Straightforward Protein-Protein Interaction Interface Mapping via Random Mutagenesis and Mammalian Protein Protein Interaction Trap (MAPPIT)
<p>Mammalian Protein Protein Interaction Trap (MAPPIT) (<b>A</b>) MAPPIT principle. In the pSEL MAPPIT bait, the bait receptor comprises the extracellular Epo Receptor domain and a mutant intracellular Leptin Receptor domain, lacking STAT3 recruitment sites. For the alternative pSEG and pCLG MAPPIT baits, the intracellular LepR domain C-terminal of the JAK2 binding site is replaced by a glycine-glycine-serine (GGS) linker allowing more flexibility. The pCLL and pCLG baits contain the extracellular LepR domain. (<b>B</b>) MAPPIT outline. HEK293T cells are transfected with bait, prey and reporter constructs. 24 h post-transfection, cells are stimulated with cytokine. The next day, luciferase activity (luminescence, in counts per second) is measured. The MAPPIT signal represents the fold induction between stimulated and non-stimulated wells.</p> "> Figure 2
<p>6-step workflow of the MAPPIT-based interface mapping method. (<b>A</b>) MAPPIT transfection conditions are optimized by varying the concentration of bait and prey plasmids and by switching the bait and prey proteins. (<b>B</b>) The target protein is randomly mutated via error-prone polymerase chain reaction (PCR). The linear PCR product is cloned into the MAPPIT prey plasmid vector and electroporated into <span class="html-italic">E. coli</span> DH10B cells, resulting in the MAPPIT mutant prey library. (<b>C</b>) Individual <span class="html-italic">E. coli</span> colonies are inoculated in 96-deepwell blocks. Mutant prey DNA is isolated via a 96-well DNA miniprep protocol and sequenced by Sanger sequencing. (<b>D</b>) MAPPIT prey mutants harbouring a single missense mutation are co-transfected with the MAPPIT bait and STAT3 luciferase reporter plasmids in 384-well plates seeded with HEK293T cells. (<b>E</b>) After cytokine stimulation via Epo or leptin, the luciferase activity is measured and relative MAPPIT signals are calculated. (<b>F</b>) The relative MAPPIT signal of each mutant is determined and mapped on the protein structure.</p> "> Figure 3
<p>Random mutagenesis of the MyD88 TIR prey–MyD88 bait interaction. (<b>A</b>) Relative MAPPIT signal distribution of all MyD88 TIR wildtypes (WTs) for MyD88 TIR prey-MyD88 bait interaction. (<b>B</b>) Relative MAPPIT signal distribution of all unique single mutants for MyD88 TIR prey-MyD88 bait interaction. (<b>C</b>) The “render by attribute” tool of Chimera. (<b>D</b>) Effect of mutations on the MyD88 TIR prey-MyD88 bait interaction. Residues are coloured on the MyD88 TIR crystal structure according to their relative MAPPIT signal [<a href="#B21-ijms-20-02058" class="html-bibr">21</a>]. A cluster of red-coloured residues forms a potential binding site (BB-loop). Green-coloured residues do not alter the interaction compared to the wildtype. Non-mutated residues are grey and backbone atoms are black.</p> "> Figure 4
<p>Mutations in two very different diseases both affect MyD88 interactions by affecting the same interaction surface. (<b>A</b>,<b>B</b>) Random mutations that affect the interactions of MyD88 (red) cluster around the C-terminal half of helix C and the CD loop. Panel A shows a space filling model of the MyD88 TIR domain, with a major interaction site at helix C and the CD loop oriented towards the viewer. Mutations that strongly disrupt interactions with the adapter protein Mal are red. Panel B shows a ribbon model in the same orientation, with indication of helix C, the CD loop, S222 and L265. (<b>C</b>) In the L265P mutant (red) and S222R mutant (green), the axis of helix C has tilted, and the CD loop shifted when compared with the wild type (grey ribbon).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1: Optimization of the MAPPIT Readout
2.2. Step 2: Random Mutagenesis via Error-Prone PCR
2.3. Step 3: Generation of a Mutant Plasmid Library in 96-Well Format
2.4. Step 4: MAPPIT in 384-Well Assay
2.5. Step 5: Data Analysis
2.6. Step 6: Mapping of Relative MAPPIT Signals
3. Results and Discussion
3.1. MAPPIT Detects Interfaces in Diverse Target Proteins
3.2. Interfaces Detected via MAPPIT Are Confirmed via Other Methods and Studies
3.3. MAPPIT and Mutagenesis Provide Insight in Disease Mechanisms
