Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi
<p>Overview of the cattle CpGs probes mapped to the cattle genome. (<b>A</b>) Number of cattle probes from the mammalian methylation array, along with respective genome annotation. (<b>B</b>) PCA of the 37 samples analyzed in this study based on the β-values. (<b>C</b>) The β-value distribution of 37 individual samples from infected and uninfected groups. (<b>D</b>) The M-value distribution of 37 samples from infected and uninfected animals, where infected samples are depicted in green, and uninfected samples are shown in orange.</p> "> Figure 2
<p>Overview of the dLN DMPs showing the counts of hypomethylated (yellow) and hypermethylated (purple) DMPs. (<b>A</b>) Number of hypomethylated and hypermethylated DMPs (FDR < 0.05 and |Δβ| > 5%). (<b>B</b>) DMP annotation (−10 kb to +1 kb from the nearest TSS) for both hypomethylated and hypermethylated DMPs. (<b>C</b>) Volcano plots of the DMPs, where black dots represent the DMPs that are not significantly differentially methylated, while the yellow or purple dots indicate the DMPs that are significantly hypermethylated or hypomethylated (FDR < 0.05 and |Δβ| ≥ 5%). The red line represents FDR < 0.05. (<b>D</b>) Circular plots of the genome distribution of the hypomethylated and hypermethylated DMPs. (<b>E</b>) Heatmaps of the hypomethylated and hypermethylated DMPs for each animal in either the control or the infected group. The legend indicates the beta coefficient values.</p> "> Figure 3
<p>Overview of the FUN DMPs showing the counts of hypomethylated (yellow) and hypermethylated (purple) DMPs. (<b>A</b>) Number of hypomethylated and hypermethylated DMPs (FDR < 0.05 and |Δβ| > 5%). (<b>B</b>) DMP annotation (−10 kb to +1 kb from the nearest TSS) for both the hypomethylated and hypermethylated DMPs. (<b>C</b>) Volcano plots of the DMPs where black dots represent the DMPs that are not significantly differentially methylated, while the yellow or purple dots indicate the DMPs that are significantly hypermethylated or hypomethylated (FDR < 0.05 and |Δβ| ≥ 5%). The red line represents FDR < 0.05. (<b>D</b>) Circular plots of the genome distribution of the hypomethylated and hypermethylated DMPs. (<b>E</b>) Heatmaps of the hypomethylated and hypermethylated DMPs for each animal in either a control or an infected group. The legend indicates the beta coefficient values.</p> "> Figure 4
<p>Overview of the fundic DMRs showing the hypomethylated (yellow) and hypermethylated (purple) regions. (<b>A</b>) Number of hypomethylated and hypermethylated DMRs (<span class="html-italic">p</span>-value ≤ 0.001 and |Δβ| ≤ 10%) identified across four cattle tissues. (<b>B</b>) DMR annotation (−10 kb to +1 kb from the nearest TSS) showing the hypomethylated and hypermethylated DMRs in each tissue (LN: lymph nodes; FUN: fundic; PYL: pyloric; DUO: duodenum). (<b>C</b>) Circular genome distribution plots of the hypomethylated and hypermethylated DMRs in each tissue.</p> "> Figure 5
<p>STRING network analysis of DMR genes from (<b>A</b>) dLN, (<b>B</b>) FUN, and (<b>C</b>) PYL tissues. Each node represents a gene, and the lines represent predicted interactions (with a minimum confidence score of 0.7). The line thickness indicates the strength of the supporting data for the predicted interactions.</p> "> Figure 6
<p>STRING network analysis of DMR and DPMG genes from (<b>A</b>) dLN, (<b>B</b>) FUN, and (<b>C</b>) PYL tissues. Each node represents a gene, and the lines represent predicted interactions (with a minimum confidence score of 0.7). The line thickness indicates the strength of the supporting data for the predicted interactions.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Infected Animals and Parasitology
