Investigation of Exome-Wide Tumor Heterogeneity on Colorectal Tissue-Based Single Cells
<p>The distribution of the Tumor Mutational Burden (TMB) in the NAT and CRC samples is shown on a logarithmic scale. On average, the CRC group exhibits a higher TMB, indicating a greater number of somatic variations compared to the NAT group.</p> "> Figure 2
<p>Summary plots of the (<b>a</b>) NEG, (<b>b</b>) NAT, and (<b>c</b>) CRC samples. Variant classification distribution: the <span class="html-italic">X</span>-axis represents the number of variants, and the <span class="html-italic">Y</span>-axis represents the variant type categories. Variant type plot: the <span class="html-italic">X</span>-axis represents the number of variants, and the <span class="html-italic">Y</span>-axis represents the variant type categories and SNV class plot. Variants per sample plot: the <span class="html-italic">X</span>-axis represents the ID of samples, and the <span class="html-italic">Y</span>-axis represents the number of variants. Variant classification summary: the <span class="html-italic">X</span>-axis represents the variant classifications, and the <span class="html-italic">Y</span>-axis represents the number of variants. Top 10 mutated genes: the <span class="html-italic">X</span>-axis represents the number of mutations, and the <span class="html-italic">Y</span>-axis lists the top 10 mutated genes.</p> "> Figure 3
<p>Cross−cancer genome mutation patterns may serve as a proxy to identify positive (collaboration) or negative (synthetic lethal) epistatic relationships between recurrently mutated driver genes. The epistatic relationship between two driver genes may be inferred from cross-cancer mutation patterns, whereby co-occurrence may indicate a synergistic interaction in promoting tumorigenesis. By contrast, mutually exclusive driver genes may negatively impact tumorigenesis when mutated jointly. Here, mutually exclusive and co-occurring gene pairs are presented in a triangular matrix per tissue group—(<b>a</b>) NEG, (<b>b</b>) NAT, and (<b>c</b>) CRC. Bluish-green indicates a tendency toward co-occurrence, whereas brown indicates a tendency towards mutual exclusivity. The intensity of the greenish regions corresponds to the significance of the relationship between genes, and the star symbol denotes a higher (<span class="html-italic">p</span> < 0.01) significance than the dot (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>The tumor heterogeneity patterns of samples of the (<b>a</b>) NEG, (<b>b</b>) NAT, and (<b>c</b>) CRC groups. The <span class="html-italic">X</span>-axis represents the ID of samples, and the <span class="html-italic">Y</span>-axis represents the total number of mutations detected. The number of detected mutations per sample is marked above the corresponding columns, and the height of the columns is proportional to the number of detected variants. Different colors correspond to different genes. The gene-color coding is illustrated on the top-right corners of the figures.</p> "> Figure 5
<p>Comparative plots regarding the sequencing input samples: (<b>a</b>) single-cell vs. bulk sequencing, (<b>b</b>) cfDNA vs. bulk sequencing, and (<b>c</b>) single-cell vs. cfDNA sequencing. The <span class="html-italic">X</span>-axis represents the genes, and the <span class="html-italic">Y</span>-axis represents the number of detected mutations on a logarithmic scale. The different sequencing methods are represented by different colors, where red is associated with bulk, blue is associated with single-cell, and green is associated with cfDNA sequencing.</p> "> Figure 6