3.4. Interactions Requiring Additional Ligands or Phosphorylation Can Be Studied via MAPPIT
3.5. Critical Considerations in Data Interpretation
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Apobec3G | apolipoprotein B messenger RNA-editing catalytic polypeptide-like G |
Epo | erythropoietin |
gp130 | glycoprotein 130 |
JAK | Janus kinase |
LepR | leptin receptor |
Mal | MyD88 adapter-like |
MAPPIT | mammalian protein-protein interaction trap |
MyD88 | myeloid differentiation primary response gene 88 |
NMR | nuclear magnetic resonance |
PPAR-α | peroxisome proliferator-activated receptor α |
PPI | protein-protein interaction |
PTM | post-translational modification |
RNF41 | ring finger protein 41 |
STAT | signal transducers and activators of transcription |
TIR | Toll/interleukin-1 receptor |
TRIF | TIR-domain-containing adapter inducing interferon-β |
References
- Fields, S.; Song, O. A novel genetic system to detect protein-protein interactions. Nature 1989, 340, 245–246. [Google Scholar] [CrossRef]
- Gingras, A.-C.; Gstaiger, M.; Raught, B.; Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 2007, 8, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, O.; Gullberg, M.; Jarvius, M.; Ridderstråle, K.; Leuchowius, K.-J.; Jarvius, J.; Wester, K.; Hydbring, P.; Bahram, F.; Larsson, L.-G.; et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 2006, 3, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Boute, N.; Jockers, R.; Issad, T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 2002, 23, 351–354. [Google Scholar] [CrossRef]
- Barrios-Rodiles, M.; Brown, K.R.; Ozdamar, B.; Bose, R.; Liu, Z.; Donovan, R.S.; Shinjo, F.; Liu, Y.; Dembowy, J.; Taylor, I.W.; et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005, 307, 1621–1625. [Google Scholar] [CrossRef]
- Roux, K.J.; Kim, D.I.; Raida, M.; Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012, 196, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Eyckerman, S.; Titeca, K.; Van Quickelberghe, E.; Cloots, E.; Verhee, A.; Samyn, N.; De Ceuninck, L.; Timmerman, E.; De Sutter, D.; Lievens, S.; et al. Trapping mammalian protein complexes in viral particles. Nat. Commun. 2016, 7, 11416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petschnigg, J.; Groisman, B.; Kotlyar, M.; Taipale, M.; Zheng, Y.; Kurat, C.F.; Sayad, A.; Sierra, J.R.; Mattiazzi Usaj, M.; Snider, J.; et al. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat. Methods 2014, 11, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinrich, D.; Jonkheijm, P.; Niemeyer, C.M.; Waldmann, H. Applications of protein biochips in biomedical and biotechnological research. Angew. Chem. Int. Ed. Engl. 2009, 48, 7744–7751. [Google Scholar] [CrossRef]
- Eyckerman, S.; Verhee, A.; Van der Heyden, J.; Lemmens, I.; Van Ostade, X.; Vandekerckhove, J.; Tavernier, J. Design and application of a cytokine-receptor-based interaction trap. Nat. Cell Biol. 2001, 3, 1114–1119. [Google Scholar] [CrossRef]
- Yu, H.; Braun, P.; Yildirim, M.A.; Lemmens, I.; Venkatesan, K.; Sahalie, J.; Hirozane-Kishikawa, T.; Gebreab, F.; Li, N.; Simonis, N.; et al. High-quality binary protein interaction map of the yeast interactome network. Science 2008, 322, 104–110. [Google Scholar] [CrossRef]
- Braun, P.; Tasan, M.; Dreze, M.; Barrios-Rodiles, M.; Lemmens, I.; Yu, H.; Sahalie, J.M.; Murray, R.R.; Roncari, L.; de Smet, A.-S.; et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 2009, 6, 91–97. [Google Scholar] [CrossRef]
- Rolland, T.; Taşan, M.; Charloteaux, B.; Pevzner, S.J.; Zhong, Q.; Sahni, N.; Yi, S.; Lemmens, I.; Fontanillo, C.; Mosca, R.; et al. A Proteome-Scale Map of the Human Interactome Network. Cell 2014, 159, 1212–1226. [Google Scholar] [CrossRef] [Green Version]
- Mosca, R.; Céol, A.; Aloy, P. Interactome3D: Adding structural details to protein networks. Nat. Methods 2012, 10, 47–53. [Google Scholar] [CrossRef]
- Xue, L.C.; Dobbs, D.; Bonvin, A.M.J.J.; Honavar, V. Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett. 2015, 589, 3516–3526. [Google Scholar] [CrossRef]
- De Vries, S.J.; Melquiond, A.S.J.; Kastritis, P.L.; Karaca, E.; Bordogna, A.; van Dijk, M.; Rodrigues, J.P.G.L.M.; Bonvin, A.M.J.J. Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. Proteins 2010, 78, 3242–3249. [Google Scholar] [CrossRef]
