Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study
<p>Colonization and patterns of cells observation on two scaffolds through SEM. hPDL-MSCs were grown on GPP (<b>a</b>–<b>f</b>) or VSCM (<b>g</b>–<b>l</b>) for 3, 7, or 14 days. The images were taken at magnification 400-fold (<b>left panels</b>) or 1500-fold (<b>right panels</b>). Scale bars correspond to 100 µm and 20 µm, respectively. The yellow arrows indicate cells. GPP demonstrated nanoscale, microscale fiber, and VSCM a porous structure; cell attachment and growth were well-established on both substrates.</p> "> Figure 2
<p>The morphological characteristics of hPDL-MSCs observed on different surface types. hPDL-MSCs were grown on GPP (<b>a</b>,<b>d</b>,<b>g</b>), VSCM (<b>b</b>,<b>e</b>,<b>h</b>) or TCP (<b>c</b>,<b>f</b>,<b>i</b>) for 3, 7, or 14 days and stained with a focal adhesion staining kit. F-actin was stained with TRITC-conjugated phalloidin (red) and the nucleus with DAPI (blue).The images were captured at 100-fold magnification; scale bars correspond to 50 µm. The cells exhibited different morphologies and distributions on the three different materials.</p> "> Figure 3
<p>Assessment of the proliferation/viability of hPDL-MSCs when cultured on GPP, VSCM, and TCP surfaces. Cells were cultured on different substrates for 3, 7, and 14 days, and their proliferation/viability was measured using a CCK-8 assay. The Y-axis shows the OD values measured at 450 nm. Data are presented as mean ± SD of five independent experiments with hPDL-MSCs isolated from five different donors. * and **—significantly different between substrates with <span class="html-italic">p</span> < 0.05 and 0.01, respectively. #—significantly different between day 3 and day 7 on the same substrate. †—significantly different between day 7 and day 14 on the same substrate.</p> "> Figure 4
<p>Metabolic activity of hPDL-MSCs grown on GPP, VSCM, and TCP. Cells were cultured on different substrates for 3, 7, and 14 days, and their metabolic activity was measured using a resazurin-based assay. The Y-axis shows the fluorescence measured with the excitation settings at 540/34 nm and emission at 600/40 nm. Data are presented as mean ± SD of five independent experiments with hPDL-MSCs isolated from five different donors. * and **—significantly different between substrates with <span class="html-italic">p</span> < 0.05 and 0.01, respectively. #—significantly different between day 3 and day 7 on the same substrate. †—significantly different between day 7 and day 14 on the same substrate.</p> "> Figure 5
<p>Analysis of gene expression for diverse biomarkers in hPDL-MSCs cultured on different types of materials. hPDL-MSCs were cultured on different substrates for 3, 7, and 14 days, and the gene expression of COL1A1 (<b>a</b>), POSTN (<b>b</b>), CEMP-1 (<b>c</b>), CAP (<b>d</b>), VEGF-A (<b>e</b>), IL-8 (<b>f</b>), and OCN (<b>g</b>) was measured by qPCR. Y-axes show <span class="html-italic">n</span>-fold expression of the corresponding gene in relation to that measured on tissue culture plastic on day 3 and calculated by a 2<sup>−ΔΔCt</sup> method using GAPDH as a housekeeping gene. Comparison results of OCN was ultimately limited to day 14, as its values were too low for reliable detection at early time points. Data are presented as mean ± SD of five independent experiments with hPDL-MSCs isolated from five different donors. * and **—significantly different between substrates with <span class="html-italic">p</span> < 0.05 and 0.01, respectively.</p> "> Figure 6
<p>IL-8 protein production by hPDL-MSCs grown on three types of substrates. The content of IL-8 in the conditioned media was measured by ELISA after 3, 7, and 14 days of culture. Data are presented as mean ± SD of five independent experiments with hPDL-MSCs isolated from five different donors. * and **—significantly different between substrates with <span class="html-italic">p</span> < 0.05 and 0.01, respectively.</p> "> Figure 7
