Platelet-Rich Plasma and Electrochemical Biosensors: A Novel Approach to Ovarian Function Evaluation and Diagnostics
Abstract
:1. Introduction
2. PRP Procedure: Possible Therapeutic Effects and Challenges
2.1. Novel Ovarian PRP Procedure Biomarkers
2.2. Electrochemical Biosensors as a Tool for PRP Therapy Effectiveness Evaluation
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMH | Anti-Müllerian hormone |
BM-MSCs | Bone marrow-derived mesenchymal stem cells |
CTGF | Connective tissue growth factor |
EGF | Epidermal growth factor |
ESHRE | The European Society of Reproductive Medicine |
FGF | Fibroblast growth factor |
FSH | Follicle-stimulating hormone |
IGF | Insulin-like growth factor |
LH | Luteinizing hormone |
MIP | Molecularly imprinted polymers |
PDGF | Platelet-derived growth factor |
PDGF-BB | Platelet-derived growth factor-BB |
POI | Premature ovarian insufficiency |
POR | Poor ovarian response |
PPP | Platelet-poor plasma |
PRP | Platelet-rich plasma |
TGF | Transforming growth factor |
VEGF | Vascular endothelial growth factor |
References
- Maged, A.M.; Mohsen, R.A.; Salah, N.; Ragab, W.S. The Value of Intraovarian Autologous Platelet Rich Plasma in Women with Poor Ovarian Reserve or Ovarian Insufficiency: A Systematic Review and Meta-Analysis. BMC Pregnancy Childbirth 2024, 24, 85. [Google Scholar] [CrossRef]
- Sills, E.S.; Petersen, J.L.; Rickers, N.S.; Wood, S.H.; Li, X. Regenerative Effect of Intraovarian Injection of Activated Autologous Platelet Rich Plasma: Serum Anti-Mullerian Hormone Levels Measured Among Poor-Prognosis In Vitro Fertilization Patients. Int. J. Regen. Med. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Sfakianoudis, K.; Simopoulou, M.; Grigoriadis, S.; Pantou, A.; Tsioulou, P.; Maziotis, E.; Rapani, A.; Giannelou, P.; Nitsos, N.; Kokkali, G.; et al. Reactivating Ovarian Function through Autologous Platelet-Rich Plasma Intraovarian Infusion: Pilot Data on Premature Ovarian Insufficiency, Perimenopausal, Menopausal, and Poor Responder Women. J. Clin. Med. 2020, 9, 1809. [Google Scholar] [CrossRef] [PubMed]
- Petryk, N.; Petryk, M. Ovarian Rejuvenation Through Platelet-Rich Autologous Plasma (PRP)—A Chance to Have a Baby Without Donor Eggs, Improving the Life Quality of Women Suffering from Early Menopause Without Synthetic Hormonal Treatment. Reprod. Sci. 2020, 27, 1975–1982. [Google Scholar] [CrossRef]
- Benetti-Pinto, C.L.; Soares Júnior, J.M.; MacIel, G.A.; Nácul, A.P.; Yela, D.A.; Silva, A.C.J.S.R.E. Premature Ovarian Insufficiency: A Hormonal Treatment Approach. Rev. Bras. Ginecol. E Obstet. 2020, 42, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Webber, L.; Davies, M.; Anderson, R.; Bartlett, J.; Braat, D.; Cartwright, B.; Cifkova, R.; De Muinck Keizer-Schrama, S.; Hogervorst, E.; Janse, F.; et al. ESHRE Guideline: Management of Women with Premature Ovarian Insufficiency. Hum. Reprod. 2016, 31, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Bosch, E.; Broer, S.; Griesinger, G.; Grynberg, M.; Humaidan, P.; Kolibianakis, E.; Kunicki, M.; La Marca, A.; Lainas, G.; Le Clef, N.; et al. ESHRE Guideline: Ovarian Stimulation for IVF/ICSI. Hum. Reprod. Open 2021, 2020, hoaa009. [Google Scholar]
- Arora, G.; Arora, S. Platelet-Rich Plasma—Where Do We Stand Today? A Critical Narrative Review and Analysis. Dermatol. Ther. 2021, 34, e14343. [Google Scholar] [CrossRef]