<p>The efficiency of the different sequencing methods regarding the detection of mutations. The <span class="html-italic">X</span>-axis represents the different sequencing methods: (P) cfDNA, (B) bulk, and (S-C) single-cell sequencing. The <span class="html-italic">Y</span>-axis represents the number of detected variants. The height of the columns is proportional to the amount of detected variants. Different colors correspond to different genes. The illustrated specific genes are characteristic of non-hypermutated colon tumors: <span class="html-italic">APC</span>, <span class="html-italic">TTN</span>, <span class="html-italic">TP53</span>, <span class="html-italic">KRAS</span>, <span class="html-italic">MUC16</span>, <span class="html-italic">MUC5B</span>, <span class="html-italic">PIK3CA</span>, <span class="html-italic">BRAF</span>, <span class="html-italic">SOX9</span>, <span class="html-italic">RYR1</span>, <span class="html-italic">RYR2</span>, <span class="html-italic">RYR3</span>, <span class="html-italic">FBXW7</span>, <span class="html-italic">ARID1A</span>, <span class="html-italic">COL5A1</span>, <span class="html-italic">COL6A3</span>, <span class="html-italic">KIAA019</span>, and <span class="html-italic">PCDH17</span>. The color-coding of genes is illustrated on the top-right corners of the figure.</p> "> Figure A1
<p>The comparative oncomutational plot of the NAT and CRC groups. The X-axis represents the occurence rate of the mutations of the genes, and the Y-axis represents the examined genes. The left-side of the figure corresponds to the CRC group, and the right-side illustrates the findings regarding the NAT group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Investigation of Tumor Heterogeneity in Single-Cell Sequenced Samples
2.2. Comparison of Different Input Samples
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Single-Cell DNA Extraction, Library Preparation, and Next-Generation Sequencing
4.3. Bioinformatic Analyses
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Germline | Somatic | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Mean Region Coverage Depth | TMB | Median Fragment Length | SNP | Deletion | Insertion | SNP | Deletion | Insertion |
NEG1 | 8.2 | 22.1 | 194 | 14,775 | 6 | 223 | |||
NEG2 | 25.1 | 95.38 | 198 | 48,084 | 32 | 503 | |||
NEG3 | 2.5 | 7.74 | 170 | 4280 | 16 | 422 | |||
NEG4 | 4.2 | 6.04 | 179 | 5268 | 12 | 354 | |||
NEG5 | 0.5 | 18.56 | 180 | 102 | 0 | 6 | |||
NEG6 | 10.9 | 24.82 | 176 | 7490 | 188 | 340 | |||
NEG7 | 76.6 | 39.8 | 191 | 60,524 | 1523 | 2158 | |||
NEG8 | 126 | 178.72 | 191 | 183,465 | 137 | 3068 | |||
NEG9 | 8.9 | 27.8 | 178 | 14,895 | 6 | 227 | |||
NEG10 | 19.2 | 66.26 | 202 | 37,999 | 16 | 529 | |||
NEG11 | 14.3 | 8.02 | 206 | 28,891 | 15 | 692 | |||
NEG12 | 1.7 | 52.3 | 228 | 4359 | 0 | 62 | |||
NAT1 | 37.2 | 73.94 | 264 | 92,880 | 101 | 1305 | 55,002 | 3501 | 5355 |
NAT2 | 11.4 | 8.54 | 227 | 14,040 | 12 | 141 | 8906 | 636 | 1169 |
NAT3 | 13.5 | 8.16 | 217 | 18,970 | 41 | 338 | 11,348 | 869 | 1178 |
NAT4 | 125.5 | 226.52 | 198 | 261,094 | 54 | 110 | 137,773 | 7286 | 10,311 |
NAT5 | 85.3 | 108.54 | 164 | 134,821 | 20 | 86 | 73,450 | 3753 | 5428 |
NAT6 | 33.7 | 48.28 | 220 | 57,992 | 87 | 714 | 35,854 | 2470 | 3594 |
NAT7 | 0.8 | 1.78 | 268 | 1892 | 12 | 87 | 1125 | 94 | 169 |
NAT8 | 0.7 | 0.56 | 214 | 1518 | 2 | 19 | 979 | 75 | 126 |
NAT9 | 5.6 | 1.88 | 205 | 3387 | 10 | 109 | 2196 | 164 | 266 |
NAT10 | 0.9 | 0.18 | 224 | 970 | 3 | 25 | 717 | 47 | 62 |
NAT11 | 1.6 | 0.54 | 239 | 950 | 2 | 24 | 630 | 47 | 80 |
NAT12 | 0.2 | 0.08 | 257 | 230 | 0 | 5 | 159 | 8 | 22 |
T1 | 141.2 | 294.7 | 241 | 232,133 | 148 | 1516 | 136,632 | 1355 | 9003 |
T2 | 12.6 | 5.68 | 255 | 5510 | 16 | 168 | 3743 | 126 | 494 |
T3 | 66 | 118.04 | 212 | 103,007 | 66 | 685 | 61,950 | 641 | 3810 |
T4 | 0.3 | 0.64 | 266 | 270 | 3 | 7 | 220 | 4 | 42 |
T5 | 1 | 0.86 | 255 | 665 | 1 | 23 | 505 | 15 | 53 |
T6 | 14.1 | 51.66 | 259 | 24,802 | 48 | 444 | 15,029 | 349 | 1545 |
T7 | 62 | 205.2 | 253 | 137,039 | 169 | 1724 | 82,054 | 1363 | 6703 |
T8 | 0.8 | 1.16 | 259 | 1286 | 1 | 46 | 679 | 27 | 111 |
T9 | 0.4 | 1.38 | 244 | 385 | 0 | 23 | 236 | 4 | 41 |
T10 | 0.1 | 0.2 | 305 | 110 | 0 | 5 | 68 | 4 | 18 |
T11 | 5 | 8.84 | 260 | 6608 | 14 | 126 | 3854 | 126 | 503 |
