NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus)
<p>CiNLRC3 sequence analysis. (<b>A</b>) Structure illustration of CiNLRC3 protein. Structure domains were indicated in a dark frame. (<b>B</b>) Multiple alignment of NLRC3 protein sequences from grass carp (OR282536.1), blunt snout bream (XM_048174542.1), zebrafish (XM_009297629.4), common carp (XM_042752008.1), human (FJ889357.1) and mouse (XM_011245902.3). The NACHT domain is marked by red underline and the LRR domains are indicated by blue underlines.</p> "> Figure 2
<p>Phylogenetic tree of NLRC3 protein homologs. The phylogenetic tree was constructed using the neighbor-joining method implemented in the MEGA 6.0 software. Bootstrap confidence values, displayed at the nodes of the tree, were calculated based on 1,000 bootstrap replications. NLRC3 homologs are listed below. Mammalian: <span class="html-italic">Homo sapiens</span> (NP_849172.2), <span class="html-italic">Pan troglodytes</span> (XP_016784787.3), <span class="html-italic">Oryctolagus cuniculus</span> (XP_051692203.1), <span class="html-italic">Mus musculus</span> (NP_001074749.1), <span class="html-italic">Castor canadensis</span> (XP_020012107.1), <span class="html-italic">Heterocephalus glaber</span> (XP_004864808.1), <span class="html-italic">Acinonyx jubatus</span> (XP_053069323.1), <span class="html-italic">Panthera tigris</span> (XM_042971676.1), <span class="html-italic">Bos taurus</span> (XP_059737649.1), <span class="html-italic">Equus caballus</span> (XP_001499317.2), <span class="html-italic">Panthera leo</span> (XM_042921978.1); Reptilian: <span class="html-italic">Varanus komodoensis</span> (XP_044289647.1), <span class="html-italic">Bodarcis raffonei</span> (XP_053220626.1), <span class="html-italic">Zootoca vivipara</span> (XP_034987245.1); Avian: <span class="html-italic">Phalacrocorax carbo</span> (XP_064318183.1), <span class="html-italic">Gallus gallus</span> (XP_015150161.3), <span class="html-italic">Haemorhous mexicanus</span> (XP_059718048.1), <span class="html-italic">Passer domesticus</span> (XP_064246427.1), <span class="html-italic">Corvus cornix cornix</span> (XP_019136980.2), <span class="html-italic">Taeniopygia guttata</span> (XP_030140601.3; Amphibians: <span class="html-italic">Xenopus tropicalis</span> (XP_017952746.1), <span class="html-italic">Bufo gargarizans</span> (XP_044160788.1), <span class="html-italic">Rana temporaria</span> (XP_040214376.1); Cartilaginous fish: <span class="html-italic">Scyliorhinus_canicula</span> (XP_038676696.1), <span class="html-italic">Heterocephalus_glaber</span> (XP_004864808.1), <span class="html-italic">Callorhinchus_milii</span> (XP_007891876.1), <span class="html-italic">Castor_canadensis</span> (XP_020012107.1), <span class="html-italic">Rhinatrema_bivittatum</span> (XP_029432650.1), <span class="html-italic">Carcharodon_carcharias</span> (XP_041062594.1), <span class="html-italic">Mobula_hypostoma</span> (XP_062915561.1), <span class="html-italic">Hypanus_sabinus</span> (XP_059834825.1), <span class="html-italic">Pristis_pectinata</span> (XP_051877340.1), <span class="html-italic">Rhincodon_typus</span> (XP_048465466.1), <span class="html-italic">Chiloscyllium_plagiosum</span> (XP_043567467.1); and Teleost: <span class="html-italic">Danio_rerio</span> (XM_009297629.4), <span class="html-italic">Ctenopharyngodon