- Menter, D.G.; Afshar-Kharghan, V.; Shen, J.P.; Martch, S.L.; Maitra, A.; Kopetz, S.; Honn, K.V.; Sood, A.K. Of Vascular Defense, Hemostasis, Cancer, and Platelet Biology: An Evolutionary Perspective. Cancer Metastasis Rev. 2022, 41, 147–172. [Google Scholar] [CrossRef]
- Rosario, R.; Stewart, H.L.; Spears, N.; Telfer, E.E.; Anderson, R.A. Anti-Mullerian Hormone Attenuates Both Cyclophosphamide-Induced Damage and PI3K Signalling Activation, While Rapamycin Attenuates Only PI3K Signalling Activation, in Human Ovarian Cortex in Vitro. Hum. Reprod. 2024, 39, 382–392. [Google Scholar] [CrossRef]
- Scott Sills, E.; Wood, S.H. Autologous Activated Platelet-Rich Plasma Injection into Adult Human Ovary Tissue: Molecular Mechanism, Analysis, and Discussion of Reproductive Response. Biosci. Rep. 2019, 39, BSR20190805. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef]
- Bendinskaite, S.; Bruzaite, I.; Rozene, J.; Mockaitis, T.; Zinovicius, A.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. Microbial Fuel Cell Based on Ensifer Meliloti. J. Electrochem. Soc. 2024, 171, 105501. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Development of Molecularly Imprinted Polymer Based Phase Boundaries for Sensors Design (Review). Adv. Colloid Interface Sci. 2022, 305, 102693. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2021, 13, 49. [Google Scholar] [CrossRef]
- Gabriunaite, I.; Valiuniene, A.; Ramanavicius, S.; Ramanavicius, A. Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides. Crit. Rev. Anal. Chem. 2024, 54, 549–564. [Google Scholar] [CrossRef]
- Ratautaite, V.; Boguzaite, R.; Brazys, E.; Plausinaitis, D.; Ramanavicius, S.; Samukaite-Bubniene, U.; Bechelany, M.; Ramanavicius, A. Evaluation of the Interaction between SARS-CoV-2 Spike Glycoproteins and the Molecularly Imprinted Polypyrrole. Talanta 2023, 253, 123981. [Google Scholar] [CrossRef]
- Navitski, I.; Ramanaviciute, A.; Ramanavicius, S.; Pogorielov, M.; Ramanavicius, A. MXene-Based Chemo-Sensors and Other Sensing Devices. Nanomaterials 2024, 14, 447. [Google Scholar] [CrossRef]
- Drobysh, M.; Ramanaviciene, A.; Viter, R.; Chen, C.F.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Int. J. Mol. Sci. 2022, 23, 666. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Jagminas, A.; Ramanavicius, A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers 2021, 13, 974. [Google Scholar] [CrossRef]
- Zinovicius, A.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Rozene, J.; Popov, A.; Ramanavicius, A. Scanning Electrochemical Impedance Microscopy in Redox-Competition Mode for the Investigation of Antibodies Labelled with Horseradish Peroxidase. Materials 2021, 14, 4301. [Google Scholar] [CrossRef] [PubMed]
- Sarvutiene, J.; Prentice, U.; Ramanavicius, S.; Ramanavicius, A. Molecular Imprinting Technology for Biomedical Applications. Biotechnol. Adv. 2024, 71, 108318. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, F.; Scott, T. The Immunological Capacity of Thrombocytes. Int. J. Mol. Sci. 2023, 24, 12950. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J. Clin. Endocrinol. Metab. 2021, 106, E1071–E1083. [Google Scholar] [CrossRef]
- Singh, M.; Akkaya, S.; Preuß, M.; Rademacher, F.; Tohidnezhad, M.; Kubo, Y.; Behrendt, P.; Weitkamp, J.T.; Wedel, T.; Lucius, R.; et al. Platelet-Released Growth Factors Influence Wound Healing-Associated Genes in Human Keratinocytes and Ex Vivo Skin Explants. Int. J. Mol. Sci. 2022, 23, 2827. [Google Scholar] [CrossRef]