2.2. Cattle CpG Probes
2.3. Probe Filtration at SNP Sites
2.4. DMPs Specific to Infected Animals
2.5. Infection-Specific DMRs
2.6. Functional Analysis of DMGs and DPMGs
2.7. Effect of Differential Methylation on Gene Expression
2.8. Gene-Enriched Analysis of Methylation Array Cattle Genes
3. Discussion
4. Material and Methods
4.1. Experimental Design and Tissue Collection
4.2. DNA Methylation Array Information
4.3. Probe Normalization
4.4. Probe Mapping and Annotation
4.5. Quality Control
4.6. Probe Filtration at SNP Sites
4.7. Differentially Methylated Positions (DMPs)
4.8. Differentially Methylated Regions (DMRs)
4.9. DMP and DMR Annotation
4.10. Differentially Methylated Genes (DMGs) and Differentially Promoter-Methylated Genes (DPMGs)
4.11. Statistical Overrepresentation Test
4.12. IPA Pathways
4.13. Protein–Protein Interaction Networks
4.14. Methylation Integration with RNA-Seq Data
4.15. Gene-Enriched Analysis of Array Cattle Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BARC | Beltsville Agricultural Research Center |
BPs | biological processes |
CC | cellular component |
DEG | differentially expressed gene |
DMGs | differentially methylated genes |
DMPs | differentially methylated positions |
DMRs | differentially methylated regions |
DNAm | DNA methylation |
DPI | day post-infection |
DPMGs | differentially promoter-methylated genes |
GEO | Gene Expression Omnibus |
GI | Gastrointestinal |
HOX | Homeobox |
IPA | ingenuity pathway analysis |
LEF1 | lymphoid enhancer binding factor 1 |
MeDIP | methylated DNA immunoprecipitation |
MF | molecular function |
MSP | methylation-specific PCR |
NGF | nerve growth factor |
PCA | principal component analysis |
RAR | retinoic acid receptor |
RNA-seq | RNA sequencing |
TF | transcription factor |
Th2 | T helper type 2 |
TSS | transcription start site |
β-values | beta values |
References
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sheng, H.; Hu, C.; Li, F.; Cai, B.; Ma, Y.; Wang, Y.; Ma, Y. Effects of DNA Methylation on Gene Expression and Phenotypic Traits in Cattle: A Review. Int. J. Mol. Sci. 2023, 24, 11882. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 2014, 6, a019133. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, M.; Pao, M.M.; Jeong, S.; Gal-Yam, E.N.; Egger, G.; Weisenberger, D.J.; Jones, P.A. Footprinting of mammalian promoters: Use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 2005, 33, e176. [Google Scholar] [CrossRef]
- Kurdyukov, S.; Bullock, M. DNA Methylation Analysis: Choosing the Right Method. Biology 2016, 5, 3. [Google Scholar] [CrossRef]
- Arneson, A.; Haghani, A.; Thompson, M.J.; Pellegrini, M.; Kwon, S.B.; Vu, H.; Maciejewski, E.; Yao, M.; Li, C.Z.; Lu, A.T.; et al. A Mammalian Methylation Array for Profiling Methylation Levels at Conserved Sequences. Nat. Commun. 2022, 13, 783. [Google Scholar] [CrossRef]
- Horvath, S.; Lu, A.T.; Haghani, A.; Zoller, J.A.; Li, C.Z.; Lim, A.R.; Brooke, R.T.; Raj, K.; Serres-Armero, A.; Dreger, D.L.; et al. DNA methylation clocks for dogs and humans. Proc. Natl. Acad. Sci. USA 2022, 119, e2120887119. [Google Scholar] [CrossRef]
- Lu, A.T.; Fei, Z.; Haghani, A.; Robeck, T.R.; Zoller, J.A.; Li, C.Z.; Lowe, R.; Yan, Q.; Zhang, J.; Vu, H.; et al. Author Correction: Universal DNA methylation age across mammalian tissues. Nat. Aging 2023, 3, 1462. [Google Scholar] [CrossRef]
- Kordowitzki, P.; Haghani, A.; Zoller, J.A.; Li, C.Z.; Raj, K.; Spangler, M.L.; Horvath, S. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. Aging Cell 2021, 20, e13349. [Google Scholar] [CrossRef]