T12 | 74.8 | 176.26 | 231 | 93,550 | 120 | 1121 | 57,145 | 1161 | 5684 |
Gene | Sequence Variation | dbSNP ID | Mutation Classification |
---|---|---|---|
Mutations Detected by Single-Cell Sequencing Only | |||
APC | n.112707592dupG | ||
APC | c.135+5252G>C | ||
APC | c.135+5253A>T | ||
APC | c.135+5254G>C | ||
APC | c.136-230C>A | rs2464805 | benign |
APC | c.221-291C>A | ||
APC | c.4853dupT | ||
APC | c.6172G>T | ||
APC | c.*433T>A | ||
APC | c.*1958_*1959insTTAC | ||
APC | c.*1965T>C | ||
APC | c.*2220_*2221ins | ||
APC | c.934-8_934-7ins | rs1561535860 | likely benign |
APC | c.934-4dupA | ||
APC | c.5613T>C | ||
APC | c.*267_*273delCCATCCC | ||
APC | c.*281_*283delTTT | rs42427 | benign |
APC | c.*285A>G | rs866006 | benign |
APC | c.*1098T>C | benign | |
APC | c.*1556C>G | ||
APC | c.560-12T>C | ||
APC | c.1881-762G>A | rs41116 | benign |
APC | c.*413_*414dupAA | rs2289484 | benign |
APC | c.559+37C>A | rs1554084977 | uncertain significance |
APC | c.559+223C>T | rs41115 | benign |
APC | c.627_628insAGAAGATGAA | rs1580673845 | benign |
APC | c.628_628+1ins | rs2229995 | benign |
ARID1A | c.*421delA | ||
ARID1A | c.*724C>A | ||
ARID1A | c.2295-161delT | ||
ARID1A | c.2496-130_2496-128delAAA | ||
Mutations Detected by Single-Cell Sequencing Only | |||
BRAF | c.1763T>C | rs1562954580 | uncertain significance |
BRAF | c.1695-940C>A | ||
BRAF | c.1695-1205G>A | ||
BRAF | c.1695-5750C>G | ||
BRAF | c.1694+8566G>A | ||
BRAF | c.1694+3374T>G | ||
BRAF | c.1694+3266A>G | ||
BRAF | c.1694+2940C>T | ||
BRAF | c.1140+3214G>A | ||
BRAF | c.1140+2430C>T | ||
BRAF | c.1140+2069A>G | ||
BRAF | c.1140+1915G>T | ||
BRAF | c.1140+1665dupG | ||
BRAF | c.981-2296A>G | ||
BRAF | c.980+2576T>A | ||
BRAF | c.980+1801_980+1802delAA | ||
BRAF | c.241-198G>C | ||
BRAF | c.981-356dupA | ||
BRAF | c.981-1080_981-1042del | ||
BRAF | c.589G>A | ||
BRAF | c.243C>A | ||
BRAF | c.984-1276C>T | ||
BRAF | c.1315-470C>T | ||
BRAF | c.1315-479A>C | ||
BRAF | c.1315-482A>T | ||
BRAF | c.451-200C>T | ||
BRAF | c.1251+48_1251+49delGA | ||
BRAF | c.1178-1544T>C | ||
BRAF | c.1178-1548A>G | ||
BRAF | c.1178-1551C>T | ||
BRAF | c.1178-1557C>T | ||
BRAF | c.981-2446G>C | ||
BRAF | c.160delC | ||
BRAF | c.1394T>C | ||
BRAF | c.328dupT | ||
BRAF | c.1804-85C>A | ||
BRAF | c.2138C>T | ||
BRAF | c.814-174G>A | ||
BRAF | c.814-77_814-76insAATA | ||
BRAF | c.1059+170C>A | ||
BRAF | c.1737A>G | ||
BRAF | c.1141-1044C>T | ||
BRAF | c.1141-1097A>G | ||
BRAF | c.1141-1111G>A | rs373442098 | uncertain significance |
BRAF | c.1141-1637_1141-1636delTT | ||
BRAF | c.1140+633C>G | ||
BRAF | c.1140+610_1140+615delAGCTAT | ||
BRAF | c.861-75dupT | ||
BRAF | c.860+457delC | ||
BRAF | c.112-5717G>T | ||
BRAF | c.112-5732A>G | ||
BRAF | c.112-5778A>G | ||
BRAF | c.112-6770_112-6769insA | ||
BRAF | c.112-7499A>G | ||
BRAF | c.112-7501A>T | ||
BRAF | c.112-7503C>T | ||
BRAF | c.*274+536A>G | ||
BRAF | c.983+1398T>C | ||
BRAF | c.983+1236_983+1237insCAAGAGGT | ||
BRAF | c.983+1233_983+1234delTT | ||
BRAF | c.983+1232T>C | ||
BRAF | c.983+1186G>A | ||
BRAF | c.876+630A>G | ||
EGFR | c.88+48720_88+48721delTG | ||
EGFR | c.322A>T | ||
EGFR | c.2469+5015G>A | ||
EGFR | c.2625+13C>G | ||
EGFR | c.2947-203G>A | ||
Mutations Detected by Single-Cell Sequencing Only | |||
EGFR | c.3272-1104_3272-1092del | ||
EGFR | c.3272-1071delG | ||
EGFR | c.3272-1068delA | ||
EGFR | c.3272-1064_3272-1063insAAAA | ||
EGFR | c.3272-438T>C | ||
EGFR | c.3272-408C>A | ||
EGFR | c.*932dupA | ||
EGFR | c.3271+191T>A | ||
EGFR | c.3271+191T>G | ||
EGFR | c.3271+1166C>A | ||
EGFR | c.3272-1115_3272-1099del | ||
EGFR | c.*781G>C | ||
EGFR | c.*1151dupC | ||
EGFR | c.*1382dupT | ||
EGFR | c.*1957G>A | ||
EGFR | c.1695-2105C>G | ||
EGFR | c.1741+165A>G | rs10228436 | benign |
EGFR | c.1695-1134A>G | rs2227984 | benign |
EGFR | c.2469+108delG | ||
EGFR | c.3271+188T>G | ||
EGFR | c.3271+282T>A | rs2075110 | benign |
EGFR | c.1721A>G | ||
EGFR | c.1314+556_1314+557dupTT | rs10241451 | benign |