idella</span> (XP_051737605.1), <span class="html-italic">Megalobrama_amblycephala</span> (XP_048030497.1), <span class="html-italic">Carassius_gibelio</span> (XP_052451976.1), <span class="html-italic">Cyprinus_carpio</span> (XP_042607942.1), <span class="html-italic">Oryzias_latipes</span> (XP_004080575.1), <span class="html-italic">Oreochromis_niloticus</span> (XP_003438651.1), <span class="html-italic">Lates_calcarifer</span> (XP_018537323.1), <span class="html-italic">Larimichthys_crocea</span> (XP_010730059.1), <span class="html-italic">Siniperca chuatsi</span> (XM_044177955.1), <span class="html-italic">Anguilla rostrata</span> (XP_064178397.1).</p> "> Figure 3
<p><span class="html-italic">Cinlrc3</span> is induced after GCRV infection. (<b>A</b>) The distribution of <span class="html-italic">Cinlrc3</span> in the intestine, spleen, gill, kidney, heart, liver, head kidney, brain, and skin of grass carp. (<b>B</b>) The CiNLRC3 protein is in the cytoplasm. Immunofluorescence cellular localization is performed using constructed HA-CiNLRC3. The plasmid of CiNLRC3-HA is transfected in CIK cells, and the HA antibody is utilized to detect the CiNLRC3-HA fusion protein which is indicated in red fluorescence. DAPI is used for the nuclear staining. Scale bar: 20 μm. (<b>C</b>,<b>D</b>) CIK cells are challenged with GCRV-JX0901, and cell samples are collected at 0 h, 12 h, 24 h, 36 h, and 48 h. Then, the transcriptional levels of <span class="html-italic">ifn1</span> (<b>C</b>) and <span class="html-italic">Cinlrc3</span> (<b>D</b>) are detected by qPCR. (<b>E</b>–<b>P</b>) Grass carps are immersed in GCRV-Huan1307 for 30 min and the liver, spleen, kidney and gill are sampled at 0, 1, 3 and 7 dpi. <span class="html-italic">Cinlrc3</span>, <span class="html-italic">vp7</span> and <span class="html-italic">isg15</span> mRNA in the liver (<b>E</b>,<b>I</b>,<b>M</b>), spleen (<b>F</b>,<b>J</b>,<b>N</b>), kidney (<b>G</b>,<b>K</b>,<b>O</b>) and gill (<b>H</b>,<b>L</b>,<b>P</b>) are detected using qPCR. Letters with the same superscript indicate no significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>CiNLRC3 dampens the cellular antiviral response. (<b>A</b>) CIK cells were seeded into 6-well plates and transfected with an EV or CiNLRC3 (2 μg), respectively. After transfection for 24 h, GCRV was added into the transfected wells. After 36 hpi, the cells were fixed with 4% paraformaldehyde, washed three times with PBS, and then stained with 1% crystal lavender. (<b>B</b>–<b>E</b>) Under the same transfected experiments above, samples were collected at 36 hpi. qPCR was performed to detect mRNA levels of <span class="html-italic">Cinlrc3</span> (<b>B</b>), <span class="html-italic">vp4</span> (<b>C</b>), <span class="html-italic">vp5</span> (<b>D</b>) and <span class="html-italic">ifn1</span> (<b>E</b>). (<b>F</b>,<b>J</b>) CIK cells were seeded into 6-well plates and transfected with siRNA-NC or siRNA-1/2, respectively. After transfection for 12 h, GCRV was added into the transfected wells. After 36 hpi, the cells samples were collected and qPCR was applied to detect the expression of <span class="html-italic">Cinlrc3</span> (<b>F</b>), <span class="html-italic">vp4</span> (<b>G</b>), <span class="html-italic">vp5</span> (<b>H</b>), <span class="html-italic">mx</span> (<b>I</b>) and <span class="html-italic">viperin</span> (<b>J</b>). Asterisks indicate significant differences (* <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 5
