Bone Marrow Origin of Mammary Phagocytic Intraductal Macrophages (Foam Cells)
<p>Features of human mammary intraductal foam cells. Mammary intraductal “foam cells” are depicted histologically in a tissue section (<b>A</b>) and cytologically within nipple aspirate fluid (<b>A</b>, right lower inset). In ductal ectasia, their number substantially increased (<b>B</b>) but they consistently exhibited their CD68<sup>+</sup> macrophage lineage (<b>B</b>, left lower inset). Intraductal foam cells in the center of a duct (arrow) with adjacent proliferating DCIS exhibited completely negative Ki-67 immunoreactivity (<b>C</b>). Intraductal foam cells were also completely negative for both PCNA (arrow) (<b>C</b>, left lower inset) as well as MCM-2 (arrow) (<b>C</b>, right upper inset), suggesting that they are, in fact, in G<sub>0</sub>. Intraductal instillation of barium (<b>D</b>) was followed by phagocytosis by intraductal macrophages (<b>D</b>, right lower inset). Scale bars are provided.</p> "> Figure 2
<p>Imaging algorithmic determinations of human foam-cell density. Our specific TMA algorithms, which carried out virtual alignment, image processing, and the application of the epithelial recognition algorithms (ERAs) and specific recognition algorithms (SRAs), which recognized ductal profiles based initially on circumferential maspin myoepithelial immunoreactivity (<b>A</b>), and recognition of intraductal macrophage CD68 immunoreactivity (<b>B</b>) were able to calculate frequency and density of intraductal foam cells (<b>C</b>). % ducts (% positive ducts) are the overall percentage of ducts that contain intraductal macrophages (foam cells). Foam cells (# of foam cells/duct) are the average numbers of intraductal macrophages (foam cells)/duct in the ducts containing foam cells. Scale bars are provided.</p> "> Figure 3
<p>X,Y chromosomal FISH studies on human transplant cases. FISH for the presence or absence of an X or Y chromosome (CEP X SpectrumGreen/CEP Y SpectrumOrange) in sections of intraductal foam cells from a male who had received a female bone marrow donor (<b>A</b>,<b>B</b>) and a female who had received a male bone marrow donor (<b>C</b>,<b>D</b>) identified the Y chromosome as fluorescing bright orange and the X chromosome as fluorescing green (<b>B</b>,<b>D</b>). In each case the intraductal foam cells were of bone marrow donor-origin. Scale bars are provided.</p> "> Figure 4
<p>Microsatellite donor/recipient heterozygosity. GeneScan electropherograms of microsatellite PCR (D6S1027) (<b>A</b>) and D14S588 (<b>B</b>), respectively, of two individual cases distinguish donor from recipient and confirm the donor bone marrow origin of the intraductal foam cells. The abscissas of each panel show the allele sizes in bp and the ordinates show the allele peak heights in arbitrary fluorescence units.</p> "> Figure 5
<p>Features of murine mammary intraductal foam cells. The prepubertal murine mammary gland is relatively devoid of ducts (<b>A</b>), which both proliferate and dilate in puberty, pregnancy, and conditons of pseudopregancy (<b>B</b>). Mammary intraductal foam cells identified by CD68 immunoreactivity increase during the latter and in conditons of intraductal carcinoma (<b>C</b>). Imaging processing algorithms similar to those used in the human studies were able to calculate frequency and density of intraductal foam cells (<b>D</b>). % ducts (% positive ducts) are the overall percentage of ducts that contain intraductal macrophages (foam cells). Foam cells (# of foam cells/duct) are the average numbers of intraductal macrophages (foam cells)/duct in the ducts containing foam cells. Scale bars are provided.</p> "> Figure 6