EGFR | c.1314+394A>G | ||
EGFR | c.1314+256G>A | ||
EGFR | c.1178-443A>G | ||
EGFR | c.1178-648G>A | ||
EGFR | c.3271+809G>A | rs2072454 | benign |
EGFR | c.3271+976G>C | ||
EGFR | c.3272-611_3272-608delTACA | ||
EGFR | n.140724136T>C | rs2075109 | benign |
EGFR | n.140726106G>C | ||
EGFR | c.2128-5dupT | ||
EGFR | c.2128-27C>T | benign | |
EGFR | c.1993-90G>T | rs2227983 | benign |
EGFR | c.1993-93A>C | rs2227984 | benign |
EGFR | c.1742-352C>G | rs2241055 | benign |
EGFR | c.1742-353C>G | ||
EGFR | c.1741+318A>G | ||
EGFR | c.1695-53G>A | ||
EGFR | c.1314+557dupT | ||
FBXW7 | c.2001dupG | ||
FBXW7 | c.*1125delT | ||
FBXW7 | c.*1111A>C | ||
FBXW7 | c.986-147A>C | ||
FBXW7 | c.1728_1729insAAACAAC | ||
FBXW7 | c.1727_1728ins | ||
FBXW7 | c.1721_1722ins | ||
FBXW7 | c.1716_1717ins | ||
FBXW7 | c.933+18A>G | ||
FBXW7 | c.934-191A>T | ||
FBXW7 | c.934-15_934-14delTC | ||
FBXW7 | c.934-12_934-11insAC | ||
KRAS | c.876+408_876+409dupTT | ||
KRAS | c.556-72_556-71delAA | ||
KRAS | c.257C>T | ||
KRAS | c.1308+459A>C | ||
KRAS | c.1308+468C>T | ||
KRAS | c.1308+472C>T | ||
KRAS | c.1308+473A>G | ||
NRAS | c.-2070dupT | ||
NRAS | c.1251+52A>T | rs61758221 | benign |
PIK3CA | c.*3631T>C | ||
PIK3CA | c.*1606delA | ||
PIK3CA | c.1251+54A>C | ||
PIK3CA | c.1251+57G>C | ||
PIK3CA | c.1251+58C>A | ||
PIK3CA | c.*355G>T | ||
PIK3CA | c.*480C>A | ||
Mutations Detected by Single-Cell Sequencing Only | |||
PIK3CA | c.*488_*490delTCC | ||
PIK3CA | c.*494G>T | ||
PIK3CA | c.1736_1737insAAAACAAA | ||
PIK3CA | c.1735G>T | ||
PIK3CA | c.1733C>A | ||
PIK3CA | c.2496-124G>T | rs7623154 | benign |
PIK3CA | c.2923A>T | rs17550640 | benign |
PIK3CA | c.2936+21dupA | ||
PIK3CA | c.*654T>G | rs3729676 | benign |
PIK3CA | c.645+173A>G | ||
PIK3CA | c.934-132delG | ||
PIK3CA | c.3381G>C | ||
PIK3CA | c.6200A>G | ||
PIK3CA | c.6633C>T | ||
RNF43 | c.*6514G>A | ||
RNF43 | c.451-5T>C | ||
RNF43 | c.376-90A>G | ||
RNF43 | c.2936+19A>G | ||
SMAD4 | c.692dupG | pathogenic | |
SMAD4 | c.905-1G>C | ||
SMAD4 | c.1139+385A>T | ||
SMAD4 | c.*5005dupT | ||
SMAD4 | c.*5116C>G | ||
SMAD4 | c.*5131A>G | ||
SMAD4 | c.*5191C>G | ||
SMAD4 | c.*5535_*5536delAC | ||
SMAD4 | c.*5541_*5552del | ||
SMAD4 | c.*5863_*5867delGAAAA | benign | |
SMAD4 | c.*5994A>C | benign | |
SMAD4 | c.*6433G>A | ||
SMAD4 | c.1060-42G>T | ||
TP53 | c.984-1412delT | ||
TP53 | c.983+1201A>G | ||
TP53 | c.556-71delA | ||
TP53 | c.556-149T>A | ||
TP53 | c.424C>T | ||
TP53 | c.259-161_259-158delAAAA | ||
TP53 | c.259-162_259-158delAAAAA | ||
TP53 | c.258+123dupT | ||
TP53 | c.99dupC | ||
TP53 | c.-22+41_-22+48delACCTGGAG | ||
TP53 | c.-145-190C>A | ||
TP53 | c.-145-1184T>C | ||
TP53 | c.966dupG | ||
TP53 | c.582+132T>C | ||
TP53 | c.1060-69G>T | ||
TP53 | c.1308+477T>C | ||
TP53 | c.1308+478G>C | ||
TP53 | c.1308+501C>T | ||
TP53 | c.1308+521_1308+574del | ||
TP53 | c.*3333C>T | ||
Mutations Detected by Bulk Sequencing Only | |||
APC | c.136-1428A>C | rs2464807 | other |
APC | c.220+124C>G | rs76552546 | likely benign |
APC | c.2413C>T | rs587779783 | pathogenic |
APC | c.4666dupA | rs587783031 | pathogenic |
ARID1A | c.1920+6177G>T | ||
ARID1A | c.1921-1059A>T | ||
ARID1A | c.2252-97A>T | rs113319329 | benign |
ARID1A | c.2733-400A>G | ||
ARID1A | c.3199-95A>G | rs76490152 | benign |
BRAF | n.140726457T>C | ||
BRAF | c.*1215A>T | ||
BRAF | c.2128-16C>T | rs368721021 | benign/likely benign |
BRAF | c.1177+146G>A | rs1267632 | benign |
BRAF | c.1140+3180G>T | ||
Mutations Detected by Bulk Sequencing Only | |||
BRAF | c.505-6693T>C | ||
BRAF | c.505-9562G>A | ||
BRAF | c.504+3486T>C | ||
BRAF | c.504+142G>A | benign | |
BRAF | c.139-23483C>T | ||
EGFR | c.88+37643T>C | ||
EGFR | c.89-55393G>A | ||
EGFR | c.89-29869C>A | ||
EGFR | c.559+214G>T | rs2270427 | benign |
EGFR | c.1498+22A>T | rs1558544 | benign |
EGFR | c.1498+142C>T | rs759162 | benign |
EGFR | c.1499-177A>G | rs11536635 | benign |
EGFR | c.1880+733A>C | ||
EGFR | c.2361G>A | benign | |
EGFR | c.2469+4027T>C | ||