<p>VEGF protein production by cells and absorption by materials. (<b>a</b>)—hPDL-MSCs were cultured on different substrates for 3, 7, and 14 days, and the content of VEGF in conditioned media was measured by ELISA. (<b>b</b>)—the scaffolds were incubated in a medium containing 10 ng/mL recombinant VEGF protein for 6 h at 37 °C, and the content of VEGF in conditioned media was determined by ELISA at the end of the incubation. (<b>c</b>)—after incubation with recombinant VEGF, the scaffolds were incubated for an additional 24 h in a medium, and the amount of released VEGF was measured by ELISA. Data are presented as mean ± SD of five independent experiments with hPDL-MSCs isolated from five different donors. * and **—significantly different between substrates with <span class="html-italic">p</span> < 0.05 and 0.01, respectively.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Cell Morphology and Attachment
2.2. Cell Viability
2.3. Effect of GPP and VSCM on Gene Expression Level of Various Biomarkers
2.4. Effects of GPP and VSCM on the Production of Related Protein
2.5. VEGF Protein Absorption
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Cell Isolation
4.3. Preparation of GPP and VSCM
4.4. Analysis of Cell Morphology and Attachment
4.5. Cell Proliferation/Viability and Metabolic ActivityAssay
4.6. Investigation of Gene and Protein Production
4.7. Absorption and Desorption of VEGF by Scaffolds
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.G.; Alves-Costa, S.; Romandini, M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study. J. Periodontal Res. 2024, 59, 823–867. [Google Scholar] [CrossRef] [PubMed]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Ramseier, C.A.; Rasperini, G.; Batia, S.; Giannobile, W.V. Advanced reconstructive technologies for periodontal tissue repair. Periodontol. 2000 2012, 59, 185–202. [Google Scholar] [CrossRef]
- Wang, H.L.; Modarressi, M.; Fu, J.H. Utilizing collagen membranes for guided tissue regeneration-based root coverage. Periodontol. 2000 2012, 59, 140–157. [Google Scholar] [CrossRef]
- Ausenda, F.; Rasperini, G.; Acunzo, R.; Gorbunkova, A.; Pagni, G. New Perspectives in the Use of Biomaterials for Periodontal Regeneration. Materials 2019, 12, 2197. [Google Scholar] [CrossRef]
- Kao, R.T.; Nares, S.; Reynolds, M.A. Periodontal regeneration—Intrabony defects: A systematic review from the AAP Regeneration Workshop. J. Periodontol. 2015, 86, S77–S104. [Google Scholar] [CrossRef] [PubMed]
- Bozic, D.; Catovic, I.; Badovinac, A.; Music, L.; Par, M.; Sculean, A. Treatment of Intrabony Defects with a Combination of Hyaluronic Acid and Deproteinized Porcine Bone Mineral. Materials 2021, 14, 6795. [Google Scholar] [CrossRef] [PubMed]
- Alauddin, M.S.; Abdul Hayei, N.A.; Sabarudin, M.A.; Mat Baharin, N.H. Barrier Membrane in Regenerative Therapy: A Narrative Review. Membranes 2022, 12, 444. [Google Scholar] [CrossRef]
- Janjua, O.S.; Qureshi, S.M.; Shaikh, M.S.; Alnazzawi, A.; Rodriguez-Lozano, F.J.; Pecci-Lloret, M.P.; Zafar, M.S. Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. Int. J. Environ. Res. Public. Health 2022, 19, 3690. [Google Scholar] [CrossRef]
- Xu, X.; Ren, S.; Li, L.; Zhou, Y.; Peng, W.; Xu, Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J. Biomater. Appl. 2021, 36, 55–75. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Steinberg, T.; Tomakidi, P.; Nohava, J.; Vach, K.; Schulz, S.D.; Hellwig, E.; Proksch, S. Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Swanson, W.B.; Omi, M.; Zhang, Z.; Nam, H.K.; Jung, Y.; Wang, G.; Ma, P.X.; Hatch, N.E.; Mishina, Y. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials 2021, 272, 120769. [Google Scholar] [CrossRef]
- Imber, J.C.; Roccuzzo, A.; Stahli, A.; Saulacic, N.; Deschner, J.; Sculean, A.; Bosshardt, D.D. Immunohistochemical Evaluation of Periodontal Regeneration Using a Porous Collagen Scaffold. Int. J. Mol. Sci. 2021, 22, 10915. [Google Scholar] [CrossRef]
- Caballe-Serrano, J.; Zhang, S.; Ferrantino, L.; Simion, M.; Chappuis, V.; Bosshardt, D.D. Tissue Response to a Porous Collagen Matrix Used for Soft Tissue Augmentation. Materials 2019, 12, 3721. [Google Scholar] [CrossRef]