<p>Tagging donor bone marrow with LacZ. Bone marrow of ROSA 26 donor mice, harvested by femoral flushing (<b>A</b>) and marked with the β-galactosidase (LacZ) reporter (<b>B</b>), was transplanted into recipient mice and successful engraftment was marked by at least 50% engraftment when sections of murine bone marrow were analyzed 60 days after bone marrow transplant (<b>C</b>). Gross photographs and photomicrographs are depicted from single representative cases, but 8/10 mice showed successful bone marrow engraftment. Scale bars are provided.</p> "> Figure 7
<p>Tagged intraductal foam cells in recipient mice. Recipient FVB/N-Tg(MMTV-<span class="html-italic">PyVT</span>)634Mul/J and FVB/N injected with iPS cells containing MMTV-<span class="html-italic">PyVT</span> exhibited intraductal carcinoma (<b>A</b>) and both stromal macrophages (<b>B</b>) and intraductal foam cells (<b>C</b>) tagged with the β-galactosidase (LacZ) reporter. Mice made pseudo-pregnant also expressed tagged foam cells in derived nipple fluid (<b>D</b>). Dual labeling of these tagged intraductal foam cells with an alkaline phosphatase-conjugated secondary goat antibody to rabbit anti-mouse CD68 (<b>D</b>, left lower inset) and rabbit anti-mouse CD11b (<b>D</b>, right upper inset) revealed dual blue/red signals within all of the intraductal foam cells, suggesting that virtually 100% of the intraductal cells were of both macrophage–monocyte origin and bone marrow donor-origin and none were of local origin. Scale bars are provided.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Human Studies
2.1.1. Properties of Human Intraductal Foam Cells
2.1.2. Frequency and Density of Human Intraductal Foam Cells
2.1.3. Origin of Human Intraductal Foam Cells
2.2. Murine Studies
2.2.1. Properties of Murine Intraductal Foam Cells
2.2.2. Frequency and Density of Murine Intraductal Foam Cells
2.2.3. Origin of Murine Intraductal Foam Cells
3. Discussion
4. Materials and Methods
4.1. Human Studies
4.1.1. Ethics Approval and Consent to Participate
4.1.2. Selection of Cases
4.1.3. Histological, Immunofluorescence and Immunohistochemistry Studies
4.1.4. Tissue Microarray (TMA) Construction and Image Algorithmic Analysis
4.1.5. X,Y Chromosomal FISH Studies
4.1.6. Laser Capture Microdissection Studies
4.1.7. Microsatellite Polymorphism Studies
4.2. Murine Studies
4.2.1. Ethics Approval
4.2.2. Initial Murine Studies
4.2.3. Bone Marrow Transplantation Studies
4.2.4. Subsequent Murine Studies
4.2.5. Necropsy and TMA Studies
4.2.6. X-Gal Staining
4.2.7. Histological and Immunohistochemistry Studies
4.2.8. General Statistical Analysis Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wrensch, M.R.; Petrakis, N.L.; Miike, R.; King, E.B.; Chew, K.; Neuhaus, J.; Lee, M.M.; Rhys, M. Breast cancer risk in women with abnormal cytology in nipple aspirates of breast fluid. J. Natl. Cancer Inst. 2001, 93, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, O.W.; Smith, H.S.; Morris, P.; Benedict, D.; Friesen, L. Cytologic evaluation of breast fluid in the detection of breast disease. J. Natl. Cancer Inst. 1977, 59, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Sauter, E.R.; Ross, E.; Daly, M.; Klein-Szanto, A.; Engstrom, P.F.; Sorling, A.; Malick, J.; Ehya, H. Nipple aspirate fluid: A promising non-invasive method to identify cellular markers of breast cancer risk. Br. J. Cancer 1997, 76, 494–501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dabbs, D.J. Mammary ductal foam cells: Macrophage immunophenotype. Hum. Pathol. 1993, 24, 977–981. [Google Scholar] [CrossRef] [PubMed]