EGFR | c.2508C>T | benign | |
EGFR | c.2625+196A>G | rs6970262 | benign |
EGFR | c.2709T>C | rs1140475 | benign |
EGFR | c.2849-551T>G | ||
EGFR | c.3162+200_3162+201insAG | rs34723095 | benign |
EGFR | c.3272-123G>A | rs2692456 | benign |
EGFR | c.3333_3334insTTTTTTTTTTTTT | ||
EGFR | c.3337delC | ||
EGFR | c.3339_3350delGCCTCTGAACCC | ||
EGFR | c.3353C>G | ||
EGFR | c.3355C>G | ||
EGFR | c.3356C>A | ||
EGFR | c.3368C>T | rs775317295 | uncertain significance |
EGFR | c.*9367A>G | ||
FBXW7 | c.*3466C>G | ||
FBXW7 | c.-69-40817T>C | ||
PIK3CA | c.1059+62C>A | rs2699895 | benign |
PIK3CA | c.1060-17C>A | rs2699896 | benign |
PIK3CA | c.1145+54A>G | rs3729679 | benign |
PIK3CA | c.2016-27A>T | rs6443625 | benign |
PIK3CA | c.*5631C>T | ||
PIK3CA | c.*10339G>T | ||
RNF43 | c.2057C>G | rs9652855 | benign |
TP53 | c.*4020_*4049del | ||
TP53 | c.*274+522T>G | ||
TP53 | c.*274+31A>G | ||
TP53 | c.877-1G>A | rs587782272 | pathogenic |
TP53 | c.555+62A>G | benign | |
TP53 | c.259-91G>A | benign | |
TP53 | c.259-160_259-158delAAA | ||
TP53 | c.98C>G | benign | |
TP53 | c.-22+41_-21-54del | ||
TP53 | c.-44+38C>G | benign | |
TP53 | c.-14962_-14959dupGTTT | ||
Mutations detected by both methods | |||
APC | c.1458T>C | rs2229992 | benign |
APC | c.4479G>A | rs41115 | benign |
APC | c.5034G>A | rs42427 | benign |
APC | c.5268T>G | rs866006 | benign |
APC | c.5465T>A | rs459552 | benign |
APC | c.5880G>A | rs465899 | benign |
APC | c.7504G>A | rs2229995 | benign |
BRAF | c.2128-54_2128-51dupCTTT | ||
BRAF | c.1992+16G>C | rs3789806 | benign/likely benign |
BRAF | c.1992+14A>G | ||
BRAF | c.1929A>G | rs9648696 | benign |
EGFR | c.474C>T | rs2072454 | benign |
EGFR | c.560-84T>C | rs2075109 | benign |
EGFR | c.628+104C>T | rs2075110 | benign |
EGFR | c.629-62A>G | rs11506105 | benign |
EGFR | c.1006+151T>C | rs3735059 | benign |
EGFR | c.1562G>A | rs2227983 | benign |
Mutations detected by both methods | |||
EGFR | c.1881-600G>A | rs10228436 | benign |
EGFR | c.1887T>A | rs2227984 | benign |
EGFR | c.1920-215G>C | rs2241055 | benign |
EGFR | c.2283+96A>G | rs2017000 | benign |
EGFR | c.2284-60T>C | rs10241451 | benign |
FBXW7 | c.1746G>A | ||
NRAS | c.-3343C>T | ||
PIK3CA | c.352+40A>G | rs3729674 | benign |
PIK3CA | c.1173A>G | rs2230461 | benign |
PIK3CA | c.2295-57C>G | rs2699889 | benign |
PIK3CA | c.*10365T>C | ||
RNF43 | c.350G>A | rs2257205 | benign |
TP53 | c.665+92T>G | rs12951053 | benign |
TP53 | c.665+72C>T | rs12947788 | benign |
References
- Galeano Nino, J.L.; Wu, H.; LaCourse, K.D.; Kempchinsky, A.G.; Baryiames, A.; Barber, B.; Futran, N.; Houlton, J.; Sather, C.; Sicinska, E.; et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022, 611, 810–817. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, S.; Min, M.; Ni, X.; Lu, Z.; Sun, X.; Wu, J.; Liu, B.; Ying, X.; Liu, Y. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021, 70, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Dang, N.; Tang, G.; Li, Z.; Li, X.; Shi, B.; Xu, Z.; Li, L.; Yang, X.; Xu, C.; et al. Integrating bulk and single-cell RNA sequencing reveals cellular heterogeneity and immune infiltration in hepatocellular carcinoma. Mol. Oncol. 2022, 16, 2195–2213. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ramnarayanan, K.; Sundar, R.; Padmanabhan, N.; Srivastava, S.; Koiwa, M.; Yasuda, T.; Koh, V.; Huang, K.K.; Tay, S.T.; et al. Single-Cell Atlas of Lineage States, Tumor Microenvironment, and Subtype-Specific Expression Programs in Gastric Cancer. Cancer Discov. 2022, 12, 670–691. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, S.; Yang, Z.; Zhang, X.; Zheng, Q.; Lin, L.; Niu, Z.; Li, R.; Cai, Z.; Li, L. Single-cell exome sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell carcinoma stem cells. Cell Res. 2017, 27, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, M.; Rowan, A.J.; Horsewell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 367, 976. [Google Scholar] [CrossRef] [PubMed]
