Comparative Assessment of Acute Pulmonary Effects Induced by Heat-Not-Burn Tobacco Aerosol Inhalation in a Murine Model
<p>Heatmap illustrating unique proteins. Unique proteins were identified using the proximity extension assay, which was logarithmically scaled, and their normalized protein expression (NPX) values were standardized to zero. Positive values within the heatmap indicate NPX levels that are above the detection threshold and higher than the average scaled NPX value.</p> "> Figure 2
<p>Detection of biomarker candidates using proximity extension assay (PEA) to compare control mice with mice exposed to cigarette smoke. Volcano plot of the 92 proteins analyzed using the PEA. The estimated difference is presented on the x-axis and −log10(<span class="html-italic">p</span>-value) is presented on the y-axis. The horizontal dotted line indicates a raw <span class="html-italic">p</span>-value of 0.05, and the vertical dotted line indicates the threshold in the log2 ratio of fold change. Dots are colored based on the criteria for significant results.</p> "> Figure 3
<p>Detection of biomarker candidates using proximity extension assay (PEA) to compare control mice with mice exposed to both cigarette and heat-not-burn smoke. Volcano plot of the 92 proteins analyzed using the PEA. The estimated difference is presented on the x-axis and −log10(<span class="html-italic">p</span>-value) is presented on the y-axis. The horizontal dotted line indicates a raw <span class="html-italic">p</span>-value of 0.05 and the vertical dotted line indicates the threshold in the log2 ratio of fold change. Dots are colored based on the criteria for significant results.</p> "> Figure 4
<p>Detection of biomarker candidates using proximity extension assay (PEA) to compare control mice with mice exposed to heat-not-burn smoke. Volcano plot of the 92 proteins analyzed using the proximity extension assay. The estimated difference is presented on the x-axis and −log10(<span class="html-italic">p</span>-value) is presented on the y-axis. The horizontal dotted line indicates a raw <span class="html-italic">p</span>-value of 0.05 and the vertical dotted line indicates the threshold in the log2 ratio of fold change. Dots are colored based on the criteria for significant results.</p> "> Figure 5
<p>Schematic diagram illustrating smoking exposure to mice. Experimental animals were exposed to tobacco and heat-not-burn smoke five days a week for four weeks using the Smoking Tester Line System of Three Shine Inc. Each group was exposed to the smoke of 20 cigarettes or heat-not-burn sticks, five at a time, over the course of approximately 30–40 min. The mixed-use group was alternately exposed to the smoke of 10 cigarettes and 10 IQOS sticks.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Heatmap
2.2. PEA Proteomic Analysis
2.2.1. Comparing Control Mice with Cigarette-Exposed Mice
2.2.2. Comparing Control Mice with Dual-Smoke-Exposed Mice
2.2.3. Comparing Control Mice with HnB-Smoke-Exposed Mice
3. Discussion
4. Materials and Methods
4.1. Animal Preparation and Ethical Considerations
4.2. Grouping and Exposure Protocol
4.3. Serum Collection