- Gao, J.; Song, Y.; Huang, X.; Wang, D.; Wang, H. The Expression of Platelet-Derived Growth Factor, Epidermal Growth Factor, and Insulin-like Growth Factor-Ii in Patients with Polycystic Ovary Syndrome and Its Correlation with Pregnancy Outcomes. Ann. Palliat. Med. 2021, 10, 5671–5678. [Google Scholar] [CrossRef]
- Patton, B.K.; Madadi, S.; Pangas, S.A. Control of Ovarian Follicle Development by TGF-β Family Signaling. Curr. Opin. Endocr. Metab. Res. 2021, 18, 102–110. [Google Scholar] [CrossRef]
- Geva, E.; Jaffe, R.B. Role of Vascular Endothelial Growth Factor in Ovarian Physiology and Pathology; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Price, C.A. Mechanisms of Fibroblast Growth Factor Signaling in the Ovarian Follicle. J. Endocrinol. 2016, 228, R31–R43. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, N.; Chu, H.Y.; Yu, Y.; Zhang, Z.K.; Zhang, G.; Zhang, B.T. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front. Cell Dev. Biol. 2020, 8, 593269. [Google Scholar] [CrossRef]
- Conti, M.; Chang, R.J. Chapter 125—Folliculogenesis, Ovulation, and Luteogenesis. In Endocrinology: Adult and Pediatric; Elsevier: Amsterdam, The Netherlands, 2016; pp. 2179–2191.e3. ISBN 9780323189071. [Google Scholar]
- Warren, L.; Murawski, M.; Wilk, K.; Zieba, D.A.; Bartlewski, P.M. Suitability of Antral Follicle Counts and Computer-Assisted Analysis of Ultrasonographic and Magnetic Resonance Images for Estimating Follicular Reserve in Porcine, Ovine and Bovine Ovaries Ex Situ. Exp. Biol. Med. 2015, 240, 576–584. [Google Scholar] [CrossRef]
- Strauss, J.F.; Williams, C.J. Chapter 8—Ovarian Life Cycle. In Yen and Jaffe’s Reproductive Endocrinology, 8th ed.; Strauss, J.F., Barbieri, R.L., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 167–205.e9. ISBN 978-0-323-47912-7. [Google Scholar]
- Éliás, M.; Kónya, M.; Kekk, Z.; Turan, C.; das Virgens, I.P.A.; Tóth, R.; Keszthelyi, M.; Hegyi, P.; Várbíró, S.; Sipos, M. Platelet-Rich Plasma (PRP) Treatment of the Ovaries Significantly Improves Fertility Parameters and Reproductive Outcomes in Diminished Ovarian Reserve Patients: A Systematic Review and Meta-Analysis. J. Ovarian Res. 2024, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Seckin, S.; Ramadan, H.; Mouanness, M.; Kohansieh, M.; Merhi, Z. Ovarian Response to Intraovarian Platelet-Rich Plasma (PRP) Administration: Hypotheses and Potential Mechanisms of Action. J. Assist. Reprod. Genet. 2022, 39, 37–61. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.; Navarro, C.; Jones, C.; Coward, K.; Coleman, L. The Use of Autologous Platelet-Rich Plasma (PRP) versus No Intervention in Women with Low Ovarian Reserve Undergoing Fertility Treatment: A Non-Randomized Interventional Study. J. Assist. Reprod. Genet. 2020, 37, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Adiga, P.K.; Marconi, N.; N, R.; Vitthala, S. Effect of Intra-Ovarian Injection of Platelet-Rich Plasma on the Patients with a Poor Ovarian Response (POR) or Premature Ovarian Insufficiency (POI): A Systematic Review and Meta-Analysis. Middle East Fertil. Soc. J. 2024, 29, 24. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023, 15, 1630. [Google Scholar] [CrossRef]
- Shrivastava, J.; More, A.; Shrivastava, V.; Choudhary, N.; Shrivastava, D. Enhancement of Ovarian Reserve and Oocyte Quality After Platelet-Rich Plasma Instillation in a Woman With Diminished Anti-Müllerian Hormone. Cureus 2024, 16, e53474. [Google Scholar] [CrossRef]