- Ramón Y Cajal, S.; Sesé, M.; Capdevila, C.; Aasen, T.; De Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernández-Losa, J.; Castellví, J. Clinical implications of intratumor heterogeneity: Challenges and opportunities. Mol. Med. 2020, 98, 161–177. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, M.; Wang, H.; Sun, H.; Zhu, J.; Zhao, W.; Fang, Q.; Yu, J.; Chen, P.; Wu, S.; et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann. Transl. Med. 2021, 9, 1351. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, C.; Wang, C.; Xu, J.; Zheng, S.; Duan, J.; Li, Y.; Bai, H.; Xu, Q.; Ning, F.; et al. Single-cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma. Cancer Sci. 2023, 114, 2609–2621. [Google Scholar] [CrossRef]
- Walsh, E.M.; Halushka, M.K. A Comparison of Tissue Dissection Techniques for Diagnostic, Prognostic, and Theragnostic Analysis of Human Disease. Pathobiology 2023, 90, 199–208. [Google Scholar] [CrossRef]
- Peretz, C.A.C.; McGary, L.H.F.; Kumar, T.; Jackson, H.; Jacob, J.; Durruthy-Durruthy, R.; Levis, M.J.; Perl, A.; Huang, B.J.; Smith, C.C. Single-cell DNA sequencing reveals complex mechanisms of resistance to quizartinib. Blood Adv. 2021, 5, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Tang, R.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Applications of single-cell sequencing in cancer research: Progress and perspectives. Hematol. Oncol. 2021, 14, 91. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral. Sci. 2021, 13, 36. [Google Scholar] [CrossRef]
- Parikh, A.R.; Leshchiner, I.; Elagina, L.; Goyal, L.; Levovitz, C.; Siravegna, G.; Livitz, D.; Rhrissorrakrai, K.; Martin, E.E.; Van Seventer, E.E.; et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 2019, 25, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Kalmár, A.; Galamb, O.; Szabó, G.; Pipek, O.; Medgyes-Horváth, A.; Barták, B.K.; Nagy, Z.B.; Szigeti, K.A.; Zsigrai, S.; Csabai, I.; et al. Patterns of Somatic Variants in Colorectal Adenoma and Carcinoma Tissue and Matched Plasma Samples from the Hungarian Oncogenome Program. Cancers 2023, 15, 907. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Mondal, S.; Martin, C.; DuPlissis, A.; Chizari, S.; Ma, K.Y.; Maiya, R.; Messing, R.O.; Jiang, N.; Ben-Yakar, A. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat. Methods 2023, 20, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Smajic, S.; Prada-Medina, C.A.; Landoulsi, Z.; Ghelfi, J.; Delcambre, S.; Dietrich, C.; Jarazo, J.; Henck, J.; Balachandran, S.; Pachchek, S.; et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 2022, 145, 964–978. [Google Scholar] [CrossRef]
- Turan, Z.G.; Richter, V.; Bochmann, J.; Parvizi, P.; Yapar, E.; Işıldak, U.; Waterholter, S.K.; Leclere-Turbant, S.; Son, C.D.; Duyckaerts, C.; et al. Somatic copy number variant load in neurons of healthy controls and Alzheimer’s disease patients. Acta Neuropath. Commun. 2022, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Massalha, H.; Bahar Halpern, K.; Abu-Gazala, S.; Jana, T.; Massasa, E.E.; Moor, A.E.; Buchauer, L.; Rozenberg, M.; Pikarsky, E.; Amit, I.; et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 2020, 16, e9682. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.D.; Huraiová, B.; Valková, N.; Birknerova, N.; Gábrišová, D.; Gubova, S.; Ignačáková, H.; Ondris, T.; Bendíková, S.; Bíla, J.; et al. Multiplexed RNA-FISH-guided Laser Capture Microdissection RNA Sequencing Improves Breast Cancer Molecular Subtyping, Prognostic Classification, and Predicts Response to Antibody Drug Conjugates. medRxiv 2023. [Google Scholar] [CrossRef]
- Ikeda, H.; Miyao, S.; Nagaoka, S.; Takashima, T.; Law, S.M.; Yamamoto, T.; Kurimoto, K. High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis. Life Sci. Alliance 2023, 6, e202301929. [Google Scholar] [CrossRef] [PubMed]