- Lin, H.H.; Chao, P.G.; Tai, W.C.; Chang, P.C. 3D-Printed Collagen-Based Waveform Microfibrous Scaffold for Periodontal Ligament Reconstruction. Int. J. Mol. Sci. 2021, 22, 7725. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Goyal, A.; Brittberg, M. Consideration of religious sentiments while selecting a biological product for knee arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1577–1586. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.; Zhou, Y.; Yu, Z.; Yuan, H.; Feng, B.; van Rijn, P.; Zhang, Y. Alkali-Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite Nanofibers for Tissue Scaffolding. Macromol. Biosci. 2017, 17, 1700268. [Google Scholar] [CrossRef]
- Jiang, Y.C.; Jiang, L.; Huang, A.; Wang, X.F.; Li, Q.; Turng, L.S. Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 901–908. [Google Scholar] [CrossRef]
- Fee, T.; Surianarayanan, S.; Downs, C.; Zhou, Y.; Berry, J. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers. PLoS ONE 2016, 11, e0154806. [Google Scholar] [CrossRef]
- Guo, B.; Tang, C.; Wang, M.; Zhao, Z.; Shokoohi-Tabrizi, H.A.; Shi, B.; Andrukhov, O.; Rausch-Fan, X. In vitro biocompatibility of biohybrid polymers membrane evaluated in human gingival fibroblasts. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2590–2598. [Google Scholar] [CrossRef] [PubMed]
- Jedrusik, N.; Meyen, C.; Finkenzeller, G.; Stark, G.B.; Meskath, S.; Schulz, S.D.; Steinberg, T.; Eberwein, P.; Strassburg, S.; Tomakidi, P. Nanofibered Gelatin-Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Adv. Healthc. Mater. 2018, 7, e1700895. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Angarano, M.; Fabritius, M.; Mulhaupt, R.; Dard, M.; Obrecht, M.; Tomakidi, P.; Steinberg, T. Nonwoven-based gelatin/polycaprolactone membrane proves suitability in a preclinical assessment for treatment of soft tissue defects. Tissue Eng. Part A 2014, 20, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhao, Z.; Rausch, M.A.; Behm, C.; Shokoohi-Tabrizi, H.A.; Andrukhov, O.; Rausch-Fan, X. In Vitro Investigation of Gelatin/Polycaprolactone Nanofibers in Modulating Human Gingival Mesenchymal Stromal Cells. Materials 2023, 16, 7508. [Google Scholar] [CrossRef] [PubMed]
- Seo, B.M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Gil-Castell, O.; Badia, J.D.; Ontoria-Oviedo, I.; Castellano, D.; Sepulveda, P.; Ribes-Greus, A. Polycaprolactone/gelatin-based scaffolds with tailored performance: In vitro and in vivo validation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110296. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, Y.; Huang, G.; Ling, K.; Zhang, X.; Xu, F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication 2015, 7, 044105. [Google Scholar] [CrossRef]
- Liang, C.; Wang, G.; Liang, C.; Li, M.; Sun, Y.; Tian, W.; Liao, L. Hierarchically patterned triple-layered gelatin-based electrospun membrane functionalized by cell-specific extracellular matrix for periodontal regeneration. Dent. Mater. 2023. [Google Scholar] [CrossRef]
- Ou, Q.; Miao, Y.; Yang, F.; Lin, X.; Zhang, L.M.; Wang, Y. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater. Sci. 2019, 7, 1973–1983. [Google Scholar] [CrossRef]
- Romanos, G.E.; Asnani, K.P.; Hingorani, D.; Deshmukh, V.L. PERIOSTIN: Role in formation and maintenance of dental tissues. J. Cell. Physiol. 2014, 229, 1–5. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Miao, L.; Wang, Y.; Ren, S.; Yang, X.; Hu, Y.; Sun, W. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int. J. Nanomed. 2016, 11, 3145–3158. [Google Scholar] [CrossRef]
- BarKana, I.; Narayanan, A.S.; Grosskop, A.; Savion, N.; Pitaru, S. Cementum attachment protein enriches putative cementoblastic populations on root surfaces in vitro. J. Dent. Res. 2000, 79, 1482–1488. [Google Scholar] [CrossRef]
- McAllister, B.; Narayanan, A.S.; Miki, Y.; Page, R.C. Isolation of a fibroblast attachment protein from cementum. J. Periodontal Res. 1990, 25, 99–105. [Google Scholar] [CrossRef]
- Hoz, L.; Lopez, S.; Zeichner-David, M.; Arzate, H. Regeneration of rat periodontium by cementum protein 1-derived peptide. J. Periodontal Res. 2021, 56, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, G.; Corallo, C.; Carta, S.; Fortina, M.; Gattazzo, F.; Galletti, M.; Giordano, N. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: In vitro evidences. J. Biomed. Mater. Res. A 2014, 102, 1415–1421. [Google Scholar] [CrossRef]