4.4. Proximity Extension Assay (PEA)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.K.; Ounpuu, S.; Hawken, S.; Pandey, M.R.; Valentin, V.; Hunt, D.; Diaz, R.; Rashed, W.; Freeman, R.; Jiang, L.; et al. Tobacco use and risk of myocardial infarction in 52 countries in the interheart study: A case-control study. Lancet 2006, 368, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Sethi, J.M.; Rochester, C.L. Smoking and chronic obstructive pulmonary disease. Clin. Chest Med. 2000, 21, 67–86. [Google Scholar] [CrossRef]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer 2004, 45 (Suppl. S2), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.-R.; Choi, J.-W.; Jeong, J.-R.; Doh, H.-M.; Kim, M.-L.; Nam, M.-S.; Kho, H.-J.; Park, H.-Y.; Ahn, H.-R.; Kweon, S.-S.; et al. Effective timing of introducing an inpatient smoking cessation program to cancer patients. Yonsei Med. J. 2023, 64, 251–258. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: A systematic analysis from the global burden of disease study 2019. Lancet 2021, 397, 2337–2360. [Google Scholar] [CrossRef]
- Pichon-Riviere, A.; Alcaraz, A.; Palacios, A.; Rodríguez, B.; Reynales-Shigematsu, L.M.; Pinto, M.; Castillo-Riquelme, M.; Peña Torres, E.; Osorio, D.I.; Huayanay, L.; et al. The health and economic burden of smoking in 12 latin american countries and the potential effect of increasing tobacco taxes: An economic modelling study. Lancet Glob. Health 2020, 8, e1282–e1294. [Google Scholar] [CrossRef]
- Breitbarth, A.K.; Morgan, J.; Jones, A.L. E-cigarettes-an unintended illicit drug delivery system. Drug Alcohol Depend. 2018, 192, 98–111. [Google Scholar] [CrossRef]
- Lee, S.Y.; Shin, J. Association between electronic cigarettes use and asthma in the united states: Data from the national health interview survey 2016–2019. Yonsei Med. J. 2023, 64, 54–65. [Google Scholar] [CrossRef]
- Czoli, C.D.; White, C.M.; Reid, J.L.; RJ, O.C.; Hammond, D. Awareness and interest in iqos heated tobacco products among youth in canada, england and the USA. Tob. Control 2020, 29, 89–95. [Google Scholar] [CrossRef]
- Kim, J.; Yu, H.; Lee, S.; Paek, Y.J. Awareness, experience and prevalence of heated tobacco product, iqos, among young korean adults. Tob. Control 2018, 27, s74–s77. [Google Scholar] [CrossRef] [PubMed]
- Szczesny, B.; Marcatti, M.; Ahmad, A.; Montalbano, M.; Brunyánszki, A.; Bibli, S.-I.; Papapetropoulos, A.; Szabo, C. Mitochondrial DNA damage and subsequent activation of z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci. Rep. 2018, 8, 914. [Google Scholar] [CrossRef] [PubMed]
- Giordano, L.; Gregory, A.D.; Pérez Verdaguer, M.; Ware, S.A.; Harvey, H.; DeVallance, E.; Brzoska, T.; Sundd, P.; Zhang, Y.; Sciurba, F.C.; et al. Extracellular release of mitochondrial DNA: Triggered by cigarette smoke and detected in copd. Cells 2022, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Roxlau, E.T.; Pak, O.; Hadzic, S.; Garcia-Castro, C.F.; Gredic, M.; Wu, C.-Y.; Schäffer, J.; Selvakumar, B.; Pichl, A.; Spiegelberg, D.; et al. Nicotine promotes e-cigarette vapour-induced lung inflammation and structural alterations. Eur. Respir. J. 2023, 61, 2200951. [Google Scholar] [CrossRef]