- Pavlič, A.; Urh, K.; Boštjančič, E.; Zidar, N. Analyzing the invasive front of colorectal cancer—By punching tissue block or laser capture microdissection? Pathol. Res. Pract. 2023, 248, 154727. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.L.; Li, D.D.; Duan, J.Y.; Sheng, L.M.; Wang, X. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments. World J. Gastroenterol. 2023, 29, 926–948. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, X.; Chen, G.; Du, J. Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers 2022, 14, 2928. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Qu, X.; Li, C.F. ARID1A mutations confer intrinsic and acquired resistance to cetuximab treatment in colorectal cancer. Nat. Commun. 2022, 13, 5478. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Fan, Y. Combined KRAS and TP53 mutation in patients with colorectal cancer enhance chemoresistance to promote postoperative recurrence and metastasis. BMC Cancer 2024, 24, 1155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, L.; Qiu, H.; Zhang, M.; Sun, L.; Peng, P.; Yu, Q.; Yuan, X. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 2017, 8, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.L.; Xin, H.Y.; Sun, R.Q.; Zhou, Z.J.; Hu, Z.Q.; Luo, C.B.; Wang, P.C.; Li, J.; Fan, J.; Zhou, J. Association of KRAS Variant Subtypes with Survival and Recurrence in Patients with Surgically Treated Intrahepatic Cholangiocarcinoma. JAMA Surg. 2022, 157, 59–65. [Google Scholar] [CrossRef]
- Sugihara, Y.; Taniguchi, H.; Kushima, R.; Tsuda, H.; Kubota, D.; Ichikawa, H.; Fujita, S.; Kondo, T. Laser microdissection and two-dimensional difference gel electrophoresis reveal proteomic intra-tumor heterogeneity in colorectal cancer. J. Proteom. 2013, 78, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, Y.; Shen, D.; Jiang, K.; Zhang, H.; Sun, W.; Zhang, J.; Xu, F.; Cui, Z.; Wang, S. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. Cancer Sci. 2010, 101, 523–529. [Google Scholar] [CrossRef]
- Lee-Six, H.; Olafsson, S.; Ellis, P.; Osborne, R.J.; Sanders, M.A.; Moore, L.; Georgakopoulos, N.; Torrente, F.; Noorani, A.; Goddard, M.; et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 2019, 574, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.N.; Kopetz, E.S. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: Clinical characteristics, clinical behavior, and response to targeted therapies. J. Gastrointest. Oncol. 2015, 6, 660–667. [Google Scholar] [PubMed]
- Shang, W.; Yan, C.; Liu, R.; Chen, L.; Cheng, D.; Hao, L.; Yuan, W.; Chen, J.; Yang, H. Clinical significance of FBXW7 tumor suppressor gene mutations and expression in human colorectal cancer: A systemic review and meta-analysis. BMC Cancer. 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, H.; Wang, D.; Li, Q.; Luo, H.; Li, G.; Chen, X.; Li, Y.; Chen, P.; Zhai, B.; et al. PCDH17 increases the sensitivity of colorectal cancer to 5-fluorouracil treatment by inducing apoptosis and autophagic cell death. Signal Transduct. Target Ther. 2019, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Ma, H.M.; Huang, H.B.; Li, Y.W.; Zhang, P.; Huang, J.J.; Cheng, L.; Li, G.R. Overexpression of COL5A1 promotes tumor progression and metastasis and correlates with poor survival of patients with clear cell renal cell carcinoma. Cancer Manag. Res. 2019, 11, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Han, J.; Liu, J.; Yang, R.; Wang, J.; Wang, X.; Chen, X. Genetic and Epigenetic Impact of Chronic Inflammation on Colon Mucosa Cells. Front. Genet. 2021, 12, 722835. [Google Scholar] [CrossRef]
- Valcz, G.; Buzás, E.; Gatenby, R.A.; Ujvari, B.; Molnár, B. Small extracellular vesicles from surviving cancer cells as multiparametric monitoring tools of measurable residual disease and therapeutic efficiency. Biochim. Biophys. Acta BBA Cancer 2024, 1879, 189088. [Google Scholar] [CrossRef] [PubMed]
- Dvir, A.; Camarda, R.; Odegaard, J.; Paik, H.; Oskotsky, B.; Krings, G.; Goga, A.; Sirota, M.; Butte, A. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat. Commun. 2017, 8, 1077. [Google Scholar]
