The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity
<p>The abundance of mRNA expressed for G Protein-Coupled Receptor 18 and markers involved in adiponectin signalling, fatty acid metabolism and oxidative capacity in red gastrocnemius skeletal muscle obtained from rats fed a high fat diet for 9 weeks to induce obesity. The diet induced obese (DIO) control rats, the DIO O-1602 rats and the DIO O-1918 rats were treated via intraperitoneal injection for a further 6 weeks. mRNA expression was normalised to the average of housekeeping genes cyclophilin and βActin and grouped data is reported as mean (arbitrary units) ± SEM. <a href="#ijms-21-05922-f001" class="html-fig">Figure 1</a>a The red gastrocnemius treatment groups compared to the white gastrocnemius group (* significance <span class="html-italic">p</span> < 0.05). <a href="#ijms-21-05922-f001" class="html-fig">Figure 1</a>b–i The DIO control group is compared to either the DIO O-1602 group or the DIO O-1918 group. (<b>a</b>) G Protein-Coupled Receptor 18 (includes both DIO red and white gastrocnemius); (<b>b</b>) Adiponectin Receptor 1 (AdipoR1); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1α); (<b>f</b>) Forkhead box protein 01 (FOXO1); (<b>g</b>) Fatty Acid Translocase/Cluster of Differentiation 36 (FATCD/36); (<b>h</b>) beta-hydroxyacyl-CoA dehydrogenase (βHAD); (<b>i</b>) Pyruvate Dehydrogenase Kinase 4 (PDK4).</p> "> Figure 1 Cont.
<p>The abundance of mRNA expressed for G Protein-Coupled Receptor 18 and markers involved in adiponectin signalling, fatty acid metabolism and oxidative capacity in red gastrocnemius skeletal muscle obtained from rats fed a high fat diet for 9 weeks to induce obesity. The diet induced obese (DIO) control rats, the DIO O-1602 rats and the DIO O-1918 rats were treated via intraperitoneal injection for a further 6 weeks. mRNA expression was normalised to the average of housekeeping genes cyclophilin and βActin and grouped data is reported as mean (arbitrary units) ± SEM. <a href="#ijms-21-05922-f001" class="html-fig">Figure 1</a>a The red gastrocnemius treatment groups compared to the white gastrocnemius group (* significance <span class="html-italic">p</span> < 0.05). <a href="#ijms-21-05922-f001" class="html-fig">Figure 1</a>b–i The DIO control group is compared to either the DIO O-1602 group or the DIO O-1918 group. (<b>a</b>) G Protein-Coupled Receptor 18 (includes both DIO red and white gastrocnemius); (<b>b</b>) Adiponectin Receptor 1 (AdipoR1); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1α); (<b>f</b>) Forkhead box protein 01 (FOXO1); (<b>g</b>) Fatty Acid Translocase/Cluster of Differentiation 36 (FATCD/36); (<b>h</b>) beta-hydroxyacyl-CoA dehydrogenase (βHAD); (<b>i</b>) Pyruvate Dehydrogenase Kinase 4 (PDK4).</p> "> Figure 2
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling, fatty acid metabolism and oxidative capacity in white gastrocnemius skeletal muscle obtained from rats fed a high fat diet for 9 weeks to induce obesity. The DIO control rats, DIO O-1602 rats and the DIO O-1918 rats were treated via intraperitoneal injection for a further 6 weeks. mRNA expression was normalised to the average of housekeeping genes cyclophilin and βActin and grouped data is reported as mean (arbitrary units) ± SEM. The DIO control group is compared to either the DIO O-1602 group (* significance <span class="html-italic">p</span> < 0.05) or the DIO O-1918 group (* significance <span class="html-italic">p</span> < 0.05). (<b>a</b>) Adiponectin Receptor 1 (AdipoR1); (<b>b</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>d</b>) Forkhead box protein 01 (FOXO1); (<b>e</b>) Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1α); (<b>f</b>) beta-hydroxyacyl-CoA dehydrogenase (βHAD); (<b>g</b>) Fatty Acid Translocase/Cluster of Differentiation 36 (FATCD/36); (<b>h</b>) Pyruvate Dehydrogenase Kinase 4 (PDK4).</p> "> Figure 3
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling, fatty acid oxidation and oxidative capacity in C<sub>2</sub>C<sub>12</sub> myotubes treated for 24 h with O-1602 (10–1000 nM). mRNA expression was normalised to housekeeping gene Hypoxanthine Phosphoribosyltransferase (HPRT1) and grouped data is reported as mean (arbitrary units) ± SEM. (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2).</p> "> Figure 4
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling, fatty acid oxidation and oxidative capacity in C<sub>2</sub>C<sub>12</sub> myotubes treated for 24 h with O-1918 (100 nM). mRNA expression was normalised to housekeeping gene Hypoxanthine Phosphoribosyltransferase (HPRT1) and grouped data is reported as mean (arbitrary units) ± SEM (* significance <span class="html-italic">p</span> < 0.05). (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Adenosine Monophosphate Kinase alpha 2 (AMPKα2); (<b>f</b>) Pyruvate Dehydrogenase Kinase 4 (PDK4).</p> "> Figure 4 Cont.
