Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease
<p>Effects of different concentrations of <span class="html-italic">Meconopsis integrifolia</span> extracts (<b>A</b>–<b>F</b>) and FFA (<b>G</b>) on HepG2 cell viability. PEE (petroleum ether extract), EAE (ethyl acetate extract), CFE (chloroform extract), BUE (<span class="html-italic">n</span>-butanol extract), ETE (ethanol extract), WE (water extract). Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and **** <span class="html-italic">p</span> < 0.0001 compared to the control group (CON) without drug treatments.</p> "> Figure 2
<p>The effects of different extracts of Meconopsis integrifolia on FFA-induced lipid accumulation in HepG2 cells. (<b>A</b>,<b>B</b>) Intracellular levels of TG and LDL. (<b>C</b>) Oil Red O staining of lipid droplets (200× magnification). HepG2 cells were treated with FFA (1 mM) and/or EAE (25 and 50 μg/mL) for 24 h. PEE (petroleum ether extract), EAE (ethyl acetate extract), CFE (chloroform extract), BUE (<span class="html-italic">n</span>-butanol extract), ETE (ethanol extract), WE (water extract). Data are presented as mean ± SD (<span class="html-italic">n</span> = 3). <sup>##</sup> <span class="html-italic">p</span> < 0.01 compared to the CON group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 compared to the FFA group.</p> "> Figure 3
<p>EAE regulates genes involved in lipid metabolism in HepG2 cells treated with FFA. (<b>A</b>) Relative mRNA levels of AMPK; (<b>B</b>–<b>E</b>) relative mRNA levels of SREBP1c, FAS, SCD1, and ACC (lipogenesis genes) determined by qPCR; (<b>F</b>,<b>G</b>) relative mRNA levels of PPARα and CPT1 (fatty acid oxidation genes) determined by qPCR; (<b>H</b>) immunofluorescence analysis of SREBP-1c protein expression; (<b>I</b>) quantification of SREBP-1c fluorescence intensity. Fluorescence images were captured at 400× magnification, where blue fluorescence represents the nucleus, and green fluorescence represents SREBP-1c. Data are expressed as mean ± SD (<span class="html-italic">n</span> = 3). <sup>##</sup> <span class="html-italic">p</span> < 0.01, <sup>###</sup> <span class="html-italic">p</span> < 0.001, and <sup>####</sup> <span class="html-italic">p</span> < 0.0001 compared to the CON group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 compared to the FFA group.</p> "> Figure 4
<p>Chemical structures of compounds <b>1</b>–<b>13</b>.</p> "> Figure 5
<p>The effects of different compounds on FFA-induced lipid accumulation in HepG2 cells. (<b>A</b>) Intracellular TG levels. (<b>B</b>) Intracellular LDL levels. The compounds tested include Luteolin (<b>1</b>), Quercetin (<b>2</b>), Taxifolin (<b>3</b>), Apigenin (<b>4</b>), Quercetin-3-<span class="html-italic">O</span>-β-<span class="html-small-caps">d</span>-glucopyranoside (<b>5</b>), Quercetin-3-<span class="html-italic">O</span>-[2‴,6‴-<span class="html-italic">O</span>-diacetyl-β-<span class="html-small-caps">d</span>-glucopyranosyl-(1→6)-β-<span class="html-small-caps">d</span>-glucopyranoside] (<b>6</b>), Quercetin-3-<span class="html-italic">O</span>-β-<span class="html-small-caps">d</span>-glucopyranosyl-(1→6)-β-<span class="html-small-caps">d</span>-glucopyranoside (<b>7</b>), Quercetin-3-<span class="html-italic">O</span>-[2‴-<span class="html-italic">O</span>-acetyl-β-<span class="html-small-caps">d</span>-glucopyranosyl-(1→6)-β-<span class="html-small-caps">d</span>-glucopyranoside] (<b>8</b>), Luteolin-7-β-<span class="html-small-caps">d</span>-glucoside (<b>9</b>), <span class="html-italic">p</span>-Hydroxy-cinnamic acid (<b>10</b>), 1-<span class="html-italic">O</span>-Caffeoyl-β-<span class="html-small-caps">d</span>-glucopyranose (<b>11</b>), 1,2,4-Benzenetriol (<b>12</b>), and <span class="html-italic">p</span>-<span class="html-italic">O</span>-β-<span class="html-small-caps">d</span>-Glucosybenzoic acid (<b>13</b>). Data are presented as mean ± SD (<span class="html-italic">n</span> = 3). <sup>##</sup> <span class="html-italic">p</span> < 0.01 and <sup>###</sup> <span class="html-italic">p</span> < 0.001 compared to the CON group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span>< 0.001 compared to the FFA group.</p> "> Figure 6