- Hu, Z.; Boschiero, C.; Li, C.J.; Connor, E.E.; Baldwin, R.L.; Liu, G.E. Unraveling the Genetic Basis of Feed Efficiency in Cattle through Integrated DNA Methylation and CattleGTEx Analysis. Genes 2023, 14, 2121. [Google Scholar] [CrossRef]
- Caulton, A.; Dodds, K.G.; McRae, K.M.; Couldrey, C.; Horvath, S.; Clarke, S.M. Development of Epigenetic Clocks for Key Ruminant Species. Genes 2021, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Jhamat, N.; Niazi, A.; Guo, Y.; Chanrot, M.; Ivanova, E.; Kelsey, G.; Bongcam-Rudloff, E.; Andersson, G.; Humblot, P. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genom. 2020, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Usman, T.; Ali, N.; Wang, Y.; Yu, Y. Association of Aberrant DNA Methylation Level in the CD4 and JAK-STAT-Pathway-Related Genes with Mastitis Indicator Traits in Chinese Holstein Dairy Cattle. Animals 2021, 12, 65. [Google Scholar] [CrossRef]
- Ząbek, T.; Semik-Gurgul, E.; Ropka-Molik, K.; Szmatoła, T.; Kawecka-Grochocka, E.; Zalewska, M.; Kościuczuk, E.; Wnuk, M.; Bagnicka, E. Short communication: Locus-specific interrelations between gene expression and DNA methylation patterns in bovine mammary gland infected by coagulase-positive and coagulase-negative staphylococci. J. Dairy Sci. 2020, 103, 10689–10695. [Google Scholar] [CrossRef]
- Ribeiro, A.M.F.; Sanglard, L.P.; Wijesena, H.R.; Ciobanu, D.C.; Horvath, S.; Spangler, M.L. DNA methylation profile in beef cattle is influenced by additive genetics and age. Sci. Rep. 2022, 12, 12016. [Google Scholar] [CrossRef]
- Rekawiecki, R.; Kisielewska, K.; Kowalik, M.K.; Kotwica, J. Methylation of progesterone receptor isoform A and B promoters in the reproductive system of cows. Reprod. Fertil. Dev. 2018, 30, 1634–1642. [Google Scholar] [CrossRef]
- Wang, L.; Hand, J.M.; Fu, L.; Smith, G.W.; Yao, J. DNA methylation and miRNA-1296 act in concert to mediate spatiotemporal expression of KPNA7 during bovine oocyte and early embryonic development. BMC Dev. Biol. 2019, 19, 23. [Google Scholar] [CrossRef]
- Takeda, K.; Kobayashi, E.; Ogata, K.; Imai, A.; Sato, S.; Adachi, H.; Hoshino, Y.; Nishino, K.; Inoue, M.; Kaneda, M.; et al. Differentially methylated CpG sites related to fertility in Japanese Black bull spermatozoa: Epigenetic biomarker candidates to predict sire conception rate. J. Reprod. Dev. 2021, 67, 99–107. [Google Scholar] [CrossRef]
- Crouse, M.S.; Caton, J.S.; Claycombe-Larson, K.J.; Diniz, W.J.S.; Lindholm-Perry, A.K.; Reynolds, L.P.; Dahlen, C.R.; Borowicz, P.P.; Ward, A.K. Epigenetic Modifier Supplementation Improves Mitochondrial Respiration and Growth Rates and Alters DNA Methylation of Bovine Embryonic Fibroblast Cells Cultured in Divergent Energy Supply. Front. Genet. 2022, 13, 812764. [Google Scholar] [CrossRef]
- Salilew-Wondim, D.; Saeed-Zidane, M.; Hoelker, M.; Gebremedhn, S.; Poirier, M.; Pandey, H.O.; Tholen, E.; Neuhoff, C.; Held, E.; Besenfelder, U.; et al. Genome-wide DNA methylation patterns of bovine blastocysts derived from In Vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genom. 2018, 19, 424. [Google Scholar] [CrossRef]
- Wang, D.; Wen, Y.; Zhang, Z.; Yang, S.; Liu, X.; Cai, C.; An, Q.; Lyu, S.; He, H.; Xie, J.; et al. DNA methylation status of SERPINA3 gene involved in mRNA expression in three cattle breeds. Anim. Biotechnol. 2022, 33, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Del Corvo, M.; Lazzari, B.; Capra, E.; Zavarez, L.; Milanesi, M.; Utsunomiya, Y.T.; Utsunomiya, A.T.H.; Stella, A.; de Paula Nogueira, G.; Garcia, J.F.; et al. Methylome Patterns of Cattle Adaptation to Heat Stress. Front. Genet. 2021, 12, 633132. [Google Scholar] [CrossRef] [PubMed]