- Alvarez Perez, M.A.; Guarino, V.; Cirillo, V.; Ambrosio, L. In vitro mineralization and bone osteogenesis in poly(epsilon-caprolactone)/gelatin nanofibers. J. Biomed. Mater. Res. A 2012, 100, 3008–3019. [Google Scholar] [CrossRef]
- Souza, S.L.; Macedo, G.O.; Silveira, E.S.A.M.; Taba, M., Jr.; Novaes, A.B., Jr.; Oliver, C.; Jamur, M.C.; Correa, V.M. Differences in collagen distribution of healthy and regenerated periodontium. Histomorphometric study in dogs. Histol. Histopathol. 2013, 28, 1315–1324. [Google Scholar] [CrossRef]
- Yazdanpanah, A.; Madjd, Z.; Pezeshki-Modaress, M.; Khosrowpour, Z.; Farshi, P.; Eini, L.; Kiani, J.; Seifi, M.; Kundu, S.C.; Ghods, R.; et al. Bioengineering of fibroblast-conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering. Artif. Organs 2022, 46, 1040–1054. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Shahrousvand, M.; Hsu, Y.T.; Su, W.T. Polycaprolactone/Polyethylene Glycol Blended with Dipsacus asper Wall Extract Nanofibers Promote Osteogenic Differentiation of Periodontal Ligament Stem Cells. Polymers 2021, 13, 2245. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, J.; Yang, B.; Li, L.; Luo, X.; Zhang, X.; Feng, L.; Jiang, Z.; Yu, M.; Guo, W.; et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015, 52, 56–70. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, M.S.; Eltohamy, M.; Kim, T.H.; Kim, H.W. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering. PLoS ONE 2016, 11, e0149967. [Google Scholar] [CrossRef] [PubMed]
- Nivedhitha Sundaram, M.; Sowmya, S.; Deepthi, S.; Bumgardener, J.D.; Jayakumar, R. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 761–770. [Google Scholar] [CrossRef]
- Finoti, L.S.; Nepomuceno, R.; Pigossi, S.C.; Corbi, S.C.; Secolin, R.; Scarel-Caminaga, R.M. Association between interleukin-8 levels and chronic periodontal disease: A PRISMA-compliant systematic review and meta-analysis. Medicine 2017, 96, e6932. [Google Scholar] [CrossRef] [PubMed]
- Behm, C.; Nemec, M.; Blufstein, A.; Schubert, M.; Rausch-Fan, X.; Andrukhov, O.; Jonke, E. Interleukin-1beta Induced Matrix Metalloproteinase Expression in Human Periodontal Ligament-Derived Mesenchymal Stromal Cells under In Vitro Simulated Static Orthodontic Forces. Int. J. Mol. Sci. 2021, 22, 1027. [Google Scholar] [CrossRef] [PubMed]
- Behm, C.; Milek, O.; Rausch-Fan, X.; Moritz, A.; Andrukhov, O. Paracrine- and cell-contact-mediated immunomodulatory effects of human periodontal ligament-derived mesenchymal stromal cells on CD4(+) T lymphocytes. Stem Cell Res. Ther. 2024, 15, 154. [Google Scholar] [CrossRef]
- Behm, C.; Milek, O.; Schwarz, K.; Kovar, A.; Derdak, S.; Rausch-Fan, X.; Moritz, A.; Andrukhov, O. Heterogeneity in Dental Tissue-Derived MSCs Revealed by Single-Cell RNA-seq. J. Dent. Res. 2024, 103, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Zhao, Z.; Rausch, M.A.; Behm, C.; Tur, D.; Shokoohi-Tabrizi, H.A.; Andrukhov, O.; Rausch-Fan, X. Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study. Int. J. Mol. Sci. 2025, 26, 672. https://doi.org/10.3390/ijms26020672
Tian Z, Zhao Z, Rausch MA, Behm C, Tur D, Shokoohi-Tabrizi HA, Andrukhov O, Rausch-Fan X. Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study. International Journal of Molecular Sciences. 2025; 26(2):672. https://doi.org/10.3390/ijms26020672
Chicago/Turabian StyleTian, Zhiwei, Zhongqi Zhao, Marco Aoqi Rausch, Christian Behm, Dino Tur, Hassan Ali Shokoohi-Tabrizi, Oleh Andrukhov, and Xiaohui Rausch-Fan. 2025. "Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study" International Journal of Molecular Sciences 26, no. 2: 672. https://doi.org/10.3390/ijms26020672
APA StyleTian, Z., Zhao, Z., Rausch, M. A., Behm, C., Tur, D., Shokoohi-Tabrizi, H. A., Andrukhov, O., & Rausch-Fan, X. (2025). Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study. International Journal of Molecular Sciences, 26(2), 672. https://doi.org/10.3390/ijms26020672