Methanol Extract of Pueraria lobata (Willd.) Root and Its Active Ingredient, Puerarin, Induce Apoptosis in HeLa Cells and Attenuates Bacterial Vaginosis in Gardnerella vaginalis-Infected Mice
<p>HPLC analysis of the PRME extract. HPLC chromatograms of (<b>A</b>) the puerarin standard compound and (<b>B</b>) the PRME extract.</p> "> Figure 2
<p>Effects of the PRME extract and puerarin on cell viability and proinflammatory cytokine levels in HeLa cells. (<b>A</b>,<b>C</b>) Cell viability and the proinflammatory cytokine levels of the PRME extract. (<b>B</b>,<b>D</b>) Cell viability and the proinflammatory cytokine levels of puerarin. Data are presented as the mean ± SEM of the three experiments. * <span class="html-italic">p</span> < 0.05 or *** <span class="html-italic">p</span> < 0.001 compared to the nontreatment condition. IL-2: interleukin-2, IL-12: interleukin-12, IFN-γ: interferon-γ, TNF-α: tumor necrosis factor-α, and Doxo: doxorubicin.</p> "> Figure 3
<p>Effect of the PRME extract and puerarin on apoptosis in HeLa cells. Typical nuclear morphological changes of apoptosis in HeLa cells were detected by staining with (<b>A</b>) the TUNEL and (<b>C</b>) Hoechst 33,342 assay kits. Representative staining images were taken with a fluorescence microscope (TUNEL assay: scale bar = 40 μm, 100×; Hoechst 33,342 assay: scale bar = 100 μm, 400×). White arrows point to apoptotic cells. (<b>B</b>) The fluorescence intensity by the TUNEL assay staining is represented as a bar graph. Data are shown as the mean ± SEM of the three experiments. ** <span class="html-italic">p</span> < 0.01 or *** <span class="html-italic">p</span> < 0.001 compared to the nontreatment condition.</p> "> Figure 4
<p>Effect of the PRME extract and puerarin on apoptosis-related protein expression in HeLa cells. (<b>A</b>,<b>B</b>) Regulation protein expression levels of apoptosis-related genes (pro-caspase-8, cleaved caspase-8, pro-caspase-9, and cleaved caspase-9) by the PRME extract and puerarin in HeLa cells, analyzed by western blotting. (<b>C</b>,<b>D</b>) The bar graphs for the relative density of protein bands from western blots are as follows: pro-caspase-8/β-actin, cleaved caspase-8/β-actin, cleaved caspase-8/pro-caspase-8, pro-caspase-9/β-actin, cleaved caspase-9/β-actin, and cleaved caspase-9/pro-caspase-9. Data are shown as the mean ± SEM of the three experiments. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 or *** <span class="html-italic">p</span> < 0.001 compared to the nontreatment condition.</p> "> Figure 5
<p>Effect of the PRME extract and puerarin on vaginitis symptoms, MPO activity, and serum levels in GV-infected mice. (<b>A</b>) Experimental design for the GV-infected vaginitis mice model. (<b>B</b>) Representative photographs of lesions of the reproductive tract (vagina and uterine horn) in mice from each group. (<b>C</b>) Total length of the reproductive tract. (<b>D</b>) MPO activity in vaginal tissue. (<b>E</b>–<b>H</b>) Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urinary nitrogen (BUN), and creatinine. Data are the mean ± SEM of the three experiments. <sup>###</sup> <span class="html-italic">p</span> < 0.001 versus the normal group; * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus the GV-infected group.</p> "> Figure 6
<p>Effect of the PRME extract and puerarin on histological changes in mice with GV-induced vaginitis. (<b>A</b>) Representative images of histological changes in the vaginal confirmed by H&E staining (×200 magnification). (<b>B</b>) Histological score. (<b>C</b>) Vaginal stratum corneum (cornified layer) and (<b>D</b>) transitional epithelium thickness. Data are the mean ± SEM of the three experiments. <sup>###</sup> <span class="html-italic">p</span> < 0.001 versus Normal group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 versus the GV-infected group.</p> "> Figure 7
<p>Effect of the PRME extract and puerarin on the expression of COX-2 and iNOS in mice with GV-induced vaginitis. (<b>A</b>,<b>B</b>) Regulation of COX-2 and iNOS protein expression by PRME extract and puerarin in mouse vaginal tissue analyzed by western blotting. (<b>C</b>,<b>D</b>) The bar graphs for the relative density of protein bands from western blots are as follows: COX-2/β-actin and iNOS/β-actin. (<b>E</b>,<b>F</b>) mRNA expression of COX-2 and iNOS in mouse vaginal tissue analyzed by RT-qPCR. Data are the mean ± SEM of the three experiments. <sup>###</sup> <span class="html-italic">p</span> < 0.001 versus Normal group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 versus the GV-infected group.</p> "> Figure 8