- Tran Van Nhieu, G.; Arbibe, L. Genetic reprogramming of host cells by bacterial pathogens. F1000 Biol. Rep. 2009, 1, 80. [Google Scholar] [CrossRef] [PubMed]
- de Soutello, R.V.G.; Rodrigues, M.G.F.; Gonçalves, J.A.; Bello, H.J.S.; Pavan, B.E.; Ramos, E.S. Global genomic methylation related to the degree of parasitism in cattle. Sci. Rep. 2022, 12, 18135. [Google Scholar] [CrossRef] [PubMed]
- Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.; Couldrey, C.; et al. De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience 2020, 9, giaa021. [Google Scholar] [CrossRef]
- Zhou, W.; Triche, T.J.; Laird, P.W.; Shen, H. SeSAMe: Reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 2018, 46, e123. [Google Scholar] [CrossRef]
- LaBarre, B.A.; Goncearenco, A.; Petrykowska, H.M.; Jaratlerdsiri, W.; Bornman, M.S.R.; Hayes, V.M.; Elnitski, L. MethylToSNP: Identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin 2019, 12, 79. [Google Scholar] [CrossRef]
- Schoenborn, J.R.; Wilson, C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, S.; Augustine, M.M.; Xu, H.; Wang, J.; Sun, J.; Broadwater, M.; Ruff, W.; Luo, L.; Zhu, G.; et al. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM. Sci. Adv. 2016, 2, e1500637. [Google Scholar] [CrossRef]
- Ghanatsaman, Z.A.; Mehrgardi, A.A.; Nanaei, H.A.; Esmailizadeh, A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Sci. Rep. 2023, 13, 8722. [Google Scholar] [CrossRef]
- Wang, M.D.; Dzama, K.; Hefer, C.A.; Muchadeyi, F.C. Genomic population structure and prevalence of copy number variations in South African Nguni cattle. BMC Genom. 2015, 16, 894. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Tanaka, Y.; Kuwabara, T.; Naito, T.; Kohwi-Shigematsu, T.; Watanabe, A. Correction: SATB1 Plays a Critical Role in Establishment of Immune Tolerance. J. Iimmunol. 2016, 196, 3495. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, T.; Klonizakis, A.; Tsoukatou, D.; Papamatheakis, D.A.; Franzenburg, S.; Tzerpos, P.; Tzonevrakis, I.R.; Papadogkonas, G.; Kapsetaki, M.; Nikolaou, C.; et al. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat. Commun. 2022, 13, 6954. [Google Scholar] [CrossRef] [PubMed]
- Rehli, M.; Sulzbacher, S.; Pape, S.; Ravasi, T.; Wells, C.A.; Heinz, S.; Söllner, L.; El Chartouni, C.; Krause, S.W.; Steingrimsson, E.; et al. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. J. Immunol. 2005, 174, 7111–7122. [Google Scholar] [CrossRef]
- Scott, C.L.; Omilusik, K.D. ZEBs: Novel Players in Immune Cell Development and Function. Trends Immunol. 2019, 40, 431–446. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Dabrowska, M.; Skoneczny, M.; Zielinski, Z.; Rode, W. Wnt signaling in regulation of biological functions of the nurse cell harboring Trichinella spp. Parasit. Vectors 2016, 9, 483. [Google Scholar] [CrossRef]
- Oudhoff, M.J.; Antignano, F.; Chenery, A.L.; Burrows, K.; Redpath, S.A.; Braam, M.J.; Perona-Wright, G.; Zaph, C. Intestinal Epithelial Cell-Intrinsic Deletion of Setd7 Identifies Role for Developmental Pathways in Immunity to Helminth Infection. PLoS Pathog. 2016, 12, e1005876. [Google Scholar] [CrossRef]
- Henry, E.K.; Inclan-Rico, J.M.; Siracusa, M.C. Type 2 cytokine responses: Regulating immunity to helminth parasites and allergic inflammation. Curr. Pharmacol. Rep. 2017, 3, 346–359. [Google Scholar] [CrossRef]