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling, fatty acid oxidation and oxidative capacity in C<sub>2</sub>C<sub>12</sub> myotubes treated for 24 h with O-1918 (100 nM). mRNA expression was normalised to housekeeping gene Hypoxanthine Phosphoribosyltransferase (HPRT1) and grouped data is reported as mean (arbitrary units) ± SEM (* significance <span class="html-italic">p</span> < 0.05). (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Adenosine Monophosphate Kinase alpha 2 (AMPKα2); (<b>f</b>) Pyruvate Dehydrogenase Kinase 4 (PDK4).</p> "> Figure 5
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling and oxidative capacity in human primary <span class="html-italic">rectus abdominus</span>-derived myotubes obtained from individuals that are obese treated for 24 h with O-1918 (25–200 nM). mRNA expression was normalised to housekeeping gene Cyclophilin and grouped data is reported as mean (arbitrary units) ± SEM. (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Adiponectin Receptor 1 (AdipoR1).</p> "> Figure 5 Cont.
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling and oxidative capacity in human primary <span class="html-italic">rectus abdominus</span>-derived myotubes obtained from individuals that are obese treated for 24 h with O-1918 (25–200 nM). mRNA expression was normalised to housekeeping gene Cyclophilin and grouped data is reported as mean (arbitrary units) ± SEM. (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Adiponectin Receptor 1 (AdipoR1).</p> "> Figure 6
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling and oxidative capacity in human primary <span class="html-italic">rectus abdominus</span>-derived myotubes obtained from individuals that are obese and have type two diabetes mellitus treated for 24 h with O-1918 (25–200 nM). mRNA expression was normalised to housekeeping gene Cyclophilin and grouped data is reported as mean (arbitrary units) ± SEM. (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Adiponectin Receptor 1 (AdipoR1).</p> "> Figure 6 Cont.
<p>The abundance of mRNA expressed for markers involved in adiponectin signalling and oxidative capacity in human primary <span class="html-italic">rectus abdominus</span>-derived myotubes obtained from individuals that are obese and have type two diabetes mellitus treated for 24 h with O-1918 (25–200 nM). mRNA expression was normalised to housekeeping gene Cyclophilin and grouped data is reported as mean (arbitrary units) ± SEM. (<b>a</b>) Nuclear Factor of Activated T-Cells calcineurin dependent 1 (NFATc1); (<b>b</b>) Peroxisome proliferator-activated receptor gamma co activator 1-alpha (PGC1α); (<b>c</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1 (APPL1); (<b>d</b>) Adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 2 (APPL2); (<b>e</b>) Adiponectin Receptor 1 (AdipoR1).</p> ">
Abstract
:1. Introduction
2. Results
2.1. GPR18 Expression in Red and White Gastrocnemius in the Absence and Presence of Atypical Cannabinoids in DIO
2.2. Atypical Cannabinoids Effect on mRNA Expression of Genes Involved in Skeletal Muscle Metabolism in Red and White Gastrocnemius in DIO
2.3. Atypical Cannabinoids Effect on mRNA Expression of Genes Involved in Skeletal Muscle Metabolism in C2C12 Myotubes
2.4. Effect of O-1918 on mRNA Expression of Oxidative Capacity and Adiponectin Signaling Genes in Human Primary Myotubes Obtained from Obese and Obese T2DM Individuals
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.1.1. C2C12 Myotubes
4.1.2. Human Primary Rectus Abdominus Myotubes
4.2. Animal Care and High Fat Feeding
O-1602 or O-1918 Pharmacological Intervention in DIO rats
4.3. RNA Extraction and cDNA Synthesis
4.4. ‘Real Time’ Polymerase Chain Reaction (PCR)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GPR55 | G Protein Coupled Receptor 55 |
GPR18 | G Protein Coupled Receptor 18 |
DIO | Diet-Induced Obese |
