSF Levels and PAS Effects. <a href="#ijms-21-06982-f002" class="html-fig">Figure 2</a> legend. A negative correlation was found between IL-1β CSF concentrations and LTP-like effects in the APB muscle at post 0, post 15, and post 30 (<b>upper panels</b>); conversely, no significant correlation emerged with LTP-like effects in the ADM muscle (<b>middle panels</b>). A significant negative correlation was found between IL-1β CSF levels and the ratio of the LTP-like effect induced in APB and ADM muscles (<b>lower panels</b>). Abbreviations: APB (abductor pollicis brevis); ADM (abductor digiti minimi); CSF (cerebrospinal fluid); IL (interleukin); MEP (motor-evoked potential).</p> "> Figure 3
<p>IL-1β CSF Detectability and PAS Effects. <a href="#ijms-21-06982-f003" class="html-fig">Figure 3</a> legend. In the IL-1β negative group, PAS failed to induce LTP-like effects in both APB and ADM muscles (<b>left panel</b>), whereas in the IL-1β positive group, PAS elicited an abnormal LTP in the ADM muscle (<b>right panel</b>). <b>*</b> <span class="html-italic">p</span> ≤ 0.05. The <span class="html-italic">p</span> values refer to the comparisons between pre and post 0, post 15, and post 30 in each muscle. All <span class="html-italic">p</span> values were adjusted by Benjamini–Hochberg correction. Abbreviations: APB (abductor pollicis brevis); ADM (abductor digiti minimi); CSF (cerebrospinal fluid); IL (interleukin); PAS (paired associative stimulation).</p> "> Figure 4
<p>Correlation between IL-1β CSF Levels and Inhibitory/Excitatory Intracortical Transmission. <a href="#ijms-21-06982-f004" class="html-fig">Figure 4</a> legend. IL-1β CSF levels positively correlated with reduced intracortical inhibition (<b>left panel</b>) and increased intracortical facilitation (<b>right panel</b>). Abbreviations: CSF (cerebrospinal fluid); ICF (intracortical facilitation); IL (interleukin); MEP (motor-evoked potential); SICI (short-interval intracortical inhibition).</p> ">
Abstract
:1. Introduction
2. Results
2.1. PAS-Induced LTP-like Plasticity is Altered in RR-MS Patients
2.2. CSF IL-1β Alters PAS Effects
2.3. Detectable IL-1β CSF Levels are Associated with Paradoxical Response to PAS
2.4. IL-1β and Intracortical Excitability
3. Discussion
4. Materials and Methods
4.1. MS Patients
4.2. CSF Collection and Analysis
4.3. Transcranial Magnetic Stimulation
4.4. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADM | abductor digiti minimi |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
AMT | active motor threshold |
APB | abductor pollicis brevis |
CS | conditioning stimulus |
cTBS | continuous theta burst stimulation |
EDSS | expanded disability status scale |
ICF | intracortical facilitation |
IL | interleukin |
IQR | interquartile range |
ISI | interstimulus interval |
iTBS | intermittent theta burst stimulation |
LTD | long-term depression |
LTP | long-term potentiation |
MEP | motor-evoked potential |
NMDA | N-Methyl-D-Aspartate |
PAS | paired associative stimulation |
RMT | resting motor threshold |
RR | relapsing–remitting |
SD | standard deviation |
SICI | short-interval intracortical inhibition |
TMS | transcranial magnetic stimulation |
TS | test stimulus |
References
- Centonze, D.; Rossi, S.; Tortiglione, A.; Picconi, B.; Prosperetti, C.; De Chiara, V.; Bernardi, G.; Calabresi, P. Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol. Dis. 2007, 27, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Kusayanagi, H.; Nicoletti, C.G.; Weiss, S.; Marciani, M.G.; Centonze, D. Cortical plasticity predicts recovery from relapse in multiple sclerosis. Mult. Scler. J. 2014, 20, 451–457. [Google Scholar] [CrossRef]