- Finkelman, F.D.; Shea-Donohue, T.; Goldhill, J.; Sullivan, C.A.; Morris, S.C.; Madden, K.B.; Gause, W.C.; Urban, J.F. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: Lessons from studies with rodent models. Annu. Rev. Immunol. 1997, 15, 505–533. [Google Scholar] [CrossRef]
- Pfaff, D.; Héroult, M.; Riedel, M.; Reiss, Y.; Kirmse, R.; Ludwig, T.; Korff, T.; Hecker, M.; Augustin, H.G. Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes. J. Cell Sci. 2008, 121 Pt 22, 3842–3850. [Google Scholar] [CrossRef] [PubMed]
- Mimche, P.N.; Brady, L.M.; Bray, C.F.; Lee, C.M.; Thapa, M.; King, T.P.; Quicke, K.; McDermott, C.D.; Mimche, S.M.; Grakoui, A.; et al. The receptor tyrosine kinase EphB2 promotes hepatic fibrosis in mice. Hepatology 2015, 62, 900–914. [Google Scholar] [CrossRef] [PubMed]
- Shabgah, A.G.; Fattahi, E.; Shahneh, F.Z. Interleukin-17 in human inflammatory diseases. Postepy Dermatol. Alergol. 2014, 31, 256–261. [Google Scholar] [CrossRef]
- Bastid, J.; Dejou, C.; Docquier, A.; Bonnefoy, N. The Emerging Role of the IL-17B/IL-17RB Pathway in Cancer. Front. Immunol. 2020, 11, 718. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Huang, A.; Stinson, J.; Heldens, S.; Foster, J.; Dowd, P.; Gurney, A.L.; Wood, W.I. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc. Natl. Acad. Sci. USA 2000, 97, 773–778. [Google Scholar] [CrossRef]
- Steinke, F.C.; Xue, H.H. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol. Res. 2014, 59, 45–55. [Google Scholar] [CrossRef]
- Zi, C.; Zeng, D.; Zhou, J.; Dai, J.; Jiang, L.; Xue, F.; Jiang, Y.; Li, B. Selected microRNA-192 mutant indicates association with several function genes in bovine cells. Genes Genom. 2018, 40, 361–371. [Google Scholar] [CrossRef]
- Lee, H.; Evans, T. TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies. iScience 2019, 19, 267–280. [Google Scholar] [CrossRef]
- Roy, S.K.; Shrivastava, A.; Srivastav, S.; Shankar, S.; Srivastava, R.K. SATB2 is a novel biomarker and therapeutic target for cancer. J. Cell. Mol. Med. 2020, 24, 11064–11069. [Google Scholar] [CrossRef]
- Lai, L.Y.S.; Gracie, N.P.; Gowripalan, A.; Howell, L.M.; Newsome, T.P. SMAD proteins: Mediators of diverse outcomes during infection. Eur. J. Cell. Biol. 2022, 101, 151204. [Google Scholar] [CrossRef]
- Malhotra, N.; Kang, J. SMAD regulatory networks construct a balanced immune system. Immunology 2013, 139, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, C.; Zhu, D.; Shen, P.; Duan, Y.; Wang, J.; Yang, C.; Wu, L. Chinese 1 strain of Toxoplasma gondii excreted-secreted antigens negatively modulate Foxp3 via inhibition of the TGFßRII/Smad2/Smad3/Smad4 pathway. J. Cell. Mol. Med. 2017, 21, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Gu, A.D.; Zhang, S.; Wang, Y.; Xiong, H.; Curtis, T.A.; Wan, Y.Y. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling. Immunity 2015, 42, 68–79. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Hu, Y.; Zhou, Y.; Ding, X.; Zhou, X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front. Cell. Dev. Biol. 2022, 10, 1010639. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Valdor, R.; Macian, F. Tle4 regulates epigenetic silencing of gamma interferon expression during effector T helper cell tolerance. Mol. Cell. Biol. 2014, 34, 233–245. [Google Scholar] [CrossRef]
- Taefehshokr, S.; Key, Y.A.; Khakpour, M.; Dadebighlu, P.; Oveisi, A. Early growth response 2 and Egr3 are unique regulators in immune system. Cent. Eur. J. Immunol. 2017, 42, 205–209. [Google Scholar] [CrossRef]
- Hao, W.; Wang, L.; Li, S. FKBP5 Regulates RIG-I-Mediated NF-κB Activation and Influenza A Virus Infection. Viruses 2020, 12, 672. [Google Scholar] [CrossRef]