<p>CiNLRC3 blocks the RLR-mediated IFN response. (<b>A</b>) The GCO cells are seeded in a 24-well plate overnight and then co-transfected with an EV or CiNLRC3 (500 ng), CiIFN1pro-Luc (100 ng), and pRL-TK (10 ng). Moreover, 12 h later, poly (I; C), GCRV, SVCV is added into cells, respectively. Another 24 h later, the samples are collected after 24 h following a dual-luciferase activity assay. (<b>B</b>) The GCO cells are seeded in a 24-well plate overnight and then an EV or the CiNLRC3 (200 ng) plasmid and CiIFN1pro-Luc (100ng), PRL—TK (10 ng), are transfected into the cells. At the same time, the expressing plasmids including RIG-I, MAD5, MAVS, MITA, TBK1, IRF3, and IRF7 (200 ng) are transfected into the cells, respectively. In addition, 24 h later, the samples are collected for the dual-luciferase activity assay. Asterisks indicate significant differences (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01).</p> "> Figure 6
<p>NLRC3 interacts with IRF7 and degrades IRF7 in a proteasome-dependent manner (<b>A</b>) MITA, TBK1, IRF3 and IRF7 are NLRC3-interacting proteins. GCO cells are seeded in 10 cm<sup>2</sup> plates overnight, and then CiNLRC3 is co-transfected with EGFP-HA, MITA-HA, TBK1-HA, IRF3-HA, and IRF7-HA (5 μg each). After 36 h, the cells are collected for the Co-IP experiment. (<b>B</b>–<b>C</b>) NLRC3 degrades IRF7 but not IRF3. GCO cells are seeded in 6-well plates overnight, and then IRF3 (<b>B</b>) or IRF7-HA (<b>C</b>) (1 μg) and NLRC3-Flag (0.3, 0.5, 0.8, 1.0 μg) are co-transfected, respectively. After 36 h, cells are collected, and their bands are detected by Western blotting. (<b>D</b>) NLRC3 degrades IRF7 in a proteasome-dependent manner. GCO cells are seeded in three 6-well plates overnight, one plate co-transfected with IRF7-HA and an EV and the other two plates co-transfected with a repeat of IRF7-HA (1 μg) and NLRC3-HA (1.0 μg). Moreover, 24 h later, the indicated cells are treated with MG132 (20 μM) for 6 h. After 36 h, cells are collected, and their bands are detected by Western blotting. (<b>E</b>,<b>F</b>) IRF7 is co-located with NLRC3. 293T cells are seeded in 12-well plates overnight and transfected with Cherry-IRF7 (<b>E</b>), CiNLRC3-EGFP or EGFP and Cherry-IRF7 (1 μg each) (<b>F</b>) and fixed with 4% paraformaldehyde for 15 min after 24 h. Then, PBS is used for washing three times, DAPI is used for staining for 5 min, and photographs are taken under the microscope.</p> "> Figure 7
<p>CiNLRC3 impairs IRF7-mediated cellular antiviral response. (<b>A</b>–<b>E</b>) CIK cells are seeded in six-well plates overnight, and then EV (1 μg) or EV (0.5 μg) + CiIRF7 (0.5 μg) or CiNLRC3 (0.5 μg) + CiIRF7 (0.5 μg), respectively, and GCRV are added 24 h later. The mRNA levels of isg15, isg20 (<b>A</b>,<b>B</b>), vp5, vp6 and vp7 (<b>C</b>–<b>E</b>) are detected by qPCR after another 24 h. Letters with the same superscript indicate no significant difference (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of NLRC3 in Grass Carp
2.2. Cinlrc3 Is Induced by GCRV Infection
2.3. CiNLRC3 Dampens the Cellular Antiviral Response
2.4. CiNLRC3 Blocks the RLR-Mediated IFN Response
2.5. NLRC3 Interacts with IRF7 and Degrades IRF7in a Proteasome-Dependent Manner