<p>Three-dimensional and Two-dimensional visualization of the binding modes between SREBP-1c and selected compounds as determined by molecular docking. (<b>A</b>–<b>C</b>) Molecular docking of Luteolin, Quercetin-3-<span class="html-italic">O</span>-[2‴,6‴-<span class="html-italic">O</span>-diacetyl-β-<span class="html-small-caps">d</span>-glucopyranosyl-(1→6)-β-<span class="html-small-caps">d</span>-glucopyranoside], and Quercetin-3-<span class="html-italic">O</span>-[2‴-<span class="html-italic">O</span>-acetyl-β-<span class="html-small-caps">d</span>-glucopyranosyl-(1→6)-β-<span class="html-small-caps">d</span>-glucopyranoside] with SREBP-1c, respectively. Each panel presents the 3D binding conformation of the compound within the active site of SREBP-1c alongside a 2D schematic showing specific interactions, including hydrogen bonds, π-alkyl interactions, and other non-covalent forces.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Extracts of M. integrifolia on HepG2 Cell Viability
2.2. Effects of Different Extract Fractions of M. integrifolia on FFA-Induced Lipid Accumulation in HepG2 Cells
2.3. Protective Effects of EAE on FFA-Induced Hepatic Steatosis in HepG2 Cells
2.4. Structural Identification of Chemical Constituents Derived from EAE
2.5. Effects of Isolated Compounds on In Vitro Lipid Accumulation
2.6. Prediction of Anti-NAFLD Activity of Isolated Compounds Through Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Preparation of Samples
4.2. Cell Culture and Drug Treatment
4.3. Cell Viability
4.4. Measurement of TG and LDL Content in HepG2 Cells
4.5. Oil Red O Staining
4.6. qRT-PCR Analysis
4.7. Immunofluorescence
4.8. Chemical Composition of EAE
4.9. Screening of Compounds for Anti-NAFLD Activity
4.10. Molecular Docking of SREBP-1c with Active Compounds
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef]
- Kanwar, P.; Kowdley, K.V. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2016, 20, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Yang, H.J.; Park, K.I.; Ma, J.Y. Lycopus lucidus Turcz. ex Benth. Attenuates free fatty acid-induced steatosis in HepG2 cells and non-alcoholic fatty liver disease in high-fat diet-induced obese mice. Phytomedicine 2019, 55, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar] [CrossRef]
- Wesolowski, S.R.; Kasmi, K.C.; Jonscher, K.R.; Friedman, J.E. Developmental origins of NAFLD: A womb with a clue. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 81–96. [Google Scholar] [CrossRef]
- Liu, T.; Luo, X.; Li, Z.H.; Wu, J.C.; Luo, S.Z.; Xu, M.Y. Zinc-α2-glycoprotein 1 attenuates non-alcoholic fatty liver disease by negatively regulating tumour necrosis factor-α. World J. Gastroenterol. 2019, 25, 5451–5468. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Singal, A.G.; Kono, Y.; Tan, D.J.H.; El-Serag, H.B.; Loomba, R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab. 2022, 34, 969–977.e962. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Min, Q.; Ouyang, C.; Lee, J.; He, C.; Zou, M.H.; Xie, Z. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim. Biophys. Acta 2014, 1842, 1844–1854. [Google Scholar] [CrossRef]