- Storer, C.L.; Dickey, C.A.; Galigniana, M.D.; Rein, T.; Cox, M.B. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol. Metab. 2011, 22, 481–490. [Google Scholar] [CrossRef]
- Richardson, I.W.; Berry, D.P.; Wiencko, H.L.; Higgins, I.M.; More, S.J.; McClure, J.; Lynn, D.J.; Bradley, D.G. A genome-wide association study for genetic susceptibility to Mycobacterium bovis infection in dairy cattle identifies a susceptibility QTL on chromosome 23. Genet. Sel. Evol. 2016, 48, 19. [Google Scholar] [CrossRef]
- Schuermann, M.; Jooss, K.; Müller, R. fosB is a transforming gene encoding a transcriptional activator. Oncogene 1991, 6, 567–576. [Google Scholar]
- Shi, F.; Zi, Y.; Lu, Z.; Li, F.; Yang, M.; Zhan, F.; Li, Y.; Li, J.; Zhao, L.; Lin, L.; et al. Bacillus subtilis H2 modulates immune response, fat metabolism and bacterial flora in the gut of grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2020, 106, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, J.; Xu, Y.; Wang, J.; Zhao, H.; Lei, J.; Zhou, Y.; Chen, Y.; Wu, L.; Zhou, M.; et al. OIT3 mediates macrophage polarization and facilitates hepatocellular carcinoma progression. Cancer Immunol. Immunother. 2022, 71, 2677–2689. [Google Scholar] [CrossRef] [PubMed]
- Larange, A.; Takazawa, I.; Kakugawa, K.; Thiault, N.; Ngoi, S.; Olive, M.E.; Iwaya, H.; Seguin, L.; Vicente-Suarez, I.; Becart, S.; et al. A regulatory circuit controlled by extranuclear and nuclear retinoic acid receptor α determines T cell activation and function. Immunity 2023, 56, 2054–2069.e10. [Google Scholar] [CrossRef]
- Lotfi, R. Retinoic Acid (RA): A Critical Immunoregulatory Molecule in Asthma and Allergies. Immun. Inflamm. Dis. 2024, 12, e70051. [Google Scholar] [CrossRef]
- Hurst, R.J.; De Caul, A.; Little, M.C.; Kagechika, H.; Else, K.J. The retinoic acid receptor agonist Am80 increases mucosal inflammation in an IL-6 dependent manner during Trichuris muris infection. J. Clin. Immunol. 2013, 33, 1386–1394. [Google Scholar] [CrossRef]
- Minnone, G.; De Benedetti, F.; Bracci-Laudiero, L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int. J. Mol. Sci. 2017, 18, 1028. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Khaled, W.; Burke, S.; Li, P.; Chen, X.; Yang, W.; Jenkins, N.A.; Copeland, N.G.; Zhang, S.; et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med. 2012, 209, 2467–2483. [Google Scholar] [CrossRef]
- Takaba, H.; Morishita, Y.; Tomofuji, Y.; Danks, L.; Nitta, T.; Komatsu, N.; Kodama, T.; Takayanagi, H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015, 163, 975–987. [Google Scholar] [CrossRef]
- Mahajan, S.; Saini, A.; Chandra, V.; Nanduri, R.; Kalra, R.; Bhagyaraj, E.; Khatri, N.; Gupta, P. Nuclear Receptor Nr4a2 Promotes Alternative Polarization of Macrophages and Confers Protection in Sepsis. J. Biol. Chem. 2015, 290, 18304–18314. [Google Scholar] [CrossRef]
- Shah, N.; Sukumar, S. The Hox genes and their roles in oncogenesis. Nat. Rev. Cancer 2010, 10, 361–371. [Google Scholar] [CrossRef]
- Aloe, L.; Moroni, R.; Mollinari, C.; Tirassa, P. Schistosoma mansoni infection enhances the levels of NGF in the liver and hypothalamus of mice. Neuroreport 1994, 5, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Moroni, R.; Fiore, M.; Angelucci, F. Chronic parasite infection in mice induces brain granulomas and differentially alters brain nerve growth factor levels and thermal responses in paws. Acta Neuropathol. 1996, 92, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Perera, P.Y.; Lichy, J.H.; Waldmann, T.A.; Perera, L.P. The role of interleukin-15 in inflammation and immune responses to infection: Implications for its therapeutic use. Microbes Infect. 2012, 14, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, Y.; Zhang, P.; Ma, G.; Zhang, M.; Liang, Y.; Jiao, W.; Niu, H. Identification of NTRK3 as a potential prognostic biomarker associated with tumor mutation burden and immune infiltration in bladder cancer. BMC Cancer 2021, 21, 458. [Google Scholar] [CrossRef]