- Navali, N.; Sadeghi, L.; Farzadi, L.; Ghasemzadeh, A.; Hamdi, K.; Hakimi, P.; Niknafs, B. Intraovarian Injection of Autologous Platelet-Rich Plasma Improves Therapeutic Approaches in The Patients with Poor Ovarian Response: A Before-After Study. Int. J. Fertil. Steril. 2022, 16, 90–94. [Google Scholar] [CrossRef]
- Hosny, N.; Goubran, F.; BadrEldin Hasan, B.; Kamel, N. Assessment of Vascular Endothelial Growth Factor in Fresh versus Frozen Platelet Rich Plasma. J. Blood Transfus. 2015, 2015, 706930. [Google Scholar] [CrossRef]
- Fraidakis, M.; Giannakakis, G.; Anifantaki, A.; Skouradaki, M.; Tsakoumi, P.; Bitzopoulou, P.; Kourpa, S.; Zervakis, A.; Kakouri, P. Intraovarian Platelet-Rich Plasma Injections: Safety and Thoughts on Efficacy Based on a Single Centre Experience With 469 Women. Cureus 2023, 15, e38674. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, N.; Li, T.; Zhou, X.; Jia, J.; Liang, Y.; Sun, X.; Chen, H. The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs in Vitro. Anal. Cell. Pathol. 2020, 2020, 8546231. [Google Scholar] [CrossRef] [PubMed]
- Gershon, D. Mass Spectrometry Goes Mainstream. Nature 2003, 424, 581. [Google Scholar] [CrossRef] [PubMed]
- Saputra, H.A. Electrochemical Sensors: Basic Principles, Engineering, and State of the Art. Monatshefte Chem.-Chem. Mon. 2023, 154, 1083–1100. [Google Scholar] [CrossRef]
- Sha, H.; Bai, Y.; Li, S.; Wang, X.; Yin, Y. Comparison between Electrochemical ELISA and Spectrophotometric ELISA for the Detection of Dentine Sialophosphoprotein for Root Resorption. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 36–40. [Google Scholar] [CrossRef]
- Grieshaber, D.; Mackenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Chen, B.; Wang, D.; Wei, S.; Wang, J. Portable Electrochemical Aptasensor for Highly Sensitive Detection of 3,3′,4,4′-Tetrachlorobiphenyl. Biosens. Bioelectron. 2024, 260, 116434. [Google Scholar] [CrossRef]
- Hentschel, A.; Piontek, G.; Dahlmann, R.; Findeisen, P.; Sakson, R.; Carbow, P.; Renné, T.; Reinders, Y.; Sickmann, A. Highly Sensitive Therapeutic Drug Monitoring of Infliximab in Serum by Targeted Mass Spectrometry in Comparison to ELISA Data. Clin. Proteom. 2024, 21, 16. [Google Scholar] [CrossRef]
- Desagani, D.; Ben-Yoav, H. Chemometrics Meets Electrochemical Sensors for Intelligent in Vivo Bioanalysis. TrAC-Trends Anal. Chem. 2023, 164, 117089. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Osuchowski, M.F.; Siddiqui, J.; Copeland, S.; Remick, D.G. Sequential ELISA to Profile Multiple Cytokines from Small Volumes. J. Immunol. Methods 2005, 302, 172–181. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers 2021, 13, 2173. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.V.; Bulko, T.V.; Sigolaeva, L.V.; Kuzikov, A.V.; Pogodin, P.V.; Archakov, A.I. Molecular Imprinting Coupled with Electrochemical Analysis for Plasma Samples Classification in Acute Myocardial Infarction Diagnostic. Biosens. Bioelectron. 2018, 99, 216–222. [Google Scholar] [CrossRef] [PubMed]
- German, N.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers. Biosensors 2022, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, A.; Oztekin, Y.; Ramanaviciene, A. Electrochemical Formation of Polypyrrole-Based Layer for Immunosensor Design. Sens. Actuators B Chem. 2014, 197, 237–243. [Google Scholar] [CrossRef]