- Weiss, S.; Mori, F.; Rossi, S.; Centonze, D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci. Biobehav. Rev. 2014, 43, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Edelson, B.T. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J. Immunol. 2017, 198, 4553–4560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coogan, A.N.; O’Neill, L.A.; O’Connor, J.J. The P38 mitogen-activated protein kinase inhibitor SB203580 antagonizes the inhibitory effects of interleukin-1β on long-term potentiation in the rat dentate gyrus in vitro. Neuroscience 1999, 93, 57–69. [Google Scholar] [CrossRef]
- Goshen, I.; Kreisel, T.; Ounallah-Saad, H.; Renbaumb, P.; Zalzstein, Y.; Ben-Hur, T.; Levy-Lahad, E.; Yirmiya, R. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 2007, 32, 1106–1115. [Google Scholar] [CrossRef]
- Schmid, A.W.; Lynch, M.A.; Herron, C.E. The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus 2009, 19, 670–676. [Google Scholar] [CrossRef]
- Centonze, D.; Muzio, L.; Rossi, S.; Cavasinni, F.; De Chiara, V.; Bergami, A.; Musella, A.; D’Amelio, M.; Cavallucci, V.; Martorana, A.; et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 2009, 29, 3442–3452. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Studer, V.; Motta, C.; De Chiara, V.; Barbieri, F.; Bernardi, G.; Centonze, D. Inflammation inhibits GABA transmission in multiple sclerosis. Mult. Scler. 2012, 18, 1633–1635. [Google Scholar] [CrossRef]
- Rossi, S.; Furlan, R.; De Chiara, V.; Motta, C.; Studer, V.; Mori, F.; Musella, A.; Bergami, A.; Muzio, L.; Bernardi, G.; et al. Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann. Neurol. 2012, 71, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Studer, V.; Motta, C.; Germani, G.; Macchiarulo, G.; Buttari, F.; Mancino, R.; Castelli, M.; De Chiara, V.; Weiss, S.; et al. Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J. Neuroinflamm. 2014, 18, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, M.; Chiasserini, D.; Gardoni, F.; Viviani, B.; Tozzi, A.; Giampà, C.; Costa, C.; Tantucci, M.; Zianni, E.; Boraso, M.; et al. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol. Dis. 2013, 52, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Nisticò, R.; Mango, D.; Mandolesi, G.; Piccinin, S.; Berretta, N.; Pignatelli, M.; Feligioni, M.; Musella, A.; Gentile, A.; Mori, F.; et al. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS ONE 2013, 8, e54666. [Google Scholar] [CrossRef] [Green Version]
- Mandolesi, G.; Grasselli, G.; Musella, A.; Gentile, A.; Musumeci, G.; Sepman, H.; Haji, N.; Fresegna, D.; Bernardi, G.; Centonze, D. GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiol. Dis. 2012, 46, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Nisticò, R.; Mandolesi, G.; Piccinin, S.; Mango, D.; Kusayanagi, H.; Berretta, N.; Bergami, A.; Gentile, A.; Musella, A.; et al. Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular Med. 2014, 16, 38–51. [Google Scholar] [CrossRef]
- Stefan, K.; Kunesch, E.; Cohen, L.G.; Benecke, R.; Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000, 123, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Quartarone, A.; Rizzo, V.; Bagnato, S.; Morgante, F.; Sant’Angelo, A.; Girlanda, P.; Siebner, R. Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans. J. Physiol. 2006, 575, 657–670. [Google Scholar] [CrossRef]
- Wigstrom, H.; Gustafsson, B.; Huang, Y.Y.; Abraham, W.C. Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol. Scand. 1986, 126, 317–319. [Google Scholar] [CrossRef]
- Bi, G.Q.; Poo, M.M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef]