- Rasila, T.S.; Pajunen, M.I.; Savilahti, H. Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal. Biochem. 2009, 388, 71–80. [Google Scholar] [CrossRef]
- Bovijn, C.; Desmet, A.-S.; Uyttendaele, I.; Van Acker, T.; Tavernier, J.; Peelman, F. Identification of binding sites for myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 in MyD88 adapter-like (Mal). J. Biol. Chem. 2013, 288, 12054–12066. [Google Scholar] [CrossRef]
- Vyncke, L.; Bovijn, C.; Pauwels, E.; Van Acker, T.; Ruyssinck, E.; Burg, E.; Tavernier, J.; Peelman, F. Reconstructing the TIR Side of the Myddosome: A Paradigm for TIR-TIR Interactions. Structure 2016, 24, 437–447. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Snyder, G.A.; Cirl, C.; Jiang, J.; Chen, K.; Waldhuber, A.; Smith, P.; Römmler, F.; Snyder, N.; Fresquez, T.; Dürr, S.; et al. Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2013, 110, 6985–6990. [Google Scholar] [CrossRef]
- Uyttendaele, I.; Lavens, D.; Catteeuw, D.; Lemmens, I.; Bovijn, C.; Tavernier, J.; Peelman, F. Random mutagenesis MAPPIT analysis identifies binding sites for Vif and Gag in both cytidine deaminase domains of Apobec3G. PLoS ONE 2012, 7, e44143. [Google Scholar] [CrossRef]
- Masschaele, D.; De Ceuninck, L.; Wauman, J.; Defever, D.; Stenner, F.; Lievens, S.; Peelman, F.; Tavernier, J. RNF41 interacts with the VPS52 subunit of the GARP & EARP complexes. PLoS ONE 2017, 12, e0178132. [Google Scholar]
- Kouno, T.; Luengas, E.M.; Shigematsu, M.; Shandilya, S.M.D.; Zhang, J.; Chen, L.; Hara, M.; Schiffer, C.A.; Harris, R.S.; Matsuo, H. Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. Nat. Struct. Mol. Biol. 2015, 22, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Lavens, D.; Peelman, F.; van der Heyden, J.; Uyttendaele, I.; Catteeuw, D.; Verhee, A.; van Schoubroeck, B.; Kurth, J.; Hallenberger, S.; Clayton, R.; et al. Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis. Nucleic Acids Res. 2009, 38, 1902–1912. [Google Scholar] [CrossRef] [Green Version]
- Poltorak, A.; He, X.; Smirnova, I.; Liu, M.Y.; Van Huffel, C.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998, 282, 2085–2088. [Google Scholar] [CrossRef]
- Varettoni, M.; Arcaini, L.; Zibellini, S.; Boveri, E.; Rattotti, S.; Riboni, R.; Corso, A.; Orlandi, E.; Bonfichi, M.; Gotti, M.; et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013, 121, 2522–2528. [Google Scholar] [CrossRef]
- Sikora, K.A.; Bennett, J.R.; Vyncke, L.; Deng, Z.; Tsai, W.L.; Pauwels, E.; Layh-Schmitt, G.; Brundidge, A.; Navid, F.; Zaal, K.J.M.; et al. Germline gain-of-function myeloid differentiation primary response gene–88 (MYD88) mutation in a child with severe arthritis. J. Allergy Clin. Immunol. 2018, 141, 1943–1947. [Google Scholar] [CrossRef]
- Van Durme, J.; Delgado, J.; Stricher, F.; Serrano, L.; Schymkowitz, J.; Rousseau, F. A graphical interface for the FoldX forcefield. Bioinformatics 2011, 27, 1711–1712. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, I.; et al. Heteromeric MAPPIT: A novel strategy to study modification-dependent protein-protein interactions in mammalian cells. Nucleic Acids Res. 2003, 15, e75. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vyncke, L.; Masschaele, D.; Tavernier, J.; Peelman, F. Straightforward Protein-Protein Interaction Interface Mapping via Random Mutagenesis and Mammalian Protein Protein Interaction Trap (MAPPIT). Int. J. Mol. Sci. 2019, 20, 2058. https://doi.org/10.3390/ijms20092058
Vyncke L, Masschaele D, Tavernier J, Peelman F. Straightforward Protein-Protein Interaction Interface Mapping via Random Mutagenesis and Mammalian Protein Protein Interaction Trap (MAPPIT). International Journal of Molecular Sciences. 2019; 20(9):2058. https://doi.org/10.3390/ijms20092058
Chicago/Turabian StyleVyncke, Laurens, Delphine Masschaele, Jan Tavernier, and Frank Peelman. 2019. "Straightforward Protein-Protein Interaction Interface Mapping via Random Mutagenesis and Mammalian Protein Protein Interaction Trap (MAPPIT)" International Journal of Molecular Sciences 20, no. 9: 2058. https://doi.org/10.3390/ijms20092058
APA StyleVyncke, L., Masschaele, D., Tavernier, J., & Peelman, F. (2019). Straightforward Protein-Protein Interaction Interface Mapping via Random Mutagenesis and Mammalian Protein Protein Interaction Trap (MAPPIT). International Journal of Molecular Sciences, 20(9), 2058. https://doi.org/10.3390/ijms20092058