Genome-Wide Association Study to Identify Genetic Factors Linked to HBV Reactivation Following Liver Transplantation in HBV-Infected Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Genotyping, Imputation, and Quality Control in the GWAS
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, A.; Singh, S.P.; Kumar, A.; Saraswat, V.A.; Aggarwal, R.; Bangar, M.; Bhaumik, P.; Devarbhavi, H.; Dhiman, R.K.; Dixit, V.K.; et al. INASL Position Statements on Prevention, Diagnosis and Management of Hepatitis B Virus Infection in India: The Andaman Statements. J. Clin. Exp. Hepatol. 2018, 8, 58–80. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Kim, S.E.; Suk, K.T.; An, J.; Jeong, S.W.; Chung, W.J.; Kim, Y.J. Current status and strategies for hepatitis B control in Korea. Clin. Mol. Hepatol. 2017, 23, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Park, J.W. Epidemiology of liver cancer in South Korea. Clin. Mol. Hepatol. 2018, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Squadrito, G.; Cacciola, I.; Alibrandi, A.; Pollicino, T.; Raimondo, G. Impact of occult hepatitis B virus infection on the outcome of chronic hepatitis C. J. Hepatol. 2013, 59, 696–700. [Google Scholar] [CrossRef]
- Xie, M.; Rao, W.; Yang, T.; Deng, Y.; Zheng, H.; Pan, C.; Liu, Y.; Shen, Z.; Jia, J. Occult hepatitis B virus infection predicts de novo hepatitis B infection in patients with alcoholic cirrhosis after liver transplantation. Liver Int. 2015, 35, 897–904. [Google Scholar] [CrossRef]
- Cholongitas, E.; Papatheodoridis, G.V.; Burroughs, A.K. Liver grafts from anti-hepatitis B core positive donors: A systematic review. J. Hepatol. 2010, 52, 272–279. [Google Scholar] [CrossRef]
- Dickson, R.C.; Everhart, J.E.; Lake, J.R.; Wei, Y.; Seaberg, E.C.; Wiesner, R.H.; Zetterman, R.K.; Pruett, T.L.; Ishitani, M.B.; Hoofnagle, J.H. Transmission of hepatitis B by transplantation of livers from donors positive for antibody to hepatitis B core antigen. The National Institute of Diabetes and Digestive and Kidney Diseases Liver Transplantation Database. Gastroenterology 1997, 113, 1668–1674. [Google Scholar] [CrossRef]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated with Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef]
- Hardy, J.; Singleton, A. Genomewide association studies and human disease. N. Engl. J. Med. 2009, 360, 1759–1768. [Google Scholar] [CrossRef]
- Thio, C.L.; Mosbruger, T.L.; Kaslow, R.A.; Karp, C.L.; Strathdee, S.A.; Vlahov, D.; O’Brien, S.J.; Astemborski, J.; Thomas, D.L. Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. J. Virol. 2004, 78, 11258–11262. [Google Scholar] [CrossRef]
- Jiang, Z.; Feng, X.; Zhang, W.; Gao, F.; Ling, Q.; Zhou, L.; Xie, H.; Chen, Q.; Zheng, S. Recipient cytotoxic T lymphocyte antigen-4 +49 G/G genotype is associated with reduced incidence of hepatitis B virus recurrence after liver transplantation among Chinese patients. Liver Int. 2007, 27, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Ghaziani, T.; Sendi, H.; Shahraz, S.; Zamor, P.; Bonkovsky, H.L. Hepatitis B and liver transplantation: Molecular and clinical features that influence recurrence and outcome. World J. Gastroenterol. 2014, 20, 14142–14155. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, L.; Zhou, L.; Xie, H.; Wei, B.; Yin, S.; Ye, Y.; Fang, W.; Zheng, S. Association of interleukin 18 gene promoter polymorphisms with HBV recurrence after liver transplantation in Han Chinese population. Hepat. Mon. 2011, 11, 469–474. [Google Scholar] [PubMed]