<p>Effect of the PRME extract and puerarin on the inflammation-related cytokine levels in mice with GV-induced vaginitis. (<b>A</b>–<b>D</b>) Proinflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokine levels in vaginal tissue lysates from mice. Data are the mean ± SEM of the three experiments. <sup>###</sup> <span class="html-italic">p</span> < 0.001 versus the Normal group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 versus the GV-infected group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Active Components Analysis and Quantification of PRME Extract by HPLC
2.2. PRME Extract and Puerarin Attenuate Proinflammatory Cytokine Levels in HeLa Cells
2.3. PRME Extract and Puerarin Induce Apoptosis in HeLa Cells
2.4. PRME Extract and Puerarin Activate Apoptosis-Related Genes in HeLa Cells
2.5. PRME Extract and Puerarin Alleviate Vaginitis Symptoms and MPO Activity in GV-Infected Mice
2.6. PRME Extract and Puerarin Restore Histopathological Changes in GV-Infected Mice
2.7. PRME Extract and Puerarin Suppresses the Expression of COX-2 and iNOS in GV-Infected Mice
2.8. PRME Extract and Puerarin Regulates the Cytokine Levels in GV-Infected Mice
3. Discussion
4. Materials and Methods
4.1. Chemical Reagents
4.2. Preparation of Pueraria lobata (Willd.) Ohwi Root Extract
4.3. Analytical High-Performance Liquid Chromatography (HPLC)
4.4. Cell Culture
4.5. Cell Viability
4.6. Enzyme-Linked Immunosorbent Assay (ELISA) for Cytokines Detection In Vitro and In Vivo
4.7. TUNEL Assay
4.8. Hoechst 33,342 Staining
4.9. Western Blotting
4.10. Animals
4.11. Preparation of G. vaginalis
4.12. Design of Mouse Experiments
4.13. MPO Activity in Vaginal Tissue Lysates
4.14. Serum Biochemical Parameters Analysis
4.15. Histological Analysis
4.16. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
4.17. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Parkin, D.M. Global cancer statistics in the year 2000. Lancet Oncol. 2001, 2, 533–543. [Google Scholar] [CrossRef]
- Jin, H.; Song, C.; Zhao, Z.; Zhou, G. Ganoderma lucidum polysaccharide, an extract from ganoderma lucidum, exerts suppressive efect on cervical cancer cell malignancy through mitigating epithelial-mesenchymal and JAK/STAT5 signaling pathway. Pharmacology 2020, 105, 461–470. [Google Scholar] [CrossRef]
- Fujimoto, J. Novel strategy of anti-angiogenic therapy for uterine cervical carcinomas. Anticancer Res. 2009, 29, 2665–2669. [Google Scholar] [PubMed]
- Schwebke, J.R.; Muzny, C.A.; Josey, W.E. Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: A conceptual model. J. Infect. Dis. 2014, 210, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Moon, E.C.; Park, M.S.; Lim, T.; Kim, R.H.; Ji, G.E.; Kim, S.Y.; Hwang, K.T. Antibacterial effect of cell-free supernatant fraction from Lactobacillus paracasei CH88 against Gardnerella vaginalis. Sci. Rep. 2022, 12, 4763. [Google Scholar] [CrossRef] [PubMed]
- Donders, G.G.; Zodzika, J.; Rezeberga, D. Treatment of bacterial vagino- sis: What we have and what we miss. Expert Opin. Pharmacother. 2014, 15, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Tidbury, F.D.; Langhart, A.; Weidlinger, S.; Stute, P. Non-antibiotic treatment of bacterial vaginosis-a systematic review. Arch. Gynecol. Obstet. 2021, 303, 37–45. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Q.; Cu, S.; Zhao, J.; Chen, W.; Zhang, H. Inhibitory effect of Lactobacillus gasseri CCFM1201 on Gardnerella vaginalis in mice with bacterial vaginosis. Arch. Microbiol. 2022, 204, 315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lam, T.N.; Zuo, Z. Radix puerariae: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 2013, 53, 787–811. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kwon, J.E.; Kim, S.; Cha, M.S.; Kim, I.; Kang, S.C.; Park, T.H. Isoflavones and biotransformed dihydrodaidzein production with in vitro cultured callus of Korean wild arrowroot Pueraria lobata. J. Plant Biotechnol. 2013, 40, 217–223. [Google Scholar] [CrossRef]