- Phillips, B.; Veljkovic, E.; Boué, S.; Schlage, W.K.; Vuillaume, G.; Martin, F.; Titz, B.; Leroy, P.; Buettner, A.; Elamin, A.; et al. An 8-month systems toxicology inhalation/cessation study in apoe−/− mice to investigate cardiovascular and respiratory exposure effects of a candidate modified risk tobacco product, ths 2.2, compared with conventional cigarettes. Toxicol. Sci. 2015, 149, 411–432. [Google Scholar] [CrossRef]
- Bhat, T.A.; Kalathil, S.G.; Leigh, N.; Muthumalage, T.; Rahman, I.; Goniewicz, M.L.; Thanavala, Y.M. Acute effects of heated tobacco product (iqos) aerosol inhalation on lung tissue damage and inflammatory changes in the lungs. Nicotine Tob. Res. 2021, 23, 1160–1167. [Google Scholar] [CrossRef]
- Wik, L.; Nordberg, N.; Broberg, J.; Björkesten, J.; Assarsson, E.; Henriksson, S.; Grundberg, I.; Pettersson, E.; Westerberg, C.; Liljeroth, E.; et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol. Cell. Proteom. 2021, 20, 100168. [Google Scholar] [CrossRef]
- Niroomand, A.; Ghaidan, H.; Hallgren, O.; Hansson, L.; Larsson, H.; Wagner, D.; Mackova, M.; Halloran, K.; Hyllén, S.; Lindstedt, S. Corticotropin releasing hormone as an identifier of bronchiolitis obliterans syndrome. Sci. Rep. 2022, 12, 8413. [Google Scholar] [CrossRef]
- Marques, P.; Piqueras, L.; Sanz, M.-J. An updated overview of e-cigarette impact on human health. Respir. Res. 2021, 22, 151. [Google Scholar] [CrossRef]
- Sopori, M.L.; Kozak, W.; Savage, S.M.; Geng, Y.; Soszynski, D.; Kluger, M.J.; Perryman, E.K.; Snow, G.E. Effect of nicotine on the immune system: Possible regulation of immune responses by central and peripheral mechanisms. Psychoneuroendocrinology 1998, 23, 189–204. [Google Scholar] [CrossRef]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.; Marcos, E.; Parpaleix, A.; Amsellem, V.; Breau, M.; Houssaini, A.; Vienney, N.; Lefevre, M.; Derumeaux, G.; Evans, S.; et al. Ccr2/ccr5-mediated macrophage–smooth muscle cell crosstalk in pulmonary hypertension. Eur. Respir. J. 2019, 54, 1802308. [Google Scholar] [CrossRef] [PubMed]
- Giebe, S.; Brux, M.; Hofmann, A.; Lowe, F.; Breheny, D.; Morawietz, H.; Brunssen, C. Comparative study of the effects of cigarette smoke versus next-generation tobacco and nicotine product extracts on inflammatory biomarkers of human monocytes. Pflug. Arch. Eur. J. Physiol. 2023, 475, 823–833. [Google Scholar] [CrossRef] [PubMed]
- García-Trejo, S.S.; Medina-Pérez, D.M.; Balderas-Martínez, Y.I. Exposure to cigarette smoke extract induces proliferation and overexpression of ccl2 in a549 cells and migration in lung fibroblasts. TIP Rev. Espec. Cienc. Quím. Biol. 2023, 25, 1–12. [Google Scholar]
- Hao, Q.; Vadgama, J.V.; Wang, P. Ccl2/ccr2 signaling in cancer pathogenesis. Cell Commun. Signal. 2020, 18, 82. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Derler, R.; Midwood, K.S. More than just attractive: How ccl2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 2019, 10, 2759. [Google Scholar] [CrossRef]
- Sokolowska, M.; Quesniaux, V.F.J.; Akdis, C.A.; Chung, K.F.; Ryffel, B.; Togbe, D. Acute respiratory barrier disruption by ozone exposure in mice. Front. Immunol. 2019, 10, 2169. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Mattsson, N.; Weiner, M.W. Smoking and increased alzheimer’s disease risk: A review of potential mechanisms. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, S122–S145. [Google Scholar] [CrossRef]