- King, B.L.; Crisi, G.M.; Tsai, S.C.; Haffty, B.G.; Phillips, R.F.; Rimm, D.L. Immunocytochemical analysis of breast cells obtained by ductal lavage. Cancer 2002, 96, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, S.; Sneige, N.; Ordóñez, N.G.; Hunt, K.K.; Kuerer, H.M. Characterization of foam cells in nipple aspirate fluid. Diagn. Cytopathol. 2002, 27, 261–264; discussion 265. [Google Scholar] [CrossRef] [PubMed]
- Cansever, D.; Petrova, E.; Krishnarajah, S.; Mussak, C.; Welsh, C.A.; Mildenberger, W.; Mulder, K.; Kreiner, V.; Roussel, E.; Stifter, S.A.; et al. Lactation-associated macrophages exist in murine mammary tissue and human milk. Nat. Immunol. 2023, 24, 1098–1109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dawson, C.A.; Pal, B.; Vaillant, F.; Gandolfo, L.C.; Liu, Z.; Bleriot, C.; Ginhoux, F.; Smyth, G.K.; Lindeman, G.J.; Mueller, S.N.; et al. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 2020, 22, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Hassel, C.; Gausserès, B.; Guzylack-Piriou, L.; Foucras, G. Ductal macrophages predominate in the immune landscape of the lactating mammary gland. Front. Immunol. 2021, 12, 754661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goff, S.L.; Danforth, D.N. The role of immune cells in breast tissue and immunotherapy for the treatment of breast cancer. Clin. Breast Cancer 2021, 21, e63–e73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jenkins, S.J.; Allen, J.E. The expanding world of tissue-resident macrophages. Eur. J. Immunol. 2021, 51, 1882–1896. [Google Scholar] [CrossRef] [PubMed]
- Hourani, T.; Holden, J.A.; Li, W.; Lenzo, J.C.; Hadjigol, S.; O’Brien-Simpson, N.M. Tumor associated macrophages: Origin, recruitment, phenotypic diversity, and targeting. Front. Oncol. 2021, 11, 788365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.H.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 2019, 35, 588–602.e10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Love, S.M.; Barsky, S.H. Breast-duct endoscopy to study stages of cancerous breast disease. Lancet 1996, 348, 997–999. [Google Scholar] [CrossRef] [PubMed]
- Love, S.M.; Barsky, S.H. Anatomy of the nipple and breast ducts revisited. Cancer 2004, 101, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.P.; Nguyen, J.P.T.; Wang, J.; Ahn, J.S.; Libling, W.A.; Klein, J.M.; Mazumder, P.; Barsky, S.H. Geometric tumor embolic budding characterizes inflammatory breast cancer. Breast Cancer Res. Treat. 2023, 197, 461–478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharangpani, G.M.; Joshi, A.S.; Porter, K.; Deshpande, A.S.; Keyhani, S.; Naik, G.A.; Gholap, A.S.; Barsky, S.H. Semi-automated imaging system to quantitate estrogen and progesterone receptor immunoreactivity in human breast cancer. J. Microsc. 2007, 226 Pt 3, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.S.; Sharangpani, G.M.; Porter, K.; Keyhani, S.; Morrison, C.; Basu, A.S.; Gholap, G.A.; Gholap, A.S.; Barsky, S.H. Semi-automated imaging system to quantitate Her-2/neu membrane receptor immunoreactivity in human breast cancer. Cytom. A 2007, 71, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Barsky, S.; Gentchev, L.; Basu, A.; Jimenez, R.; Boussaid, K.; Gholap, A. Use and validation of epithelial recognition and fields of view algorithms on virtual slides to guide TMA construction. Biotechniques 2009, 47, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ij.imjoy.io/ (accessed on 9 May 2010).