- Zhang, X.; Wong, G.L.; Yip, T.C.; Cheung, J.T.K.; Tse, Y.K.; Hui, V.W.; Lin, H.; Lai, J.C.; Chan, H.L.; Kong, A.P.; et al. Risk of liver-related events by age and diabetes duration in patients with diabetes and nonalcoholic fatty liver disease. Hepatology 2022, 76, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Ekstedt, M.; Wong, G.L.; Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Stål, P.; Hultcrantz, R.; Hemmingsson, T.; Andreasson, A. Overweight in late adolescence predicts development of severe liver disease later in life: A 39years follow-up study. J. Hepatol. 2016, 65, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Tynelius, P.; Rasmussen, F. High BMI in late adolescence predicts future severe liver disease and hepatocellular carcinoma: A national, population-based cohort study in 1.2 million men. Gut 2018, 67, 1536–1542. [Google Scholar] [CrossRef]
- Hagström, H.; Höijer, J.; Andreasson, A.; Bottai, M.; Johansson, K.; Ludvigsson, J.F.; Stephansson, O. Body mass index in early pregnancy and future risk of severe liver disease: A population-based cohort study. Aliment. Pharmacol. Ther. 2019, 49, 789–796. [Google Scholar] [CrossRef]
- Adams, L.A.; Anstee, Q.M.; Tilg, H.; Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017, 66, 1138–1153. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Isaacs, S.; Barb, D.; Basu, R.; Caprio, S.; Garvey, W.T.; Kashyap, S.; Mechanick, J.I.; Mouzaki, M.; Nadolsky, K.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr. Pract. 2022, 28, 528–562. [Google Scholar]
- Mantovani, A.; Zaza, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Bonora, E.; Targher, G. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018, 79, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.P.; Kim, D.Y.; Lee, Y.G.; Lee, Y.S.; Truong, X.T.; Lee, J.H.; Song, D.K.; Kwon, T.K.; Park, S.H.; Jung, C.H.; et al. SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol. Cell 2021, 81, 3820–3832.e7. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Xiao, X.; Wang, G.; Uosef, A.; Lou, X.; Arnold, P.; Wang, Y.; Kong, G.; Wen, M.; Minze, L.J.; et al. Gasdermin D-mediated pyroptosis is regulated by AMPK-mediated phosphorylation in tumor cells. Cell Death Dis. 2023, 14, 469. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Chen, Z.; Tang, K.; Yang, L.; Jiang, Y.; Wang, J.; Huang, P.; Wang, J.; Zheng, P.; et al. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway. Biomed. Pharmacother. 2023, 160, 114319. [Google Scholar] [CrossRef] [PubMed]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, F.; Liu, Z.; Xie, H.; Xu, Y.; Zhou, D.; Zhu, B. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct. 2020, 11, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Lund, E.G.; Peterson, L.B.; Adams, A.D.; Lam, M.H.; Burton, C.A.; Chin, J.; Guo, Q.; Huang, S.; Latham, M.; Lopez, J.C.; et al. Different roles of liver X receptor alpha and beta in lipid metabolism: Effects of an alpha-selective and a dual agonist in mice deficient in each subtype. Biochem. Pharmacol. 2006, 71, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Oliveras-Ferraros, C.; Vazquez-Martin, A.; Fernández-Real, J.M.; Menendez, J.A. AMPK-sensed cellular energy state regulates the release of extracellular Fatty Acid Synthase. Biochem. Biophys. Res. Commun. 2009, 378, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Du, J.H.; Zhang, W.J.; Li, J.R.; Li, Y. The overview of Exploiture of the Curatorial and Ornamental Resources on wild Flora Meconopsis Vig. J. Qinghai Norm. Univ. (Nat. Sci.) 2011, 27, 52–57. [Google Scholar]
- Flora of China Editorial Committee. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1999. [Google Scholar]
- Northwest Plateau Biology Institute, Chinese Academy of Sciences. Tibetan Medicine Chronicles; Qinghai People’s Press: Xining, China, 1991. [Google Scholar]
- Luo, D.S. New Repair Jingzhu Materia Medica; Sichuan Science and Technology Press: Chengdu, China, 2004. [Google Scholar]