- Shein, M.; Jeschke, G. Comparison of free radical levels in the aerosol from conventional cigarettes, electronic cigarettes, and heat-not-burn tobacco products. Chem. Res. Toxicol. 2019, 32, 1289–1298. [Google Scholar] [CrossRef]
- Bergström, J. Tobacco smoking and chronic destructive periodontal disease. Odontology 2004, 92, 1–8. [Google Scholar] [CrossRef]
- Qiu, F.; Liang, C.-L.; Liu, H.; Zeng, Y.-Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Heyn, J.; Luchting, B.; Azad, S.C. Smoking associated t-cell imbalance in patients with chronic pain. Nicotine Tob. Res. 2020, 22, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.M.; Lei, M.-K.; Beach, S.R.; Philibert, R.A.; Sinha, S.; Colgan, J.D. Cigarette and cannabis smoking effects on gpr15+ helper t cell levels in peripheral blood: Relationships with epigenetic biomarkers. Genes 2020, 11, 149. [Google Scholar] [CrossRef]
- Hartmann, T.; Marino, F.; Duffield, R. Tobacco smoking and acute exercise on immune-inflammatory responses among relative short and longer smoking histories. Cytokine 2019, 123, 154754. [Google Scholar] [CrossRef]
- Jamil, A.; Rashid, A.; Majeed, A. Correlation between genotoxicity and interleukin-6 in smokers: A rodent model. J. Coll. Physicians Surg. Pak. 2018, 28, 821–823. [Google Scholar] [CrossRef]
- Gonzalez-Quintela, A.; Alende, R.; Gude, F.a.; Campos, J.; Rey, J.; Meijide, L.; Fernandez-Merino, C.; Vidal, C. Serum levels of immunoglobulins (igg, iga, igm) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin. Exp. Immunol. 2008, 151, 42–50. [Google Scholar] [CrossRef]
- Yao, L.; Liu, G.; Huang, S.; Li, W.; Li, Y. Relationship between expression of hdac2, il-8, tnf-α in lung adenocarcinoma tissues and smoking. Zhonghua Yi Xue Za Zhi 2016, 96, 1410–1413. [Google Scholar]
- Pace, E.; Di Vincenzo, S.; Di Salvo, E.; Genovese, S.; Dino, P.; Sangiorgi, C.; Ferraro, M.; Gangemi, S. Mir-21 upregulation increases il-8 expression and tumorigenesis program in airway epithelial cells exposed to cigarette smoke. J. Cell. Physiol. 2019, 234, 22183–22194. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Wang, L.; Zhang, Q. Association between il-1β, il-8, and il-10 polymorphisms and risk of acute pancreatitis. Genet. Mol. Res. 2015, 14, 6635–6641. [Google Scholar] [CrossRef]
- Maruoka, H.; Inoue, D.; Takiuchi, Y.; Nagano, S.; Arima, H.; Tabata, S.; Matsushita, A.; Ishikawa, T.; Oita, T.; Takahashi, T. Ip-10/cxcl10 and mig/cxcl9 as novel markers for the diagnosis of lymphoma-associated hemophagocytic syndrome. Ann. Hematol. 2014, 93, 393–401. [Google Scholar] [CrossRef]
- Semba, T.; Nishimura, M.; Nishimura, S.; Ohara, O.; Ishige, T.; Ohno, S.; Nonaka, K.; Sogawa, K.; Satoh, M.; Sawai, S. The fls (fatty liver shionogi) mouse reveals local expressions of lipocalin-2, cxcl1 and cxcl9 in the liver with non-alcoholic steatohepatitis. BMC Gastroenterol. 2013, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Onor, I.O.; Stirling, D.L.; Williams, S.R.; Bediako, D.; Borghol, A.; Harris, M.B.; Darensburg, T.B.; Clay, S.D.; Okpechi, S.C.; Sarpong, D.F.; et al. Clinical effects of cigarette smoking: Epidemiologic impact and review of pharmacotherapy options. Int. J. Environ. Res. Public Health 2017, 14, 1147. [Google Scholar] [CrossRef]