- Henegariu, O.; Heerema, N.A.; Lowe Wright, L.; Bray-Ward, P.; Ward, D.C.; Vance, G.H. Improvements in cytogenetic slide preparation: Controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 2001, 43, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Mateizel, I.; Verheyen, G.; Van Assche, E.; Tournaye, H.; Liebaers, I.; Van Steirteghem, A. FISH analysis of chromosome X, Y and 18 abnormalities in testicular sperm from azoospermic patients. Hum. Reprod. 2002, 17, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Curran, J.; Weir, B.S. Conditional genotypic probabilities for microsatellite loci. Genetics 2000, 155, 1973–1980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Umetani, N.; Sasaki, S.; Watanabe, T.; Ishigami, H.; Ueda, E.; Nagawa, H. Diagnostic primer sets for microsatellite instability optimized for a minimal amount of damaged DNA from colorectal tissue samples. Ann. Surg. Oncol. 2000, 7, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Petrova, S.C.; Ahmad, I.; Nguyen, C.; Ferrell, S.D., Jr.; Wilhelm, S.R.; Ye, Y.; Barsky, S.H. Regulation of breast cancer oncogenesis by the cell of origin’s differentiation state. Oncotarget 2020, 11, 3832–3848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, C.; Nguyen, J.P.T.; Modi, A.P.; Ahmad, I.; Petrova, S.C.; Ferrell, S.D., Jr.; Wilhelm, S.R.; Ye, Y.; Schaue, D.; Barsky, S.H. Use of constitutive and inducible oncogene-containing iPSCs as surrogates for transgenic mice to study breast oncogenesis. Stem. Cell Res. Ther. 2021, 12, 301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zambrowicz, B.P.; Imamoto, A.; Fiering, S.; Herzenberg, L.A.; Kerr, W.G.; Soriano, P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 1997, 94, 3789–3794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halene, S.; Wang, L.; Cooper, R.M.; Bockstoce, D.C.; Robbins, P.B.; Kohn, D.B. Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood 1999, 94, 3349–3357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lutzko, C.; Dubé, I.D.; Stewart, A.K. Recent progress in gene transfer into hematopoietic stem cells. Crit. Rev. Oncol. Hematol. 1999, 30, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Brill, B.; Boecher, N.; Groner, B.; Shemanko, C.S. A sparing procedure to clear the mouse mammary fat pad of epithelial components for transplantation analysis. Lab. Anim. 2008, 42, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Kopp, H.G.; Hooper, A.T.; Shmelkov, S.V.; Rafii, S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 2007, 22, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Guzińska-Ustymowicz, K.; Pryczynicz, A.; Kemona, A.; Czyzewska, J. Correlation between proliferation markers: PCNA, Ki-67, MCM-2 and antiapoptotic protein Bcl-2 in colorectal cancer. Anticancer Res. 2009, 29, 3049–3052. [Google Scholar] [PubMed]
- Alrani, D.; Niranjan, K.C.; Sarathy, N.A. Assessment of Proliferative Index Between the Tumor Margin, Center of Tumor, and the Invasive Tumor Front of Oral Squamous Cell Carcinoma With the Help of Mcm-2: An Immunohistochemical Study. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, M.Z.; Nagi, A.H.; Naseem, N. MCM-2 and Ki-67 as proliferation markers in renal cell carcinoma: A quantitative and semi—quantitative analysis. Int. Braz. J. Urol. 2016, 42, 1121–1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, C.C.; Huang, C.C.; Yang, S.H.; Chien, C.C.; Lee, C.L.; Huang, C.J. Data on clinical significance of GAS2 in colorectal cancer cells. Data Brief. 2016, 8, 82–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Werynska, B.; Pula, B.; Muszczynska-Bernhard, B.; Piotrowska, A.; Jethon, A.; Podhorska-Okolow, M.; Dziegiel, P.; Jankowska, R. Correlation between expression of metallothionein and expression of Ki-67 and MCM-2 proliferation markers in non-small cell lung cancer. Anticancer Res. 2011, 31, 2833–2839. [Google Scholar] [PubMed]