- Yutuo, Y.D.G.B. Four Medical Tantras; Qinghai People’s Press: Xining, China, 2021. [Google Scholar]
- Chinese Materia Medica Editorial Committee of the State Administration of Traditional Chinese Medicine. Chinese Materia Medica; Shanghai Scientific and Technical Press: Shanghai, China, 2002. [Google Scholar]
- Zhong, G.Y.; Zhou, F.C.; Shi, S.M.; Zhou, H.R.; Yu, J.Y.; Ping, A.; Liu, H.Q.; Dawa, Z. Actuality investigation on general crude drugs and its quality standard of Tibetan medicine. China J. Chin. Mater. Medica 2012, 37, 2349–2355. [Google Scholar]
- Duojie, C. 78 cases of chronic hepatitis B treated with a combination of Tibetan and Western medicine. Chin. J. Ethn. Med. 1999, 5, 23–24. [Google Scholar]
- Hu, C.F.; Huang, H.Y. Clinical Observation on the Treatment of 43 Cases of Chronic Hepatitis B with Tibetan Medicine 25 Ingredient Songshi Pills. Chin. J. Ethn. Med. 2009, 15, 8–9. [Google Scholar]
- Jin, X.J.; Dao, L.T. Clinical efficacy of Tibetan medicine Jiuwei Honghua Pill in the treatment of hepatitis B. Chin. J. Ethn. Med. 2000, 1, 20. [Google Scholar]
- Wang, H.Y.; Ma, W.Y. Tibetan Medicine 25 Ingredient Green Ronghao Pill for the Treatment of 56 Cases of Chronic Severe Hepatitis. Chin. Community Dr. 2009, 11, 145. [Google Scholar] [CrossRef]
- Wen, Q.J. Clinical Observation on the Treatment of 104 Cases of Viral Hepatitis with Tibetan Medicine 25 Ingredient Songshi Pill. Chin. J. Ethn. Med. 1997, 3, 20–21. [Google Scholar]
- Zhan, D. Analysis of the therapeutic effect of Tibetan medicine 25 flavor pine stone pill on 34 cases of hepatitis B. Chin. J. Ethn. Med. 1996, 2, 19. [Google Scholar]
- Zhou, G.; Chen, Y.; Liu, S.; Yao, X.; Wang, Y. In vitro and in vivo hepatoprotective and antioxidant activity of ethanolic extract from Meconopsis integrifolia (Maxim.) Franch. J. Ethnopharmacol. 2013, 148, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.F.; Ding, L.S.; Wang, H.; Zhang, X.F. Advances in the Research of Phytochemistry and Pharmacology of Meconopsis Vig. Nat. Prod. Res. Dev. 2011, 23, 163–168. [Google Scholar]
- Cao, P.; Wang, Y.; Zhang, C.; Sullivan, M.A.; Chen, W.; Jing, X.; Yu, H.; Li, F.; Wang, Q.; Zhou, Z.; et al. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J. Nutr. Biochem. 2023, 120, 109414. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Gao, X.; Luo, Y.; Fan, W.; Shen, T.; Ding, C.; Yao, M.; Song, S.; Yan, L. Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J. Nutr. Biochem. 2019, 71, 110–121. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Q.; Cao, Y.; Zhang, C.; Chen, S.; Zhang, Y.; Liang, T. Luteolin Ameliorates Hepatic Steatosis and Enhances Mitochondrial Biogenesis via AMPK/PGC-1α Pathway in Western Diet-Fed Mice. J. Nutr. Sci. Vitaminol. 2023, 69, 259–267. [Google Scholar] [CrossRef]
- Tong, M.; Yang, X.; Qiao, Y.; Liu, G.; Ge, H.; Huang, G.; Wang, Y.; Yang, Y.; Fan, W. Serine protease inhibitor from the muscle larval Trichinella spiralis ameliorates non-alcoholic fatty liver disease in mice via anti-inflammatory properties and gut-liver crosstalk. Biomed. Pharmacother. 2024, 172, 116223. [Google Scholar] [CrossRef]
- Yuan, M.R.; Ren, Y.M.; Zhao, X.H.; Chen, X.H. The protective effect of different fractions extracted from tibetan medicinal herb Meconopsis integrifolia on acute liver injury in mice. J. Qinghai Med. Coll. 2012, 33, 160–163. [Google Scholar]
- Wang, Z.W.; Shao, J.; Guo, M.; Wang, R.Q.; Ren, Y. Effect of total flavonoids and alkaloids from Meconopsis quintuplinervia on hepatic fibrosis in rat. Chin. Tradit. Pat. Med. 2013, 35, 1125–1128. [Google Scholar]
- Wang, Z.W.; Wang, R.Q.; Guo, M.; Shao, J.; Ren, Y. Study on Liver Protection of Total Flavones of Meconopsis quintuplinervia from Gansu Province in Mice. Chin. J. Exp. Tradit. Med. Formulae 2013, 19, 206–209. [Google Scholar]