APPL2 | Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 2 |
PGC1α | Peroxisome proliferator-activated receptor gamma co-activator 1 alpha |
NFATc1 | Nuclear factor of activated T-cells c1 |
PDK4 | Pyruvate Dehydrogenase Kinase 4 |
T2DM | Type Two Diabetes Mellitus |
CB1 | Cannabinoid Receptor 1 |
CB2 | Cannabinoid Receptor 2 |
GPCR | G Protein-Coupled Receptor |
LPI | Lysophosphatidylinositol |
MIN6 | Mouse insulinoma |
APPL1 | AdipoR1; Adiponectin Receptor 1 |
CBD | Cannabidiol |
Abn-CBD | Abnormal Cannabidiol |
SCD | Standard Chow Diet |
STZ | Streptozotocin |
AdipoR1 | Adiponectin Receptor 1 |
FOXO1 | Forkhead box protein O1 |
βHAD | Beta-hydroxyacyl-CoA dehydrogenase |
FATCD/36 | Fatty Acid Translocase/Cluster of Differentiation 36 |
D-MEM | Dulbecco’s modified eagle high glucose growth medium |
α-MEM | Alpha minimum essential media |
HFD | High Fat Diet |
RNA | Ribonucleic Acid |
cDNA | Complementary deoxyribonucleic acid |
References
- World Health Organisation (WHO). Obesity and Overweight. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 8 July 2018).
- Zurlo, F.; Larson, K.; Bogardus, C.; Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Investig. 1990, 86, 1423–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, C.E.H.; Rittweger, J. Adaptive processes in skeletal muscle: Molecular regulators and genetic influences. J. Musculoskelet Neuronal Interact. 2006, 6, 73–86. [Google Scholar] [PubMed]
- Pagliassotti, M.J.; Pan, D.A.; Prach, P.A.; Koppenhafer, T.A.; Storlien, L.; Hill, J.O. Tissue Oxidative Capacity, Fuel Stores and Skeletal Muscle Fatty Acid Composition In Obesity-Prone and Obesity-Resistant Rats. Obes. Res. 1995, 3, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Lillioja, S.; Kriketos, A.D.; Milner, M.R.; Baur, L.A.; Bogardus, C.; Jenkins, A.B.; Storlien, L.H. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997, 46, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltin, B.; Henriksson, J.; Nygaard, E.; Andersen, P.; Jansson, E. FIBER TYPES AND METABOLIC POTENTIALS OF SKELETAL MUSCLES IN SEDENTARY MAN AND ENDURANCE RUNNERS. Ann. N. Y. Acad. Sci. 1977, 301, 3–29. [Google Scholar] [CrossRef]
- Pagotto, U.; Vicennati, V.; Pasquali, R. The endocannabinoid system and the treatment of obesity. Ann. Med. 2005, 37, 270–275. [Google Scholar] [CrossRef]
- Cavuoto, P.; McAinch, A.J.; Hatzinikolas, G.; Janovská, A.; Game, P.; Wittert, G.A. The expression of receptors for endocannabinoids in human and rodent skeletal muscle. Biochem. Biophys. Res. Commun. 2007, 364, 105–110. [Google Scholar] [CrossRef]
- Cavuoto, P.; McAinch, A.J.; Hatzinikolas, G.; Cameron-Smith, D.; Wittert, G.A. Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol. Cell. Endocrinol. 2007, 267, 63–69. [Google Scholar] [CrossRef]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.-O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2009, 152, 1092–1101. [Google Scholar] [CrossRef]
- McHugh, D.; Hu, S.S.-J.; Rimmerman, N.; Juknat, A.; Vogel, Z.; Walker, J.M.; Bradshaw, H.B. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci. 2010, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Kremshofer, J.; Siwetz, M.; Berghold, V.M.; Lang, I.; Huppertz, B.; Gauster, M. A role for GPR55 in human placental venous endothelial cells. Histochem. Cell Boil. 2015, 144, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Console-Bram, L.; Brailoiu, E.; Brailoiu, G.C.; Sharir, H.; Abood, M.E. Activation of GPR18 by cannabinoid compounds: A tale of biased agonism. Br. J. Pharmacol. 2014, 171, 3908–3917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henstridge, C.M.; Balenga, N.; Kargl, J.; Andradas, C.; Brown, A.J.; Irving, A.; Sanchez, C.; Waldhoer, M. Minireview: Recent Developments in the Physiology and Pathology of the Lysophosphatidylinositol-Sensitive Receptor GPR55. Mol. Endocrinol. 2011, 25, 1835–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simcocks, A.C.; O’Keefe, L.; Jenkin, K.A.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. A potential role for GPR55 in the regulation of energy homeostasis. Drug Discov. Today 2014, 19, 1145–1151. [Google Scholar] [CrossRef]