- Shin, J.W.; Kim, Y.K.; Cho, K.H. Minichromosome maintenance protein expression according to the grade of atypism in actinic keratosis. Am. J. Dermatopathol. 2010, 32, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, T.; Nishizuka, Y.; Dawe, C.J. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 1976, 194, 1439–1441. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, T.; Kusano, I.; Kusakabe, M.; Inaguma, Y.; Nishizuka, Y. Biology of mammary fat pad in fetal mouse: Capacity to support development of various fetal epithelia in vivo. Development 1987, 100, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Topper, Y.J.; Freeman, C.S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 1980, 60, 1049–1106. [Google Scholar] [CrossRef] [PubMed]
Chr | Locus | % lnf | %LOH | Marker | Allele Size Range | Dye | Transplant Study |
---|---|---|---|---|---|---|---|
1 | D1S1596 | 0.86 | 0.39 | GATA26G09 | 101–125 | FAM | yes |
2 | D2S1394 | 0.77 | 0.46 | GATA69E12 | 144–184 | FAM | yes |
3 | D3S2432 | 0.78 | 0.58 | GATA27C08 | 118–170 | FAM | yes |
5 | D5S2500 | 0.8 | 0.59 | GATA67D03 | 149–181 | HEX | yes |
6 | D6S1027 | 0.74 | 0.52 | ATA22G07 | 110–150 | FAM | yes |
7 | D7S3070 | 0.89 | 0.56 | GATA189C06 | 184–208 | FAM | yes |
8 | D8S1132 | 0.67 | 0.57 | GATA26E03 | 139–171 | FAM | yes |
9 | D9S1825 | 0.67 | 0.64 | AFMb029xg1 | 127–145 | FAM | yes |
10 | D10S1230 | 0.78 | 0.50 | ATA29C03 | 113–140 | FAM | yes |
11 | D11S1984 | 0.80 | 0.62 | GGAA17G05 | 166–206 | HEX | yes |
12 | D12S1042 | 0.87 | 0.53 | ATA27A06 | 118–136 | HEX | yes |
13 | D13S317 | 0.85 | 0.61 | GATA7G10 | 175–199 | HEX | yes |
14 | D14S588 | 0.78 | 0.50 | GGAA4A12 | 110–145 | FAM | yes |
15 | D15S818 | 0.77 | 0.56 | GATA85D02 | 150–170 | HEX | yes |
16 | D16S764 | 0.94 | 0.57 | GATA42E11 | 86–126 | HEX | yes |
17 | D17S2193 | 0.84 | 0.66 | ATA43A10Z | 88–123 | HEX | yes |
19 | D19S591 | 0.83 | 0.41 | GATA44F10 | 90–120 | FAM | yes |
20 | D20S851 | 0.69 | 0.54 | AFMa218yb5 | 128–150 | FAM | yes |
22 | D22S1169 | 0.71 | 0.56 | AFMb337zh9 | 118–134 | FAM | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsky, S.H.; Mcphail, K.; Wang, J.; Hoffman, R.M.; Ye, Y. Bone Marrow Origin of Mammary Phagocytic Intraductal Macrophages (Foam Cells). Int. J. Mol. Sci. 2025, 26, 1699. https://doi.org/10.3390/ijms26041699
Barsky SH, Mcphail K, Wang J, Hoffman RM, Ye Y. Bone Marrow Origin of Mammary Phagocytic Intraductal Macrophages (Foam Cells). International Journal of Molecular Sciences. 2025; 26(4):1699. https://doi.org/10.3390/ijms26041699
Chicago/Turabian StyleBarsky, Sanford H., Krista Mcphail, Justin Wang, Robert M. Hoffman, and Yin Ye. 2025. "Bone Marrow Origin of Mammary Phagocytic Intraductal Macrophages (Foam Cells)" International Journal of Molecular Sciences 26, no. 4: 1699. https://doi.org/10.3390/ijms26041699
APA StyleBarsky, S. H., Mcphail, K., Wang, J., Hoffman, R. M., & Ye, Y. (2025). Bone Marrow Origin of Mammary Phagocytic Intraductal Macrophages (Foam Cells). International Journal of Molecular Sciences, 26(4), 1699. https://doi.org/10.3390/ijms26041699