- Caporali, S.; De Stefano, A.; Calabrese, C.; Giovannelli, A.; Pieri, M.; Savini, I.; Tesauro, M.; Bernardini, S.; Minieri, M.; Terrinoni, A. Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients 2022, 14, 1155. [Google Scholar] [CrossRef]
- Chagas, M.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxid. Med. Cell Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef]
- Najeb, S.M.; Jaccob, A.A.; Al-Moziel, M.S.G.; Abdulhameed, H.M. Cardioprotective and antioxidant effects of taxifolin and vitamin C against diazinone-induced myocardial injury in rats. Environ. Anal. Health Toxicol. 2022, 37, e2022002. [Google Scholar] [CrossRef] [PubMed]
- Rostamkhani, N.; Salimi, M.; Adibifar, A.; Karami, Z.; Agh-Atabay, A.H.; Rostamizadeh, K.; Abdi, Z. Enhanced anti-tumor and anti-metastatic activity of quercetin using pH-sensitive Alginate@ZIF-8 nanocomposites:in vitroandin vivostudy. Nanotechnology 2024, 35, 5102. [Google Scholar] [CrossRef]
- Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef] [PubMed]
- Zheleva-Dimitrova, D.; Simeonova, R.; Kondeva-Burdina, M.; Savov, Y.; Balabanova, V.; Zengin, G.; Petrova, A.; Gevrenova, R. Antioxidant and Hepatoprotective Potential of Echinops ritro L. Extracts on Induced Oxidative Stress In Vitro/In Vivo. Int. J. Mol. Sci. 2023, 24, 9999. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.S.; Mohamed, H.E.; Farrag, M.A. Luteolin loaded on zinc oxide nanoparticles ameliorates non-alcoholic fatty liver disease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221137435. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, R.; Shen, Z.; Cai, G. Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sci. 2020, 256, 117990. [Google Scholar] [CrossRef]
- Yu, S.; Song, J.H.; Kim, H.S.; Hong, S.; Park, S.K.; Park, S.H.; Lee, J.; Chae, Y.C.; Park, J.H.; Lee, Y.G. Patulin alleviates hepatic lipid accumulation by regulating lipogenesis and mitochondrial respiration. Life Sci. 2023, 326, 121816. [Google Scholar] [CrossRef]
- Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; et al. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med. 2019, 141, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Chyau, C.C.; Wang, H.F.; Zhang, W.J.; Chen, C.C.; Huang, S.H.; Chang, C.C.; Peng, R.Y. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ Pathway. Int. J. Mol. Sci. 2020, 21, 360. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Han, S.; Li, C.; Meng, T.; Huo, Y.; Liu, X.; Huang, Y.; Yang, L. Rhinacanthin C Ameliorates Insulin Resistance and Lipid Accumulation in NAFLD Mice via the AMPK/SIRT1 and SREBP-1c/FAS/ACC Signaling Pathways. Evid. Based Complement. Alternat. Med. 2023, 2023, 6603522. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Yan, W.; Cui, X.; Liu, N.; Wei, X.; Sun, Y.; Fan, K.; Liu, J.; Zhu, Y.; Wang, Z.; et al. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis. Mol. Med. 2023, 29, 132. [Google Scholar] [CrossRef]
- Jeon, S.; Park, J.E.; Do, Y.H.; Santos, R.; Lee, S.M.; Kim, B.N.; Cheong, J.H.; Kim, Y. Atomoxetine and Fluoxetine Activate AMPK-ACC-CPT1 Pathway in Human SH-SY5Y and U-87 MG Cells. Psychiatry Investig. 2023, 20, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, W.; Yang, L.; Zhao, W.; Liu, Z.; Wang, E.; Wang, J. Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function. Phytomedicine 2023, 109, 154589. [Google Scholar] [CrossRef]
- Day, E.A.; Ford, R.J.; Steinberg, G.R. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol. Metab. 2017, 28, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, N. Identification of Key Pharmacodynamic Substances of Hedan Capsule in Anti-Nonalcoholic Fatty Liver Disease. Master’s Thesis, Shandong University of Traditional Chinese Medicine, Jinan, China, 2023. [Google Scholar]