- Moreno-Navarrete, J.M.; Catalán, V.; Whyte, L.; Díaz-Arteaga, A.; Vázquez-Martínez, R.; Rotellar, F.; Guzmán, R.; Gomez-Ambrosi, J.; Pulido, M.R.; Russell, W.; et al. The L- -Lysophosphatidylinositol/GPR55 System and Its Potential Role in Human Obesity. Diabetes 2011, 61, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Lipina, C.; Walsh, S.K.; Mitchell, S.E.; Speakman, J.R.; Wainwright, C.L.; Hundal, H.S. GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB J. 2018, 33, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- Ulu, A.; Sahoo, P.K.; Yuil-Valdes, A.; Mukherjee, M.; Van Ormer, M.; Muthuraj, P.G.; Thompson, M.; Anderson-Berry, A.; Hanson, C.; Natarajan, S.K.; et al. Omega-3 Fatty Acid-Derived Resolvin D2 Regulates Human Placental Vascular Smooth Muscle and Extravillous Trophoblast Activities. Int. J. Mol. Sci. 2019, 20, 4402. [Google Scholar] [CrossRef] [Green Version]
- Matouk, A.I.; Taye, A.; El-Moselhy, M.A.; Heeba, G.H.; Abdel-Rahman, A.A. The Effect of Chronic Activation of the Novel Endocannabinoid Receptor GPR18 on Myocardial Function and Blood Pressure in Conscious Rats. J. Cardiovasc. Pharmacol. 2017, 69, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Romero-Zerbo, S.Y.; Rafacho, A.; Diaz-Arteaga, A.; Suárez, J.; Quesada, I.; Imbernon, M.A.; Ross, R.; Diéguez, C.; De Fonseca, F.R.; Nogueiras, R.; et al. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J. Endocrinol. 2011, 211, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Vong, C.T.; Tseng, H.H.L.; Kwan, Y.W.; Lee, S.M.-Y.; Hoi, M.P.M. G-protein coupled receptor 55 agonists increase insulin secretion through inositol trisphosphate-mediated calcium release in pancreatic β-cells. Eur. J. Pharmacol. 2019, 854, 372–379. [Google Scholar] [CrossRef]
- Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, P.G.; Chen, L.; Nardone, J.; Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003, 17, 2205–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kido, K.; Ato, S.; Yokokawa, T.; Sato, K.; Fujita, S. Resistance training recovers attenuated APPL1 expression and improves insulin-induced Akt signal activation in skeletal muscle of type 2 diabetic rats. Am. J. Physiol. Metab. 2018, 314, E564–E571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wende, A.R.; Huss, J.M.; Schaeffer, P.J.; Giguère, V.; Kelly, D.P. PGC-1α Coactivates PDK4 Gene Expression via the Orphan Nuclear Receptor ERRα: A Mechanism for Transcriptional Control of Muscle Glucose Metabolism. Mol. Cell. Boil. 2005, 25, 10684–10694. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Arteaga, A.; Vazquez, M.J.; Vazquez-Martinez, R.; Pulido, M.R.; Suárez, J.; Velasquez, D.A.; López, M.; Ross, R.A.; De Fonseca, F.R.; Bermúdez-Silva, F.-J.; et al. The atypical cannabinoid O-1602 stimulates food intake and adiposity in rats. Diabetes, Obes. Metab. 2011, 14, 234–243. [Google Scholar] [CrossRef]
- Parray, H.A.; Yun, J.W. Cannabidiol promotes browning in 3T3-L1 adipocytes. Mol. Cell. Biochem. 2016, 416, 131–139. [Google Scholar] [CrossRef]
- Matouk, A.I.; Taye, A.; El-Moselhy, M.A.; Heeba, G.H.; Abdel-Rahman, A.A. Abnormal cannabidiol confers cardioprotection in diabetic rats independent of glycemic control. Eur. J. Pharmacol. 2017, 820, 256–264. [Google Scholar] [CrossRef]
- Simcocks, A.C.; Jenkin, K.A.; O’Keefe, L.; Samuel, C.S.; Mathai, M.L.; McAinch, A.J.; Hryciw, D.H. Atypical cannabinoid ligands O-1602 and O-1918 administered chronically in diet-induced obesity. Endocr. Connect. 2019, 8, 203–216. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation (WHO). Global Health Observary (Gho) Data. Available online: https://www.who.int/gho/ncd/risk_factors/overweight_obesity/obesity_adults/en/ (accessed on 17 July 2019).