- Kim, J.; Kim, H.; Lee, M.S.; Lee, H.; Kim, Y.J.; Lee, W.Y.; Yun, S.H.; Kim, H.C.; Hong, H.K.; Hannenhalli, S.; et al. Transcriptomes of the tumor-adjacent normal tissues are more informative than tumors in predicting recurrence in colorectal cancer patients. J. Transl. Med. 2023, 21, 304. [Google Scholar] [CrossRef] [PubMed]
- The Galaxy Community. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acid Res. 2024, 52, W83–W94. [Google Scholar] [CrossRef] [PubMed]
- Kandoth, C.; Gao, J.; Mattioni, M.; Struck, A.; Boursin, Y.; Penson, A.; Chavan, S. mskcc/vcf2maf: vcf2maf v1.6.16. (v1.6.16), Zenodo: Genève, Switzerland, 2020. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, M.J.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980-5. [Google Scholar] [CrossRef]
- Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Mean | STD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NEG | 8.2 | 25.1 | 2.5 | 4.2 | 0.5 | 10.9 | 76.6 | 126 | 8.9 | 19.2 | 14.3 | 1.7 | 24.8 | 37.9 |
NAT | 37.2 | 11.4 | 13.5 | 125.5 | 85.3 | 33.7 | 0.8 | 0.7 | 5.6 | 0.9 | 1.6 | 0.2 | 26.4 | 39.9 |
CRC | 141.2 | 12.6 | 66 | 0.3 | 1 | 14.1 | 62 | 0.8 | 0.4 | 0.1 | 5 | 74.8 | 31.5 | 44.9 |
NAT | CRC | ||||||
---|---|---|---|---|---|---|---|
Gene | Number of Mutations | Samples Containing the Mutated Gene | Occurence Rate of the Mutated Genes | Gene | Number of Mutations | Samples Containing the Mutated Gene | Occurence Rate of the Mutated Genes |
TTN | 174 | 6/6 | 100% | TTN | 197 | 7/7 | 100% |
APC | 137 | 6/6 | 100% | APC | 197 | 5/7 | 71% |
KRAS | 73 | 5/6 | 83% | KRAS | 45 | 5/7 | 71% |
TP53 | 62 | 5/6 | 83% | TP53 | 66 | 4/7 | 57% |
PIK3CA | 10 | 3/6 | 50% | PIK3CA | 38 | 5/7 | 71% |
FBXW7 | 14 | 5/6 | 83% | FBXW7 | 25 | 5/7 | 71% |
SOX9 | 7 | 2/6 | 33% | SOX9 | 7 | 4/7 | 57% |
∑ = 477 | = 477 | ∑ = 498 | = 427 |
Single-Cell Sequencing | |||
---|---|---|---|
Gene | Sequence Variation | dbSNP ID | Mutation Classification |
BRAF | c.1763T>C | rs1562954580 | uncertain significance |
BRAF | c.1141-1111G>A | rs373442098 | conflicting classifications of pathogenicity |
TP53 | c.424C>T | rs1597371187 | uncertain significance |
SMAD4 | c.692dupG | rs377767334 | pathogenic |
APC | c.559+37C>A | rs1554084977 | uncertain significance |
APC | c.560-84T>C | rs1561605775 | uncertain significance |
Bulk Sequencing | |||
Gene | Sequence Variation | dbSNP ID | Mutation Classification |
APC | c.136-1428A>C | rs2464807 | other |
APC | c.2413C>T | rs587779783 | pathogenic |
APC | c.4666dupA | rs587783031 | pathogenic |
EGFR | c.3368C>T | rs775317295 | uncertain significance |
TP53 | c.877-1G>A | rs587782272 | pathogenic/likely pathogenic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szakállas, N.; Kalmár, A.; Barták, B.K.; Nagy, Z.B.; Valcz, G.; Linkner, T.R.; Rada, K.R.; Takács, I.; Molnár, B. Investigation of Exome-Wide Tumor Heterogeneity on Colorectal Tissue-Based Single Cells. Int. J. Mol. Sci. 2025, 26, 737. https://doi.org/10.3390/ijms26020737
Szakállas N, Kalmár A, Barták BK, Nagy ZB, Valcz G, Linkner TR, Rada KR, Takács I, Molnár B. Investigation of Exome-Wide Tumor Heterogeneity on Colorectal Tissue-Based Single Cells. International Journal of Molecular Sciences. 2025; 26(2):737. https://doi.org/10.3390/ijms26020737
Chicago/Turabian StyleSzakállas, Nikolett, Alexandra Kalmár, Barbara Kinga Barták, Zsófia Brigitta Nagy, Gábor Valcz, Tamás Richárd Linkner, Kristóf Róbert Rada, István Takács, and Béla Molnár. 2025. "Investigation of Exome-Wide Tumor Heterogeneity on Colorectal Tissue-Based Single Cells" International Journal of Molecular Sciences 26, no. 2: 737. https://doi.org/10.3390/ijms26020737
APA StyleSzakállas, N., Kalmár, A., Barták, B. K., Nagy, Z. B., Valcz, G., Linkner, T. R., Rada, K. R., Takács, I., & Molnár, B. (2025). Investigation of Exome-Wide Tumor Heterogeneity on Colorectal Tissue-Based Single Cells. International Journal of Molecular Sciences, 26(2), 737. https://doi.org/10.3390/ijms26020737