- Shiels, M.S.; Katki, H.A.; Freedman, N.D.; Purdue, M.P.; Wentzensen, N.; Trabert, B.; Kitahara, C.M.; Furr, M.; Li, Y.; Kemp, T.J.; et al. Cigarette smoking and variations in systemic immune and inflammation markers. J. Natl. Cancer Inst. 2014, 106, dju294. [Google Scholar] [CrossRef]
- Bruzelius, M.; Iglesias, M.J.; Hong, M.-G.; Sanchez-Rivera, L.; Gyorgy, B.; Souto, J.C.; Frånberg, M.; Fredolini, C.; Strawbridge, R.J.; Holmström, M.J.B. Pdgfb, a new candidate plasma biomarker for venous thromboembolism: Results from the verema affinity proteomics study. J. Am. Soc. Hematol. 2016, 128, e59–e66. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Hoffman, K.L.; Schiffer, K.T.; Oromendia, C.; Rice, M.C.; Barjaktarevic, I.; Peters, S.P.; Putcha, N.; Bowler, R.P.; Wells, J.M.; et al. Association of plasma mitochondrial DNA with copd severity and progression in the spiromics cohort. Respir. Res. 2021, 22, 126. [Google Scholar] [CrossRef]
- Ware, S.A.; Kliment, C.R.; Giordano, L.; Redding, K.M.; Rumsey, W.L.; Bates, S.; Zhang, Y.; Sciurba, F.C.; Nouraie, S.M.; Kaufman, B.A. Cell-free DNA levels associate with copd exacerbations and mortality. Respir. Res. 2024, 25, 42. [Google Scholar] [CrossRef]
- Li, J.; Huynh, L.; Cornwell, W.D.; Tang, M.S.; Simborio, H.; Huang, J.; Kosmider, B.; Rogers, T.J.; Zhao, H.; Steinberg, M.B.; et al. Electronic cigarettes induce mitochondrial DNA damage and trigger tlr9 (toll-like receptor 9)-mediated atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 839–853. [Google Scholar] [CrossRef]
Upregulated | Downregulated | |
---|---|---|
Control vs. Cigarette | Ccl2, Ccl3, Ccxl1, Epcam | Hgf, Plin1 |
Control vs. Dual smoke exposure | Ccl3, Cxcl1 | Axin1. Foxo1, Gdnf, Epo, Nadk, Snap29, Ppp1r2, Qdpr, Hgf, Cxcl9, Tnfsf12 |
Control vs. HnB smoke exposure | Tnni3, Tgfb1, Ccl2, S100a4, Fas, Epcam, Plxna4, Casp3, Ccl20, Cxcl9, Pdgfb | Gdnf, Ppp1r2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.K.; Yang, W.J.; Seong, Y.S.; Choi, Y.J.; Park, H.J.; Byun, M.K.; Chang, Y.S.; Cho, J.H.; Kim, C.Y. Comparative Assessment of Acute Pulmonary Effects Induced by Heat-Not-Burn Tobacco Aerosol Inhalation in a Murine Model. Int. J. Mol. Sci. 2025, 26, 1135. https://doi.org/10.3390/ijms26031135
Kim BK, Yang WJ, Seong YS, Choi YJ, Park HJ, Byun MK, Chang YS, Cho JH, Kim CY. Comparative Assessment of Acute Pulmonary Effects Induced by Heat-Not-Burn Tobacco Aerosol Inhalation in a Murine Model. International Journal of Molecular Sciences. 2025; 26(3):1135. https://doi.org/10.3390/ijms26031135
Chicago/Turabian StyleKim, Beong Ki, Won Jin Yang, Ye Seul Seong, Yong Jun Choi, Hye Jung Park, Min Kwang Byun, Yoon Soo Chang, Jae Hwa Cho, and Chi Young Kim. 2025. "Comparative Assessment of Acute Pulmonary Effects Induced by Heat-Not-Burn Tobacco Aerosol Inhalation in a Murine Model" International Journal of Molecular Sciences 26, no. 3: 1135. https://doi.org/10.3390/ijms26031135
APA StyleKim, B. K., Yang, W. J., Seong, Y. S., Choi, Y. J., Park, H. J., Byun, M. K., Chang, Y. S., Cho, J. H., & Kim, C. Y. (2025). Comparative Assessment of Acute Pulmonary Effects Induced by Heat-Not-Burn Tobacco Aerosol Inhalation in a Murine Model. International Journal of Molecular Sciences, 26(3), 1135. https://doi.org/10.3390/ijms26031135