- Carey, A.L.; Kingwell, B.A. Novel pharmacological approaches to combat obesity and insulin resistance: Targeting skeletal muscle with ‘exercise mimetics’. Diabetol. 2009, 52, 2015–2026. [Google Scholar] [CrossRef]
- Rossi, F.; Bellini, G.; Luongo, L.; Manzo, I.; Tolone, S.; Tortora, C.; Bernardo, M.; Grandone, A.; Conforti, A.; Docimo, L.; et al. Cannabinoid receptor 2 as anti-obesity target: Inflammation, fat storage and browning modulation. J. Clin. Endocrinol. Metab. 2016, 101, 3469–3478. [Google Scholar] [CrossRef] [Green Version]
- Lindborg, K.A.; Teachey, M.K.; Jacob, S.; Henriksen, E.J. Effects of in vitro antagonism of endocannabinoid-1 receptors on the glucose transport system in normal and insulin-resistant rat skeletal muscle. Diabetes, Obes. Metab. 2010, 12, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance. Endocr. Rev. 2006, 27, 73–100. [Google Scholar] [CrossRef] [PubMed]
- Mendizabal-Zubiaga, J.; Melser, S.; Bénard, G.; Ramos-Uriarte, A.; Reguero, L.; Arrabal, S.; Elezgarai, I.; Gerrikagoitia, I.; Suárez, J.; De Fonseca, F.R.; et al. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration. Front. Physiol. 2016, 7, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespillo, A.; Suárez, J.; Bermúdez-Silva, F.-J.; Rivera, P.; Vida, M.; Alonso, M.; Palomino, A.; Lucena, M.A.; Serrano, A.; Pérez-Martín, M.; et al. Expression of the cannabinoid system in muscle: Effects of a high-fat diet and CB1 receptor blockade. Biochem. J. 2010, 433, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Jenkin, K.A.; O’Keefe, L.; Simcocks, A.C.; Briffa, J.F.; Mathai, M.L.; McAinch, A.J.; Hryciw, D.H. Renal effects of chronic pharmacological manipulation of CB 2 receptors in rats with diet-induced obesity. Br. J. Pharmacol. 2015, 173, 1128–1142. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xin, X.; Xiang, R.; Ramos, F.J.; Liu, M.; Lee, H.J.; Chen, H.; Mao, X.; Kikani, C.K.; Liu, F.; et al. Yin-Yang Regulation of Adiponectin Signaling by APPL Isoforms in Muscle Cells. J. Boil. Chem. 2009, 284, 31608–31615. [Google Scholar] [CrossRef] [Green Version]
- Cornall, L.; Mathai, M.L.; Hryciw, D.; Simcocks, A.; O’Brien, P.E.; Wentworth, J.M.; McAinch, A.J. GPR119 regulates genetic markers of fatty acid oxidation in cultured skeletal muscle myotubes. Mol. Cell. Endocrinol. 2013, 365, 108–118. [Google Scholar] [CrossRef]
- McAinch, A.J.; Steinberg, G.; Mollica, J.; O’Brien, P.; Dixon, J.; Kemp, B.E.; Cameron-Smith, D. Leptin stimulation of COXIV is impaired in obese skeletal muscle myotubes. Obes. Res. Clin. Pr. 2007, 1, 53–60. [Google Scholar] [CrossRef]
- Cornall, L.M.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. Diet-induced Obesity Up-regulates the Abundance of GPR43 and GPR120 in a Tissue Specific Manner. Cell. Physiol. Biochem. 2011, 28, 949–958. [Google Scholar] [CrossRef]