2.6. CiNLRC3 Impairs IRF7-Mediated Cellular Antiviral Response
3. Discussion
4. Materials and Methods
4.1. Cell Lines, Viruses, and Fish
4.2. Sequence Analysis and Phylogenetic Analysis
4.3. RNA Extraction, cDNA Synthesis, and Real-Time qPCR
4.4. Plasmids and SiRNA
4.5. Transfection and Luciferase Activity Assays
4.6. Antiviral Activity Analysis
4.7. Immunofluorescence and Confocal Microscopy Assays
4.8. Co-Immunoprecipitation (Co-IP) and Western Blotting (WB)
4.9. Data Collection and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NLRC3 | NLR family CARD containing 3 |
RIG-I | retinoic acid-inducible gene I |
MAVS | mitochondrial antiviral signaling protein |
MITA | STING, Stimulator of interferon genes |
MDA5 | melanoma differentiation related gene 5 |
TBK1 | TANK binding kinase 1 |
IRF3/7 | interferon regulatory Factor 3/7 |
Poly (I:C) | polyinosinic–polycytidylic acid SVCV |
SVCV | spring viraemia of carp virus |
References
- Stegelmeier, A.A.; Darzianiazizi, M.; Hanada, K.; Sharif, S.; Wootton, S.K.; Bridle, B.W.; Karimi, K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int. J. Mol. Sci. 2021, 22, 4726. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Carty, M.; Guy, C.; Bowie, A.G. Detection of Viral Infections by Innate Immunity. Biochem. Pharmacol. 2021, 183, 114316. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Hou, P.; Chu, F.; Li, X.; Zhang, W.; Sun, X.; Liu, Y.; Zhao, G.; Gao, Y.; He, D.C.; et al. PBLD promotes IRF3 mediated the type I interferon (IFN-I) response and apoptosis to inhibit viral replication. Cell Death Dis. 2024, 15, 727. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 2015, 15, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Veeranki, S.; Duan, X.; Panchanathan, R.; Liu, H.; Choubey, D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS ONE 2011, 6, e27040. [Google Scholar] [CrossRef]
- Kim, Y.K.; Shin, J.S.; Nahm, M.H. NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med. J. 2016, 57, 5–14. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Chen, L.; Cao, S.Q.; Lin, Z.M.; He, S.J.; Zuo, J.P. NOD-like receptors in autoimmune diseases. Acta Pharmacol. Sin. 2021, 42, 1742–1756. [Google Scholar] [CrossRef]
- Chia, K.S.; Carella, P. Taking the lead: NLR immune receptor N-terminal domains execute plant immune responses. New Phytol. 2023, 240, 496–501. [Google Scholar] [CrossRef]
- Marino, N.D.; Brodsky, I.E. Immunology: NACHT domain proteins get a prokaryotic origin story. Curr. Biol. 2023, 33, R875–R878. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H. Caspase recruitment domains for protein interactions in cellular signaling (Review). Int. J. Mol. Med. 2019, 43, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Belosevic, M. Characterization and functional assessment of the NLRC3-like molecule of the goldfish (Carassius auratus L.). Dev. Comp. Immunol. 2018, 79, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Man, S.M.; Malireddi, R.K.S.; Kesavardhana, S.; Zhu, Q.; Burton, A.R.; Sharma, B.R.; Qi, X.; Pelletier, S.; Vogel, P.; et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature 2016, 540, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Xu, J.; Zhang, W.; Song, C.; Gao, C.; He, Y.; Shang, Y. Negative regulator NLRC3: Its potential role and regulatory mechanism in immune response and immune-related diseases. Front. Immunol. 2022, 13, 1012459. [Google Scholar] [CrossRef]