- Liustrovaite, V.; Ratautaite, V.; Ramanaviciene, A.; Ramanavicius, A. Detection of the SARS-CoV-2 Nucleoprotein by Electrochemical Biosensor Based on Molecularly Imprinted Polypyrrole Formed on Self-Assembled Monolayer. Biosens. Bioelectron. 2025, 272, 117092. [Google Scholar] [CrossRef]
- Liustrovaite, V.; Ratautaite, V.; Ramanaviciene, A.; Plikusiene, I.; Malinovskis, U.; Erts, D.; Sarvutiene, J.; Ramanavicius, A. Electrochemical Sensor for Vascular Endothelial Growth Factor Based on Self-Assembling DNA Aptamer Structure. Sci. Total Environ. 2024, 955, 177151. [Google Scholar] [CrossRef]
- Huang, K.-J.; Shuai, H.-L.; Zhang, J.-Z. Ultrasensitive Sensing Platform for Platelet-Derived Growth Factor BB Detection Based on Layered Molybdenum Selenide–Graphene Composites and Exonuclease III Assisted Signal Amplification. Biosens. Bioelectron. 2016, 77, 69–75. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, X.-P.; Chen, J.-S.; Mao, C.; Jin, B.-K. Highly Sensitive Electrochemiluminescence Biosensor for VEGF165 Detection Based on a G-C3N4/PDDA/CdSe Nanocomposite. Anal. Bioanal. Chem. 2020, 412, 3073–3081. [Google Scholar] [CrossRef]
- Huang, Y.; Nie, X.-M.; Gan, S.-L.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Electrochemical Immunosensor of Platelet-Derived Growth Factor with Aptamer-Primed Polymerase Amplification. Anal. Biochem. 2008, 382, 16–22. [Google Scholar] [CrossRef]
- Timilsina, S.S.; Jolly, P.; Durr, N.; Yafia, M.; Ingber, D.E. Enabling Multiplexed Electrochemical Detection of Biomarkers with High Sensitivity in Complex Biological Samples. Acc. Chem. Res. 2021, 54, 3529–3539. [Google Scholar] [CrossRef]
- Ding, D.; Li, J.; Bai, D.; Fang, H.; Lin, J.; Zhang, D. Biosensor-Based Monitoring of the Central Metabolic Pathway Metabolites. Biosens. Bioelectron. 2020, 167, 112456. [Google Scholar] [CrossRef]
- Li, S.; Li, B.; Li, X.; Liu, C.; Qi, X.; Gu, Y.; Lin, B.; Sun, L.; Chen, L.; Han, B.; et al. An Ultrasensitive and Rapid “Sample-to-Answer” Microsystem for on-Site Monitoring of SARS-CoV-2 in Aerosols Using “in Situ” Tetra-Primer Recombinase Polymerase Amplification. Biosens. Bioelectron. 2023, 219, 114816. [Google Scholar] [CrossRef] [PubMed]
- Brazys, E.; Ratautaite, V.; Brasiunas, B.; Ramanaviciene, A.; Rodríguez, L.; Pinto, A.; Milea, D.; Prentice, U.; Ramanavicius, A. Molecularly Imprinted Polypyrrole-Based Electrochemical Melamine Sensors. Microchem. J. 2024, 199, 109890. [Google Scholar] [CrossRef]
- Ramanavicius, A. Amperometric Biosensor for the Determination of Creatine. Anal. Bioanal. Chem. 2007, 387, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Kaspute, G.; Ramanavicius, A.; Prentice, U. Molecular Imprinting Technology for Advanced Delivery of Essential Oils. Polymers 2024, 16, 2441. [Google Scholar] [CrossRef] [PubMed]
- Brazys, E.; Ratautaite, V.; Mohsenzadeh, E.; Boguzaite, R.; Ramanaviciute, A.; Ramanavicius, A. Formation of Molecularly Imprinted Polymers: Strategies Applied for the Removal of Protein Template (Review). Adv. Colloid. Interface Sci. 2025, 337, 103386. [Google Scholar] [CrossRef]
- Ratautaite, V.; Samukaite-Bubniene, U.; Plausinaitis, D.; Boguzaite, R.; Balciunas, D.; Ramanaviciene, A.; Neunert, G.; Ramanavicius, A. Molecular Imprinting Technology for Determination of Uric Acid. Int. J. Mol. Sci. 2021, 22, 5032. [Google Scholar] [CrossRef]