- Schicho, R.; Bashashati, M.; Bawa, M.; McHugh, D.; Saur, D.; Hu, H.-M.; Zimmer, A.; Lutz, B.; Mackie, K.; Bradshaw, H.B.; et al. The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment. Inflamm. Bowel Dis. 2011, 17, 1651–1664. [Google Scholar] [CrossRef] [Green Version]
- Offertáler, L.; Mo, F.-M.; Batkai, S.; Liu, J.; Begg, M.; Razdan, R.K.; Martin, B.R.; Bukoski, R.D.; Kunos, G. Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol. Pharmacol. 2003, 63, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponchel, F.; Toomes, C.; Bransfield, K.; Leong, F.T.; Douglas, S.H.; Field, S.L.; Bell, S.M.; Combaret, V.; Puisieux, A.; Mighell, A.J.; et al. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol. 2003, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2(-Delta Delta C.(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Group | |
---|---|---|
Obese (n = 8) | Obese Diabetic (n = 8) | |
Sex | Female n = 5 Male n = 3 | Female n = 5 Male n = 3 |
Age (years) | 45.9 ± 4.9 | 48.6 ± 3.5 |
Weight (kg) | 106.9 ± 6.8 | 114.2 ± 7.3 |
Height (m) | 1.6 ± 0.0 | 1.7 ± 0.0 |
BMI | 40.2 ± 1.8 | 39.5 ± 1.8 |
Fasting Blood Glucose (mmol/L) | 5.3 ± 0.1 | 10.8 ± 1.5 * |
Plasma Insulin (µU/L) | 9.5 ± 1.4 | 15.6 ± 2.6 |
Hba1c % | 5.5 ± 0.1 | 8.8 ± 0.8 * |
Cholesterol | 5.1 ± 0.5 | 4.9 ± 2.6 |
Fasting Triglycerides | 1.4 ± 0.2 | 2.6 ± 0.6 |
HDL-cholesterol | 1.4 ± 0.1 | 1.1 ± 0.1 * |
LDL-cholesterol | 3.0 ± 0.4 | 3.2 ± 0.5 |
Primer | Accession Number | Direction | Sequence |
---|---|---|---|
Rat Genes | |||
Cyclophilin | NM_017101.1 | Forward (5′ 3′) | CTG ATG GCG AGC CCT TG |
Reverse (5′ 3′) | TCT GCT GTC TTT GGA ACT TTG TC | ||
β-Actin | NM_031144 | Forward (5′ 3′) | CTA AGG CCA ACC GTG AAA TGA |
Reverse (5′ 3′) | CCA GAG GCA TAC AGG GAC AAC | ||
GPR18 | NM_001079710.1 | Forward (5′ 3′) | GTG GGG GTC TGG ATA ATG AC |
Reverse (5′ 3′) | CGC GTG AAG TTA AGC ACA TT | ||
AdipoR1 | NM_207587.1 | Forward (5′ 3′) | TGA GGT ACC AGC CAG ATG TC |
Reverse (5′ 3′) | CGT GTC CGC TTC TCT GTT AC | ||
APPL1 | XM_008771023.1 | Forward (5′ 3′) | TCA CTC CTT CCC CAT CTT TC |
Reverse (5′ 3′) | TAG AGA GAG GGC AGC CAA AT | ||
APPL2 | NM_001108741.1 | Forward (5′ 3′) | TGC TCG GGC TAT TCA CAA |
Reverse (5′ 3′) | AAA CAG GCC CGT GAC ACT | ||
PGC1α | NM_031347.1 | Forward (5′ 3′) | ACC CAC AGG ATC AGA ACA AACC |
Reverse (5′ 3′) | GAC AAA TGC TCT TTG CTT TAT TGC | ||
FOXO1 | NM_001191846.2 | Forward (5′ 3′) | CTC GGC GGG CTG GAA |
Reverse (5′ 3′) | TCA TTC TGT ACT CGA ATA AAC TTG | ||
PDK4 | NM_053551.1 | Forward (5′ 3′) | GGG ATC TCG CCT GGC ACT TT |
Reverse (5′ 3′) | CAC ACA TTC ACG AAG CAG CA | ||
βHAD | AF095449.1 | Forward (5′ 3′) | TCG TGA CCA GGC AAT TCG T |
Reverse (5′ 3′) | CCG ATG ACC GTC ACA TGC T | ||