- Li, X.; Deng, M.; Petrucelli, A.S.; Zhu, C.; Mo, J.; Zhang, L.; Tam, J.W.; Ariel, P.; Zhao, B.; Zhang, S.; et al. Viral DNA Binding to NLRC3, an Inhibitory Nucleic Acid Sensor, Unleashes STING, a Cyclic Dinucleotide Receptor that Activates Type I Interferon. Immunity 2019, 50, 591–599.e6. [Google Scholar] [CrossRef]
- Xu, J.; Gao, C.; He, Y.; Fang, X.; Sun, D.; Peng, Z.; Xiao, H.; Sun, M.; Zhang, P.; Zhou, T.; et al. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Mol. Ther. 2023, 31, 154–173. [Google Scholar] [CrossRef]
- Krishnan, R.; Rajendran, R.; Jang, Y.S.; Kim, J.O.; Yoon, S.Y.; Oh, M.J. NLRC3 attenuates antiviral immunity and activates inflammasome responses in primary grouper brain cells following nervous necrosis virus infection. Fish. Shellfish. Immunol. 2022, 127, 219–227. [Google Scholar] [CrossRef]
- Xiong, S.T.; Ying, Y.R.; Long, Z.; Li, J.H.; Zhang, Y.B.; Xiao, T.Y.; Zhao, X. Zebrafish MARCH7 negatively regulates IFN antiviral response by degrading TBK1. Int. J. Biol. Macromol. 2023, 240, 124384. [Google Scholar] [CrossRef]
- Gao, F.X.; Lu, W.J.; Shi, Y.; Zhou, L.; Gui, J.F.; Zhao, Z. Identification and functional characterization of three irf7 transcript variants in obscure puffer (Takifugu obscurus). Dev. Comp. Immunol. 2021, 119, 104019. [Google Scholar] [CrossRef]
- Bourdon, M.; Manet, C.; Montagutelli, X. Host genetic susceptibility to viral infections: The role of type I interferon induction. Genes. Immun. 2020, 21, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.Y.; Zhang, Q.M.; Gui, J.F.; Zhang, Y.B. SVCV infection triggers fish IFN response through RLR signaling pathway. Fish. Shellfish. Immunol. 2019, 86, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Onomoto, K.; Onoguchi, K.; Yoneyama, M. Regulation of RIG-I-like receptor-mediated signaling: Interaction between host and viral factors. Cell Mol. Immunol. 2021, 18, 539–555. [Google Scholar] [CrossRef] [PubMed]
- tenOever, B.R.; Servant, M.J.; Grandvaux, N.; Lin, R.; Hiscott, J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J. Virol. 2002, 76, 3659–3669. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X.; Shu, J.; Liu, Z.; Sun, W.; Hou, S.; Lv, Y.; Ying, Q.; Wang, F.; Jin, X.; et al. Nlrc3 Knockout Mice Showed Renal Pathological Changes After HTNV Infection. Front. Immunol. 2021, 12, 692509. [Google Scholar] [CrossRef]
- Paria, A.; Deepika, A.; Sreedharan, K.; Makesh, M.; Chaudhari, A.; Purushothaman, C.S.; Thirunavukkarasu, A.R.; Rajendran, K.V. Identification of Nod like receptor C3 (NLRC3) in Asian seabass, Lates calcarifer: Characterisation, ontogeny and expression analysis after experimental infection and ligand stimulation. Fish. Shellfish. Immunol. 2016, 55, 602–612. [Google Scholar] [CrossRef]
- Shima, K.; Wanker, M.; Skilton, R.J.; Cutcliffe, L.T.; Schnee, C.; Kohl, T.A.; Niemann, S.; Geijo, J.; Klinger, M.; Timms, P.; et al. The Genetic Transformation of Chlamydia pneumoniae. Msphere 2018, 3, 10–1128. [Google Scholar] [CrossRef]
- Zhang, Q.-M.; Zhao, X.; Li, Z.; Wu, M.; Gui, J.-F.; Zhang, Y.-B. Alternative Splicing Transcripts of Zebrafish LGP2 Gene Differentially Contribute to IFN Antiviral Response. J. Immunol. 2018, 200, 688–703. [Google Scholar] [CrossRef]
- Ma, W.; Huang, G.; Wang, Z.; Wang, L.; Gao, Q. IRF7: Role and regulation in immunity and autoimmunity. Front. Immunol. 2023, 14, 1236923. [Google Scholar] [CrossRef]