- Boschiero, C.; Beshah, E.; Bakshi, M.; Thompson, P.; Zhu, X.; Liu, G.E.; Tuo, W. Time-dependent RNA transcriptional profiling of abomasal mucosa in cattle infected with Ostertagia ostertagi. 2024; Submitted. [Google Scholar]
- Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018, 48, 19–33. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Fu, Y.; Yin, Y.; Xu, K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci. 2023, 13, 85. [Google Scholar] [CrossRef]
- Ambrosio, L.F.; Insfran, C.; Volpini, X.; Acosta Rodriguez, E.; Serra, H.M.; Quintana, F.J.; Cervi, L.; Motrán, C.C. Role of Aryl Hydrocarbon Receptor (AhR) in the Regulation of Immunity and Immunopathology During Trypanosoma cruzi Infection. Front. Immunol. 2019, 10, 631. [Google Scholar] [CrossRef]
- Münck, N.A.; Roth, J.; Sunderkötter, C.; Ehrchen, J. Aryl Hydrocarbon Receptor-Signaling Regulates Early Leishmania major-Induced Cytokine Expression. Front. Immunol. 2019, 10, 2442. [Google Scholar] [CrossRef]
- Gaidatzis, D.; Lerch, A.; Hahne, F.; Stadler, M.B. QuasR: Quantification and annotation of short reads in R. Bioinformatics 2015, 31, 1130–1132. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Wu, T.; Zhan, L.; Li, L.; Chen, M.; Xie, W.; Xie, Z.; Hu, E.; Xu, S.; et al. Exploring Epigenomic Datasets by ChIPseeker. Curr. Protoc. 2022, 2, e585. [Google Scholar] [CrossRef]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Wong, C.C.Y.; Volta, M.; Lunnon, K.; Mill, J.; Schalkwyk, L.C. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 2013, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Leung, Y.K.; Chen, A.; Long, D.X.; Hoyo, C.; Ho, S.M. Differential methylation values in differential methylation analysis. Bioinformatics 2019, 35, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Jaffe, A.E.; Murakami, P.; Lee, H.; Leek, J.T.; Fallin, M.D.; Feinberg, A.P.; Irizarry, R.A. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Krämer, A.; Green, J.; Pollard, J.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Shen, W.K.; Chen, S.Y.; Gan, Z.Q.; Zhang, Y.Z.; Yue, T.; Chen, M.M.; Xue, Y.; Hu, H.; Guo, A.Y. AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 2023, 51, D39–D45. [Google Scholar] [CrossRef]
- McLean, C.Y.; Bristor, D.; Hiller, M.; Clarke, S.L.; Schaar, B.T.; Lowe, C.B.; Wenger, A.M.; Bejerano, G. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 2010, 28, 495–501. [Google Scholar] [CrossRef]
- Kuhn, R.M.; Haussler, D.; Kent, W.J. The UCSC genome browser and associated tools. Brief. Bioinform. 2013, 14, 144–161. [Google Scholar] [CrossRef]
Gene | Gene Name | Tissue | Type | CpG | Chr | Start | End | Annotation | Mean Δβ | log2FC | Direction | TF Family |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP63 | tumor protein p63 | dLNs | DMP located on gene | cg02197333 | 1 | 77479563 | 77479564 | Exon (exon 4 of 14) | −0.068 | 2.08 | inconsistent | P53 |
TFEC | transcription factor EC | dLNs | DMP located on gene | cg06760134 | 4 | 52303479 | 52303480 | Intron (intron 1 of 7) | −0.095 | 4.08 | inconsistent | bHLH |
TFEC | transcription factor EC | dLNs | DMP located on gene | cg03543715 | 4 | 52303494 | 52303495 | Intron (intron 1 of 7) | −0.120 | 4.08 | inconsistent | bHLH |
PRDM6 | PR/SET domain 6 | dLNs | DMP located on gene | cg13468491 | 7 | 30708268 | 30708269 | Intron (intron 3 of 7) | −0.101 | −2.21 | consistent | zf-C2H2 |