- Stefan, K.; Kunesch, E.; Benecke, R.; Cohen, L.G.; Classen, J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. 2002, 543, 699–708. [Google Scholar] [CrossRef]
- Wolters, A.; Sandbrink, F.; Schlottmann, A.; Kunesch, E.; Stefan, K.; Cohen, L.G.; Benecke, R.; Classen, J. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol. 2003, 89, 2339–2345. [Google Scholar] [CrossRef]
- Quartarone, A.; Bagnato, S.; Rizzo, V.; Siebner, H.R.; Dattola, V.; Scalfari, A.; Morgante, F.; Battaglia, F.; Romano, M.; Girlanda, P. Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 2003, 126, 2586–2596. [Google Scholar] [CrossRef]
- Mori, F.; Kusayanagi, H.; Buttari, F.; Centini, B.; Monteleone, F.; Nicoletti, C.G.; Bernardi, G.; Di Cantogno, E.V.; Marciani, M.G.; Centonze, D. Early treatment with high-dose interferon beta-1a reverses cognitive and cortical plasticity deficits in multiple sclerosis. Funct. Neurol. 2012, 27, 163–168. [Google Scholar]
- Stampanoni Bassi, M.; Iezzi, E.; Mori, F.; Simonelli, I.; Gilio, L.; Buttari, F.; Sica, F.; De Paolis, N.; Mandolesi, G.; Musella, A.; et al. Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabil. Neural. Repair 2019, 33, 825–835. [Google Scholar] [CrossRef]
- Zeller, D.; Aufm Kampe, K.; Biller, A.; Stefan, K.; Gentner, R.; Schütz, A.; Bartsch, A.; Bendszus, M.; Toyka, K.V.; Rieckmann, P.; et al. Rapid-onset central motor plasticity in multiple sclerosis. Neurology 2010, 74, 728–735. [Google Scholar] [CrossRef]
- Wirsching, I.; Buttmann, M.; Odorfer, T.; Volkmann, J.; Classen, J.; Zeller, D. Altered motor plasticity in an acute relapse of multiple sclerosis. Eur. J. Neurosci. 2018, 47, 251–257. [Google Scholar] [CrossRef]
- Caramia, M.D.; Palmieri, M.G.; Desiato, M.T.; Boffa, L.; Galizia, P.; Rossini, P.M.; Centonze, D.; Bernardi, G. Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: A study with transcranial magnetic stimulation. Clin. Neurophysiol. 2004, 115, 956–965. [Google Scholar] [CrossRef]
- Turrigiano, G.G.; Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 2004, 5, 97–107. [Google Scholar] [CrossRef]
- Bienenstock, E.L.; Cooper, L.N.; Munro, P.W. Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. J. Neurosci. 1982, 2, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Turrigiano, G.G.; Leslie, K.R.; Desai, N.S.; Rutherford, L.C.; Nelson, S.B. Activity dependent scaling of quantal amplitude in neocortical neurons. Nature 1998, 391, 892–896. [Google Scholar] [CrossRef]
- Lissin, D.V.; Gomperts, S.N.; Carroll, R.C.; Christine, C.W.; Kalman, D.; Kitamura, M.; Hardy, S.; Nicoll, R.A.; Malenka, R.C.; von Zastrow, M. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 1998, 95, 7097–7102. [Google Scholar] [CrossRef] [Green Version]
- Weise, D.; Schramm, A.; Stefan, K.; Wolters, A.; Reiners, K.; Naumann, M.; Classen, J. The two sides of associative plasticity in writer’s cramp. Brain 2006, 129, 2709–2721. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Neurophysiology of dystonia: The role of inhibition. Neurobiol. Dis. 2011, 42, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Stellwagen, D.; Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature 2006, 440, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Deller, T.; Vlachos, A. Tumor necrosis factor (TNF)-receptor 1 and 2 mediate homeostatic synaptic plasticity of denervated mouse dentate granule cells. Sci. Rep. 2015, 5, 12726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewitus, G.M.; Pribiag, H.; Duseja, R.; St-Hilaire, M.; Stellwagen, D. An adaptive role of TNFα in the regulation of striatal synapses. J. Neurosci. 2014, 34, 6146–6155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, W.J.; Liu, Y.; Zhou, L.J.; Li, W.; Zhong, Y.; Pang, R.P.; Xin, W.J.; Wei, X.H.; Wang, J.; Zhu, H.Q.; et al. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in rodents. Neuropsychopharmacology 2011, 36, 979–992. [Google Scholar] [CrossRef] [Green Version]