- Plausinaitis, D.; Sinkevicius, L.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Evaluation of Electrochemical Quartz Crystal Microbalance Based Sensor Modified by Uric Acid-Imprinted Polypyrrole. Talanta 2020, 220, 121414. [Google Scholar] [CrossRef]
- Ghorbanizamani, F.; Moulahoum, H.; Zihnioglu, F.; Timur, S. Molecularly Imprinted Polymers-Based Biosensors for Gynecological Diagnostics and Monitoring. Talanta Open 2024, 10, 100364. [Google Scholar] [CrossRef]
- Florea, A.; Cristea, C.; Vocanson, F.; Săndulescu, R.; Jaffrezic-Renault, N. Electrochemical Sensor for the Detection of Estradiol Based on Electropolymerized Molecularly Imprinted Polythioaniline Film with Signal Amplification Using Gold Nanoparticles. Electrochem. Commun. 2015, 59, 36–39. [Google Scholar] [CrossRef]
- Regasa, M.B.; Nyokong, T. Design and Fabrication of Electrochemical Sensor Based on Molecularly Imprinted Polymer Loaded onto Silver Nanoparticles for the Detection of 17-β-Estradiol. J. Mol. Recognit. 2022, 35, e2978. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Hussain, T.; Bajwa, S.Z.; Mujahid, A.; Afzal, A. Portable Smartphone-Enabled Dydrogesterone Sensors Based on Biomimetic Polymers for Personalized Gynecological Care. J. Mater. Chem. B 2024, 12, 6905–6916. [Google Scholar] [CrossRef] [PubMed]
- Laza, A.; Godoy, A.; Pereira, S.; Aranda, P.R.; Messina, G.A.; Garcia, C.D.; Raba, J.; Bertolino, F.A. Electrochemical Determination of Progesterone in Calf Serum Samples Using a Molecularly Imprinted Polymer Sensor. Microchem. J. 2022, 183, 108113. [Google Scholar] [CrossRef]
- Vaidakis, D.; Papapanou, M.; Siristatidis, C.S. Autologous Platelet-Rich Plasma for Assisted Reproduction. Cochrane Database Syst. Rev. 2024, 4, CD013875. [Google Scholar]
- Raza, S.; Li, X.; Soyekwo, F.; Liao, D.; Xiang, Y.; Liu, C. A Comprehensive Overview of Common Conducting Polymer-Based Nanocomposites; Recent Advances in Design and Applications. Eur. Polym. J. 2021, 160, 110773. [Google Scholar] [CrossRef]
- Yang, G.; Liu, F.; Zhao, J.; Fu, L.; Gu, Y.; Qu, L.; Zhu, C.; Zhu, J.-J.; Lin, Y. MXenes-Based Nanomaterials for Biosensing and Biomedicine. Coord. Chem. Rev. 2023, 479, 215002. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Progress and Insights in the Application of Mxenes as New 2d Nano-Materials Suitable for Biosensors and Biofuel Cell Design. Int. J. Mol. Sci. 2020, 21, 9224. [Google Scholar] [CrossRef]
- Mohsenzadeh, E.; Ratautaite, V.; Brazys, E.; Ramanavicius, S.; Zukauskas, S.; Plausinaitis, D.; Ramanavicius, A. Application of Computational Methods in the Design of Molecularly Imprinted Polymers (Review). TrAC Trends Anal. Chem. 2024, 171, 117480. [Google Scholar] [CrossRef]
- Mohsenzadeh, E.; Ratautaite, V.; Brazys, E.; Ramanavicius, S.; Zukauskas, S.; Plausinaitis, D.; Ramanavicius, A. Design of Molecularly Imprinted Polymers (MIP) Using Computational Methods: A Review of Strategies and Approaches. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2024, 14, e1713. [Google Scholar] [CrossRef]
- Pilvenyte, G.; Ratautaite, V.; Boguzaite, R.; Samukaite-Bubniene, U.; Plausinaitis, D.; Ramanaviciene, A.; Bechelany, M.; Ramanavicius, A. Molecularly Imprinted Polymers for the Recognition of Biomarkers of Certain Neurodegenerative Diseases. J. Pharm. Biomed. Anal. 2023, 228, 115343. [Google Scholar] [CrossRef]