FAT/CD 36 | NM_031561.2 | Forward (5′ 3′) | GAC CAT CGG CGA TGA GAA A |
Reverse (5′ 3′) | CCA GGC CCA GGA GCT TTA TT | ||
Mouse Genes | |||
HPRT1 | NM_013556.2 | Forward (5′ 3′) | GCAAACTTTGCTTTCCCTGG |
Reverse (5′ 3′) | ACTTCGAGAGGTCCTTTTCAC | ||
NFATc1 | NM_016791.3 | Forward (5′ 3′) | TCCAAAGTCATTTTCGTGGA |
Reverse (5′ 3′) | GTTGCGGAAAGGTGGTATCT | ||
PGC1α | NM_008904.1 | Forward (5′ 3′) | CACCCACAGGATCAGAACAA |
Reverse (5′ 3′) | GGTCATCGTTTGTGGTCAGA | ||
APPL1 | NM_145221.2 | Forward (5′ 3′) | ATCAGGCGGAAGAAGTGAGA |
Reverse (5′ 3′) | TTTCTGATGCCCTACGATCC | ||
APPL2 | NM_145220.2 | Forward (5′ 3′) | CCAAAAGTATGGACGGCTTC |
Reverse (5′ 3′) | CTCAGCTTCCAGTTCCACCT | ||
AMPKα2 | NM_178143.1 | Forward (5′ 3′) | GCCCAGATGAACGCTAAGAT |
Reverse (5′ 3′) | TGCATACAGCCTTCCTGAGA | ||
PDK4 | NM_013743.2 | Forward (5′ 3′) | GAGAAGAGCCCAGAAGACCA |
Reverse (5′ 3′) | TCCACTGTGCAGGTGTCTTT | ||
Human Genes | |||
Cyclophilin | NM 021130.3 | Forward (5′ 3′) | CATCTGCACTGGCAAGACTGA |
Reverse (5′ 3′) | TTCATGCCTTCTTTCACTTTGC | ||
NFATc1 | NM_172390.1 | Forward (5′ 3′) | CCT CTC CAA CAC CAA AGTCC |
Reverse (5′ 3′) | CGA TGT CCG TCT CTC CTT TC | ||
PGC1α | NM_013261 | Forward (5′ 3′) | CAAGCCAAACCAACAACTTTATCTCT |
Reverse (5′ 3′) | CACACTTAAGGTGCGTTCAATAGTC | ||
AdipoR1 | NM_015999 | Forward (5′ 3′) | CGCCATGGAGAAGATGGAA |
Reverse (5′ 3′) | TCATATGGGATGACCCTCC | ||
APPL1 | NM_012096 | Forward (5′ 3′) | TCACTCCTTCCCCATCTTTC |
Reverse (5′ 3′) | TAGAGAGAGGGCAGCCAAAT | ||
APPL2 | NM_018171 | Forward (5′ 3′) | CACGCCCAATGGAAAATC |
Reverse (5′ 3′) | CGACTGCCTCAGGGTTGT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simcocks, A.C.; O’Keefe, L.; Jenkin, K.A.; Cornall, L.M.; Grinfeld, E.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity. Int. J. Mol. Sci. 2020, 21, 5922. https://doi.org/10.3390/ijms21165922
Simcocks AC, O’Keefe L, Jenkin KA, Cornall LM, Grinfeld E, Mathai ML, Hryciw DH, McAinch AJ. The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity. International Journal of Molecular Sciences. 2020; 21(16):5922. https://doi.org/10.3390/ijms21165922
Chicago/Turabian StyleSimcocks, Anna C., Lannie O’Keefe, Kayte A. Jenkin, Lauren M. Cornall, Esther Grinfeld, Michael L. Mathai, Deanne H. Hryciw, and Andrew J. McAinch. 2020. "The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity" International Journal of Molecular Sciences 21, no. 16: 5922. https://doi.org/10.3390/ijms21165922
APA StyleSimcocks, A. C., O’Keefe, L., Jenkin, K. A., Cornall, L. M., Grinfeld, E., Mathai, M. L., Hryciw, D. H., & McAinch, A. J. (2020). The Role of Atypical Cannabinoid Ligands O-1602 and O-1918 on Skeletal Muscle Homeostasis with a Focus on Obesity. International Journal of Molecular Sciences, 21(16), 5922. https://doi.org/10.3390/ijms21165922