- Cheng, F.; Li, Q.; Wang, J.; Zeng, F.; Zhang, Y. Investigation of the Potential Mechanism of Danggui Shaoyao San for the Treatment of Non-alcoholic Fatty Liver Disease (NAFLD) with Network Pharmacology and Molecular Docking. Curr. Comput. Aided Drug Des. 2022, 18, 258–270. [Google Scholar]
- Jangwan, N.S.; Khan, M.; Das, R.; Altwaijry, N.; Sultan, A.M.; Khan, R.; Saleem, S.; Singh, M.F. From petals to healing: Consolidated network pharmacology and molecular docking investigations of the mechanisms underpinning Rhododendron arboreum flower’s anti-NAFLD effects. Front. Pharmacol. 2024, 15, 1366279. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, X.; Zhang, G.; Xiang, Z. Therapeutic Effect and Mechanism Prediction of Fuzi-Gancao Herb Couple on Non-alcoholic Fatty Liver Disease (NAFLD) based on Network Pharmacology and Molecular Docking. Comb. Chem. High Throughput Screen. 2024, 27, 773–785. [Google Scholar] [CrossRef]
- Yang, R.; Jiang, D.; Xu, H.; Yang, H.; Feng, L.; Wu, Q.; Xing, Y. Network Pharmacology and Molecular Docking Integrated with Molecular Dynamics Simulations Investigate the Pharmacological Mechanism of Yinchenhao Decoction in the Treatment of Non-alcoholic Fatty Liver Disease. Curr. Comput. Aided. Drug Des. 2024. ahead of print. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Osborne, T.F.; Espenshade, P.J. Lipid balance must be just right to prevent development of severe liver damage. J. Clin. Investig. 2022, 132, e160326. [Google Scholar] [CrossRef] [PubMed]
- Gnoni, A.; Di Chiara Stanca, B.; Giannotti, L.; Gnoni, G.V.; Siculella, L.; Damiano, F. Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the Acetyl-CoA Carboxylase 1/AMPK/PP2A Axis. Int. J. Mol. Sci. 2022, 23, 1044. [Google Scholar] [CrossRef]
- Gori, M.; Giannitelli, S.M.; Zancla, A.; Mozetic, P.; Trombetta, M.; Merendino, N.; Rainer, A. Quercetin and hydroxytyrosol as modulators of hepatic steatosis: A NAFLD-on-a-chip study. Biotechnol. Bioeng. 2021, 118, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Zhou, N.; Wang, X.; Liu, Q.; Bai, Y.; Bai, Y.; Liu, Z.; Yang, H.; Zou, J.; et al. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed. Rep. 2013, 1, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol. 2018, 114, 52–60. [Google Scholar] [CrossRef]
- Inoue, T.; Fu, B.; Nishio, M.; Tanaka, M.; Kato, H.; Tanaka, M.; Itoh, M.; Yamakage, H.; Ochi, K.; Ito, A.; et al. Novel Therapeutic Potentials of Taxifolin for Obesity-Induced Hepatic Steatosis, Fibrogenesis, and Tumorigenesis. Nutrients 2023, 15, 350. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhao, T.; Liu, X.; Ding, Q.; Yang, J.; Bi, X.; Cheng, Z.; Ding, C.; Liu, W. Mechanism of Action of Dihydroquercetin in the Prevention and Therapy of Experimental Liver Injury. Molecules 2024, 29, 3537. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.Y.; Wu, M.; Shang, Y.; Jiang, M.; Liu, J.; Qiao, C.Y.; Ye, H.; Lin, Y.C.; Piao, M.H.; Sun, R.H.; et al. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis. Food Funct. 2021, 12, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol. 2017, 136, 136–149. [Google Scholar] [CrossRef]
- Hsu, M.C.; Guo, B.C.; Chen, C.H.; Hu, P.A.; Lee, T.S. Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway. J. Food Drug Anal. 2021, 29, 240–254. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, L.; Zhao, S.; Zhao, J.; Li, S.; Li, M. Apigenin attenuates atherosclerosis and non-alcoholic fatty liver disease through inhibition of NLRP3 inflammasome in mice. Sci. Rep. 2023, 13, 7996. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jia, W.; Zhang, G.; Liu, L.; Wang, L.; Wu, D.; Tao, J.; Yue, H.; Zhang, D.; Zhao, X. Extract of Silphium perfoliatum L. improve lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway. J. Ethnopharmacol. 2024, 327, 118054. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Huo, M.; Guo, Y.; Zhang, Y.; Xiao, X.; Xv, J.; Fang, L.; Li, T.; Wang, H.; Dong, S.; et al. Aqueous extract of Artemisia capillaris improves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Front. Pharmacol. 2022, 13, 1084435. [Google Scholar] [CrossRef] [PubMed]