Growth Factor Name | Biological Activity | Role of Ovarian Function |
---|---|---|
Platelet-derived growth factor (PDGF) | It is a cell division stimulator. | Participates in the regulation of the ovary gland in an autocrine and paracrine manner and has the pathological effect of promoting the excessive growth of related tissue cells [26]. |
Transforming growth factors (TGFs) | Divided into two types: TGFα and TGFβ. They participate in the healing process of fractures by stimulating osteogenesis and the synthesis of mature osteocytes. | TGF-β activity suppresses cellular growth and promotes differentiation [27]. |
Vascular endothelial growth factor (VEGF) | Stimulates the genesis of new blood vessels during embryonic development and participates in the formation of bypass vessels in case of vascular obstruction. | Plays a role in the cyclic growth of ovarian follicles and corpus luteum development and maintenance, mediating ovarian angiogenesis [28]. |
Epidermal growth factor (EGF) | One of the most important proteins of skin growth factor. It participates in the production of collagen, elastin, and hyaluronic acid. | Stimulates oocyte maturation in a variety of mammalian and non-mammalian species [26]. |
Fibroblast growth factor (FGF) | FGF proteins are mitogens involved in both normal growth and wound healing. | Alters the growth and differentiation of reproductive tissues [29]. |
Connective tissue growth factor (CTGF) | Stimulates cell proliferation, migration, adhesion, survival, differentiation, and the synthesis of extracellular matrix proteins. | It is required for normal follicle development and ovulation [30]. |
Insulin-like growth factor (IGF) | This factor stimulates protein synthesis. | Acts as an amplifier to the hormonal action of gonadotropins [26]. |
Feature | Electrochemical Sensors | ELISA Method | Mass Spectrometry | Refs. |
---|---|---|---|---|
Cost | Low | Moderate to high | Very high | [45,46] |
Speed | High | Moderate | Low | [47,48] |
Portability | High | Moderate to low | Very low | [49] |
Volume (sample) | Minimal | Moderate | Moderate | [47,48] |
Real-time monitoring | Easily adoptable | Moderate to adopt | Moderate to adopt | [50] |
Complexity/overlapping | Feasible | Limited | Limited | [51,52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivaskiene, T.; Kaspute, G.; Bareikiene, E.; Prentice, U. Platelet-Rich Plasma and Electrochemical Biosensors: A Novel Approach to Ovarian Function Evaluation and Diagnostics. Int. J. Mol. Sci. 2025, 26, 2317. https://doi.org/10.3390/ijms26052317
Ivaskiene T, Kaspute G, Bareikiene E, Prentice U. Platelet-Rich Plasma and Electrochemical Biosensors: A Novel Approach to Ovarian Function Evaluation and Diagnostics. International Journal of Molecular Sciences. 2025; 26(5):2317. https://doi.org/10.3390/ijms26052317
Chicago/Turabian StyleIvaskiene, Tatjana, Greta Kaspute, Egle Bareikiene, and Urte Prentice. 2025. "Platelet-Rich Plasma and Electrochemical Biosensors: A Novel Approach to Ovarian Function Evaluation and Diagnostics" International Journal of Molecular Sciences 26, no. 5: 2317. https://doi.org/10.3390/ijms26052317
APA StyleIvaskiene, T., Kaspute, G., Bareikiene, E., & Prentice, U. (2025). Platelet-Rich Plasma and Electrochemical Biosensors: A Novel Approach to Ovarian Function Evaluation and Diagnostics. International Journal of Molecular Sciences, 26(5), 2317. https://doi.org/10.3390/ijms26052317