NTRK2 | neurotrophic receptor tyrosine kinase 2 | dLNs | DMP located on gene | cg19217250 | 8 | 78023690 | 78023691 | Exon (exon 8 of 12) | −0.180 | −1.60 | consistent | - |
RSPO2 | R-spondin 2 | dLNs | DMP located on gene | cg06896863 | 14 | 56498391 | 56498392 | Exon (exon 3 of 5) | −0.106 | −3.23 | consistent | - |
LRFN5 | leucine rich repeat and fibronectin type III domain containing 5 | dLNs | DMP located on gene | cg15469181 | 21 | 51632828 | 51632829 | Intron (intron 3 of 3) | −0.108 | −3.96 | consistent | - |
LRFN5 | leucine rich repeat and fibronectin type III domain containing 5 | dLNs | DMP located on TSS | cg04784672 | 21 | 51329097 | 51329098 | Promoter (<=1kb) | 0.057 | −3.96 | consistent | - |
SORCS1 | sortilin related VPS10 domain containing receptor 1 | dLNs | DMP located on gene | cg21229793 | 26 | 27556508 | 27556509 | Intron (intron 26 of 26) | −0.088 | −1.74 | consistent | - |
SORCS1 | sortilin related VPS10 domain containing receptor 1 | dLNs | DMP located on TSS | cg15043841 | 26 | 28128919 | 28128920 | Promoter (<=1kb) | 0.052 | −1.74 | consistent | - |
SAMSN1 | SAM domain, SH3 domain and nuclear localization signals 1 | FUN | DMP located on gene | cg16665024 | 1 | 22629640 | 22629641 | Intron (intron 1 of 7) | −0.053 | 1.83 | inconsistent | |
EBF2 | EBF transcription factor 2 | FUN | DMP located on gene | cg05217279 | 8 | 73218285 | 73218286 | Intron (intron 6 of 15) | −0.070 | 2.51 | inconsistent | COE |
SLC12A5 | solute carrier family 12 member 5 | FUN | DMP located on gene | cg17424512 | 13 | 74775035 | 74775036 | Exon (exon 6 of 26) | −0.060 | −1.63 | consistent | - |
SLC12A5 | solute carrier family 12 member 5 | FUN | DMP located on gene | cg09355828 | 13 | 74778288 | 74778289 | Exon (exon 8 of 26) | −0.084 | −1.63 | consistent | - |
LRFN5 | leucine rich repeat and fibronectin type III domain containing 5 | FUN | DMP located on gene | cg08683365 | 21 | 51635204 | 51635205 | Intron (intron 3 of 3) | −0.097 | 3.80 | inconsistent | - |
LRFN5 | leucine rich repeat and fibronectin type III domain containing 5 | FUN | DMP located on gene | cg15469181 | 21 | 51632828 | 51632829 | Intron (intron 3 of 3) | −0.126 | 3.80 | inconsistent | - |
TFEC | transcription factor EC | dLNs | DMR located on gene | - | 4 | 52303479 | 52303494 | Intron (intron 1 of 7) | −0.825 | 4.08 | inconsistent | bHLH |
AHR | aryl hydrocarbon receptor | dLNs | DMR located on gene | - | 4 | 25820158 | 25820214 | Intron (intron 2 of 10) | 0.283 | 1.91 | consistent | bHLH |
PRDM6 | PR/SET domain 6 | dLNs | DMR located on gene | - | 7 | 30708244 | 30708355 | Intron (intron 3 of 7) | −0.427 | −2.21 | consistent | zf-C2H2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boschiero, C.; Beshah, E.; Zhu, X.; Tuo, W.; Liu, G.E. Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi. Int. J. Mol. Sci. 2025, 26, 89. https://doi.org/10.3390/ijms26010089
Boschiero C, Beshah E, Zhu X, Tuo W, Liu GE. Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi. International Journal of Molecular Sciences. 2025; 26(1):89. https://doi.org/10.3390/ijms26010089
Chicago/Turabian StyleBoschiero, Clarissa, Ethiopia Beshah, Xiaoping Zhu, Wenbin Tuo, and George E. Liu. 2025. "Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi" International Journal of Molecular Sciences 26, no. 1: 89. https://doi.org/10.3390/ijms26010089
APA StyleBoschiero, C., Beshah, E., Zhu, X., Tuo, W., & Liu, G. E. (2025). Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi. International Journal of Molecular Sciences, 26(1), 89. https://doi.org/10.3390/ijms26010089