- Jeon, Y.D.; Lee, J.H.; Lee, Y.M.; Kim, D.K. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed. Pharmacother. 2020, 124, 109847. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Jiang, Y.; Lessing, D.J.; Chu, W. Synthetic bacterial consortia transplantation for the treatment of Gardnerella vaginalis-induced bacterial vaginosis in mice. Microbiome 2023, 11, 54. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [PubMed]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, J.; Porter, M.; Siegel, R.M. Measurement of apoptosis and other forms of cell death. Curr. Protoc. Immunol. 2004, 3, 3–17. [Google Scholar] [CrossRef]
- MacKenzie, S.H.; Clark, A.C. Targeting cell death in tumors by activating caspases. Curr. Cancer Drug Targets 2008, 8, 98–109. [Google Scholar] [PubMed]
- Thorburn, A. Death receptor-induced cell killing. Cell. Signal. 2004, 16, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, T.; Newmeyer, D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol. 2003, 15, 691–699. [Google Scholar] [CrossRef]
- Kihara, N.; de la Fuente, S.G.; Fujino, K.; Takahashi, T.; Pappas, T.N.; Mantyh, C.R. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 2013, 52, 713–719. [Google Scholar] [CrossRef]
- Kwak, J.; Pandey, S.; Cho, J.; Song, M.; Kim, E.S.; Doo, H.; Keum, G.B.; Ryu, S.; Choi, Y.; Kang, J.; et al. Development of the standard mouse model for human bacterial vaginosis induced by Gardnerella vaginalis. Front. Vet. Sci. 2023, 10, 1226859. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Morrill, S.; Gilbert, N.M.; Lewis, A.L. Gardnerella vaginalis as a cause of bacterial vaginosis: Appraisal of the evidence from in vivo models. Front. Cell. Infect. Microbiol. 2020, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Sierra, L.; Brown, A.G.; Barilá, G.O.; Anton, L.; Barnum, C.E.; Shetye, S.S.; Soslowsky, L.J.; Elovitz, M.A. Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice. PLoS ONE 2018, 13, e0191524. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, Y.D.; Lee, Y.M.; Kim, D.K. The suppressive effect of puerarin on atopic dermatitis-like skin lesions through regulation of inflammatory mediators in vitro and in vivo. Biochem. Biophys. Res. Commun. 2018, 498, 707–714. [Google Scholar] [CrossRef]
- Kwon, K.M.; Kim, E.H.; Sim, K.H.; Lee, Y.J.; Kang, E.J.; Han, K.H.; Jin, J.S.; Kim, D.K.; Ahn, J.H.; Hwang, I.H. Phenylacetic acid, an anti-vaginitis metabolite produced by the vaginal symbiotic bacteriumChryseobacterium gleum. Sci. Rep. 2024, 14, 12226. [Google Scholar] [CrossRef]
- Gilbert, N.M.; Lewis, W.G.; Lewis, A.L. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis. PLoS ONE 2013, 8, e59539. [Google Scholar] [CrossRef] [PubMed]
Parameter | Conditions | |
---|---|---|
Instrument | SCL-40 | |
Detector | SPD 40 at 254 nm | |
Column | YMC-Pack Pro C18 (YMC, Kyoto, Japan) | |
Column temperature | 30 °C | |
Injection volume | 10 μL | |
Flow rate | 1 mL/min | |
Mobile phase | (A) = Water | (B) = Acetonitrile |
Time (min) | ||
0 | 95 | 5 |
30 | 83 | 17 |
40 | 70 | 30 |
45 | 75 | 25 |
55 | 95 | 5 |
60 | 100 | 0 |
Gene | Forward | Reverse |
---|---|---|
mCOX-2 | GAAGTCTTTGGTCTGGTGCCTG | GTCTGCTGGTTTGGAATAGTTGC |
miNOS | CAGCTGGGCTGTACAAAC | CATTGGAAGTGAAGCGATTCG |
GAPDH | CATGGCCTTCCGTGTTC | CCTGGTCCTCAGTGTAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Lim, J.-Y.; Jeon, Y.-D.; Kim, D.-K.; Lee, D.-H. Methanol Extract of Pueraria lobata (Willd.) Root and Its Active Ingredient, Puerarin, Induce Apoptosis in HeLa Cells and Attenuates Bacterial Vaginosis in Gardnerella vaginalis-Infected Mice. Int. J. Mol. Sci. 2025, 26, 1342. https://doi.org/10.3390/ijms26031342
Lee J-H, Lim J-Y, Jeon Y-D, Kim D-K, Lee D-H. Methanol Extract of Pueraria lobata (Willd.) Root and Its Active Ingredient, Puerarin, Induce Apoptosis in HeLa Cells and Attenuates Bacterial Vaginosis in Gardnerella vaginalis-Infected Mice. International Journal of Molecular Sciences. 2025; 26(3):1342. https://doi.org/10.3390/ijms26031342
Chicago/Turabian StyleLee, Ji-Hyun, Ji-Ye Lim, Yong-Deok Jeon, Dae-Ki Kim, and Dong-Hyun Lee. 2025. "Methanol Extract of Pueraria lobata (Willd.) Root and Its Active Ingredient, Puerarin, Induce Apoptosis in HeLa Cells and Attenuates Bacterial Vaginosis in Gardnerella vaginalis-Infected Mice" International Journal of Molecular Sciences 26, no. 3: 1342. https://doi.org/10.3390/ijms26031342
APA StyleLee, J.-H., Lim, J.-Y., Jeon, Y.-D., Kim, D.-K., & Lee, D.-H. (2025). Methanol Extract of Pueraria lobata (Willd.) Root and Its Active Ingredient, Puerarin, Induce Apoptosis in HeLa Cells and Attenuates Bacterial Vaginosis in Gardnerella vaginalis-Infected Mice. International Journal of Molecular Sciences, 26(3), 1342. https://doi.org/10.3390/ijms26031342