- Ozdogan, H.; Ugurlu, S.; Uygunoglu, U.; Tutuncu, M.; Gul, A.; Akman, G.; Siva, A. The efficacy of anti-IL-1 treatment in three patients with coexisting familial Mediterranean fever and multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102332. [Google Scholar] [CrossRef]
- Stampanoni Bassi, M.; Mori, F.; Buttari, F.; Marfia, G.A.; Sancesario, A.; Centonze, D.; Iezzi, E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin. Neurophysiol. 2017, 128, 1148–1157. [Google Scholar] [CrossRef]
- Rizzo, F.R.; Musella, A.; De Vito, F.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stampanoni Bassi, M.; Buttari, F.; Mandolesi, G.; et al. Tumor Necrosis Factor and Interleukin-1β Modulate Synaptic Plasticity during Neuroinflammation. Neural. Plast. 2018, 14, 8430123. [Google Scholar] [CrossRef] [Green Version]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilic, T.V.; Meintzschel, F.; Cleff, U.; Ruge, D.; Kessler, K.R.; Ziemann, U. Short-interval paired pulse inhibition and facilitation of human motor cortex: The dimension of stimulus intensity. J. Physiol. 2002, 545, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Kujirai, T.; Caramia, M.D.; Rothwell, J.C.; Day, B.L.; Thompson, P.D.; Ferbert, A.; Wroe, S.; Asselman, P.; Marsden, C.D. Corticocortical inhibition in human motor cortex. J. Physiol. 1993, 471, 501519. [Google Scholar] [CrossRef]
MS (33) | Controls (15) | ||
---|---|---|---|
Sex, females | N (%) | 19 (57.6%) | 10 (66.7%) |
Age, years | mean (SD) | 35.51 (9.34) | 28.9 (7.4) |
Disease duration, months | median (IQR) | 13 (8–29) | - |
Radiological activity | N (%) | 13 (39.4%) | - |
EDSS | median (IQR) | 1.5 (1–2) | - |
IL-1β, pg/mL | median (IQR) | 0.1 (0–26.67) | - |
IL-1β Negative (13) | IL-1β Positive (20) | ||
---|---|---|---|
Sex, females | N (%) | 8 (61.5%) | 11 (50%) |
Age, years | mean (SD) | 38 (11.72) | 33.9 (7.28) |
Disease duration, months | median (IQR) | 12 (9–35) | 14 (6.5–31.5) |
Radiological activity | N (%) | 4 (30.8%) | 9 (45%) |
EDSS | median (IQR) | 1.5 (1–2) | 1.75 (1–2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stampanoni Bassi, M.; Buttari, F.; Nicoletti, C.G.; Mori, F.; Gilio, L.; Simonelli, I.; De Paolis, N.; Marfia, G.A.; Furlan, R.; Finardi, A.; et al. Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. Int. J. Mol. Sci. 2020, 21, 6982. https://doi.org/10.3390/ijms21196982
Stampanoni Bassi M, Buttari F, Nicoletti CG, Mori F, Gilio L, Simonelli I, De Paolis N, Marfia GA, Furlan R, Finardi A, et al. Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. International Journal of Molecular Sciences. 2020; 21(19):6982. https://doi.org/10.3390/ijms21196982
Chicago/Turabian StyleStampanoni Bassi, Mario, Fabio Buttari, Carolina Gabri Nicoletti, Francesco Mori, Luana Gilio, Ilaria Simonelli, Nicla De Paolis, Girolama Alessandra Marfia, Roberto Furlan, Annamaria Finardi, and et al. 2020. "Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis" International Journal of Molecular Sciences 21, no. 19: 6982. https://doi.org/10.3390/ijms21196982
APA StyleStampanoni Bassi, M., Buttari, F., Nicoletti, C. G., Mori, F., Gilio, L., Simonelli, I., De Paolis, N., Marfia, G. A., Furlan, R., Finardi, A., Centonze, D., & Iezzi, E. (2020). Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. International Journal of Molecular Sciences, 21(19), 6982. https://doi.org/10.3390/ijms21196982