- Honda, K.; Takaoka, A.; Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006, 25, 349–360. [Google Scholar] [CrossRef]
- Zhang, L.; Mo, J.; Swanson, K.V.; Wen, H.; Petrucelli, A.; Gregory, S.M.; Zhang, Z.; Schneider, M.; Jiang, Y.; Fitzgerald, K.A.; et al. NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 2014, 40, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhang, Y.B.; Liu, T.K.; Gan, L.; Yu, F.F.; Liu, Y.; Gui, J.F. Characterization of fish IRF3 as an IFN-inducible protein reveals evolving regulation of IFN response in vertebrates. J. Immunol. 2010, 185, 7573–7582. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.X.; Xiong, F.; Wu, X.M.; Hu, Y.W. The expanding and function of NLRC3 or NLRC3-like in teleost fish: Recent advances and novel insights. Dev. Comp. Immunol. 2021, 114, 103859. [Google Scholar] [CrossRef] [PubMed]
- Ferrand, J.; Ferrero, R.L. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity. Front. Immunol. 2013, 4, 344. [Google Scholar] [CrossRef]
- Hou, Z.; Ye, Z.; Zhang, D.; Gao, C.; Su, B.; Song, L.; Tan, F.; Song, H.; Wang, Y.; Li, C. Characterization and expression profiling of NOD-like receptor C3 (NLRC3) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish. Shellfish. Immunol. 2017, 66, 231–239. [Google Scholar] [CrossRef]
- Wang, T.; Yan, B.; Lou, L.; Lin, X.; Yu, T.; Wu, S.; Lu, Q.; Liu, W.; Huang, Z.; Zhang, M.; et al. Nlrc3-like is required for microglia maintenance in zebrafish. J. Genet. Genom. 2019, 46, 291–299. [Google Scholar] [CrossRef]
- Niu, L.; Luo, G.; Liang, R.; Qiu, C.; Yang, J.; Xie, L.; Zhang, K.; Tian, Y.; Wang, D.; Song, S.; et al. Negative Regulator Nlrc3-like Maintain the Balanced Innate Immune Response During Mycobacterial Infection in Zebrafish. Front. Immunol. 2022, 13, 893611. [Google Scholar] [CrossRef]
- Zhao, X.; Dan, C.; Gong, X.Y.; Li, Y.L.; Qu, Z.L.; Sun, H.Y.; An, L.L.; Guo, W.H.; Gui, J.F.; Zhang, Y.B. Zebrafish MARCH8 downregulates fish IFN response by targeting MITA and TBK1 for protein degradation. Dev. Comp. Immunol. 2022, 135, 104485. [Google Scholar] [CrossRef]
- Qu, Z.L.; Li, Y.L.; Gong, X.Y.; Zhao, X.; Sun, H.Y.; Dan, C.; Gui, J.F.; Zhang, Y.B. A finTRIM Family Protein Acquires RNA-Binding Activity and E3 Ligase Activity to Shape the IFN Response in Fish. J. Immunol. 2022, 209, 1335–1347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chen, H.; Zhao, X.; Chen, Y.; Li, S.; Xiao, T.; Xiong, S. NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus). Int. J. Mol. Sci. 2025, 26, 840. https://doi.org/10.3390/ijms26020840
Zhang L, Chen H, Zhao X, Chen Y, Li S, Xiao T, Xiong S. NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus). International Journal of Molecular Sciences. 2025; 26(2):840. https://doi.org/10.3390/ijms26020840
Chicago/Turabian StyleZhang, Lei, Haitai Chen, Xiang Zhao, Youcheng Chen, Shenpeng Li, Tiaoyi Xiao, and Shuting Xiong. 2025. "NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus)" International Journal of Molecular Sciences 26, no. 2: 840. https://doi.org/10.3390/ijms26020840
APA StyleZhang, L., Chen, H., Zhao, X., Chen, Y., Li, S., Xiao, T., & Xiong, S. (2025). NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus). International Journal of Molecular Sciences, 26(2), 840. https://doi.org/10.3390/ijms26020840