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE 2013, 8, e83922. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Y.W., C. Y.; Chen, J.L.; Qiu J.l.; Du, C.X.; Wei, Y.H.; Hao, X.J.; Gu, W. Chemical constituents and bioactivitie of whole plant of Primulina eburnea from Guizhou. Chin. Tradit. Herb. Drugs 2023, 54, 3430–3437. [Google Scholar]
- Lu, J.L.; Wu, M.F.; Huang, M.Y. Chemical constituents from underground parts of Fallopia dumetorum. Chin. Tradit. Herb. Drugs 2023, 54, 473–483. [Google Scholar]
- Askarova, O.K.; Ganiev, A.A.; Bobakulov, K.M.; Siddikov, D.R.; Botirov, E.K.; Abdulalimov, O.; Turgunov, K.K.; Tashkhodzhaev, B. Flavonoids from the Aerial Part of Perovskia angustifolia. Chem. Nat. Compd. 2023, 59, 941–943. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jiang, G.H.; Sun, Q.H.; Luo, Q.; Liu, B.; Zhan, R.; Aisa, H.A.; Chen, Y.G. Compounds from the Leaves and Stems of Machilus salicina. Chem. Nat. Compd. 2023, 59, 765–767. [Google Scholar] [CrossRef]
- Linh, N.T.T.; Thuy, T.T.; Tam, N.T.; Cham, B.T.; Tam, K.T.; Sa, N.H.; Thao, D.T.; Chinh, V.T.; Anh, N.T.H. Chemical constituents of Tard. and their-glucosidase inhibition activities. Nat. Prod. Res. 2022, 36, 3229–3233. [Google Scholar] [CrossRef]
- Shang, X.Y.; Wang, Y.H.; Li, C.; Zhang, C.Z.; Yang, Y.C.; Shi, J.G. Acetylated flavonol diglucosides from. Phytochemistry 2006, 67, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Byun, E.; Jeong, G.S.; An, R.B.; Min, T.S.; Kim, Y.C. Tribuli Fructus Constituents Protect against Tacrine-Induced Cytotoxicity in HepG2 Cells. Arch. Pharmacal Res. 2010, 33, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.R.; Foo, L.Y. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 2000, 55, 263–267. [Google Scholar] [CrossRef]
- Zhu, T.C.; Zhu, Y.; Li, M.S.; Zhou, M.M.; Luo, J.Z.; Song, X.X.; Li, J.J.; Ouyang, Z.W.; Wang, F.F.; Qin, F. Chemical Constituents of Selaginella moellendorffii. Chem. Nat. Compd. 2022, 58, 122–124. [Google Scholar] [CrossRef]
- Li, F.; Yan, T.T.; Fu, Y.Y.; Zhang, N.L.; Wang, L.; Zhang, Y.B.; Du, J.; Liu, J.F. New Phenylpropanoid Glycosides from and Their Radical Scavenging Activities. Chem. Biodivers. 2021, 18. [Google Scholar] [CrossRef]
- Long, G.Q.; Wang, D.d.; Hu, G.S. Chemical constituents of Sophora flavescens and its antitumor activities in vitro. Chin. Tradit. Herb. Drugs 2022, 53, 978–984. [Google Scholar]
- Tabata, M.; Umetani, Y.; Ooya, M.; Tanaka, S. Glucosylation of Phenolic-Compounds by Plant-Cell Cultures. Phytochemistry 1988, 27, 809–813. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; La, M.; Wang, Z.; Huang, J.; Zhu, J.; Zhang, D. Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2025, 26, 50. https://doi.org/10.3390/ijms26010050
Lu Q, La M, Wang Z, Huang J, Zhu J, Zhang D. Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2025; 26(1):50. https://doi.org/10.3390/ijms26010050
Chicago/Turabian StyleLu, Qiqin, Majia La, Ziyang Wang, Jiaomei Huang, Jiahui Zhu, and Dejun Zhang. 2025. "Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease" International Journal of Molecular Sciences 26, no. 1: 50. https://doi.org/10.3390/ijms26010050
APA StyleLu, Q., La, M., Wang, Z., Huang, J., Zhu, J., & Zhang, D. (2025). Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 26(1), 50. https://doi.org/10.3390/ijms26010050