- Zhou, L.; Wei, B.; Xing, C.; Xie, H.; Yu, X.; Wu, L.; Zheng, S. Polymorphism in 3′-untranslated region of toll-like receptor 4 gene is associated with protection from hepatitis B virus recurrence after liver transplantation. Transpl. Infect. Dis. 2011, 13, 250–258. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Chen, J.; Cai, B.; Ying, B.; Wang, L. Association of polymorphisms in interleukin-18 and interleukin-28B with hepatitis B recurrence after liver transplantation in Chinese Han population. Int. J. Immunogenet. 2012, 39, 346–352. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Peng, X.; Fan, J.; Peng, Z. Association between Recipient IL-15 Genetic Variant and the Prognosis of HBV-Related Hepatocellular Carcinoma after Liver Transplantation. Dis. Markers 2017, 2017, 1754696. [Google Scholar] [CrossRef]
- Lu, D.; Zhuo, J.; Yang, M.; Wang, C.; Pan, L.; Xie, H.; Xu, X.; Zheng, S. The association between donor genetic variations in one-carbon metabolism pathway genes and hepatitis B recurrence after liver transplantation. Gene 2018, 663, 121–125. [Google Scholar] [CrossRef]
- Wu, J.; Gu, J.; Shen, L.; Jia, X.; Yin, Y.; Chen, Y.; Wang, S.; Mao, L. The role of host cell Rab GTPases in influenza A virus infections. Future Microbiol. 2021, 16, 445–452. [Google Scholar] [CrossRef]
- Bos, J.L. ras oncogenes in human cancer: A review. Cancer Res. 1989, 49, 4682–4689. [Google Scholar]
- Sood, R.; Makalowska, I.; Carpten, J.D.; Robbins, C.M.; Stephan, D.A.; Connors, T.D.; Morgenbesser, S.D.; Su, K.; Pinkett, H.W.; Graham, C.L.; et al. The human RGL (RalGDS-like) gene: Cloning, expression analysis and genomic organization. Biochim. Biophys. Acta 2000, 1491, 285–288. [Google Scholar] [CrossRef]
- Murai, H.; Ikeda, M.; Kishida, S.; Ishida, O.; Okazaki-Kishida, M.; Matsuura, Y.; Kikuchi, A. Characterization of Ral GDP dissociation stimulator-like (RGL) activities to regulate c-fos promoter and the GDP/GTP exchange of Ral. J. Biol. Chem. 1997, 272, 10483–10490. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Arathy, D.S.; Issac, A.; Sreekumar, E. Differential gene expression analysis of in vitro duck hepatitis B virus infected primary duck hepatocyte cultures. Virol. J. 2011, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Funk, A.; Mhamdi, M.; Will, H.; Sirma, H. Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism. World J. Gastroenterol. 2007, 13, 91–103. [Google Scholar] [CrossRef]
- Prescott, J.E.; Osthus, R.C.; Lee, L.A.; Lewis, B.C.; Shim, H.; Barrett, J.F.; Guo, Q.; Hawkins, A.L.; Griffin, C.A.; Dang, C.V. A novel c-Myc-responsive gene, JPO1, participates in neoplastic transformation. J. Biol. Chem. 2001, 276, 48276–48284. [Google Scholar] [CrossRef]
- Goto, Y.; Hayashi, R.; Muramatsu, T.; Ogawa, H.; Eguchi, I.; Oshida, Y.; Ohtani, K.; Yoshida, K. JPO1/CDCA7, a novel transcription factor E2F1-induced protein, possesses intrinsic transcriptional regulator activity. Biochim. Biophys. Acta 2006, 1759, 60–68. [Google Scholar] [CrossRef]
- Osthus, R.C.; Karim, B.; Prescott, J.E.; Smith, B.D.; McDevitt, M.; Huso, D.L.; Dang, C.V. The Myc target gene JPO1/CDCA7 is frequently overexpressed in human tumors and has limited transforming activity in vivo. Cancer Res. 2005, 65, 5620–5627. [Google Scholar] [CrossRef]
- Gill, R.M.; Gabor, T.V.; Couzens, A.L.; Scheid, M.P. The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation. Mol. Cell Biol. 2013, 33, 498–513. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, C.; Zhang, H.; Ni, Q.; Han, S.; Wang, D.; Han, Z.; Li, X. CDCA7L promotes hepatocellular carcinoma progression by regulating the cell cycle. Int. J. Oncol. 2013, 43, 2082–2090. [Google Scholar] [CrossRef]
- Wen, J.; Wang, Y.; Gao, C.; Zhang, G.; You, Q.; Zhang, W.; Zhang, Z.; Wang, S.; Peng, G.; Shen, L. Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS-HIF-1α-AQP3-ROS loop in stomach mucosa: A potential novel mechanism for cancer pathogenesis. Oncogene 2018, 37, 3549–3561. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, Z.F.; Wang, K.J.; Feng, X.Y.; Lv, Z.J.; Li, Y.; Jian, Z.X. AQP8 inhibits colorectal cancer growth and metastasis by down-regulating PI3K/AKT signaling and PCDH7 expression. Am. J. Cancer Res. 2018, 8, 266–279. [Google Scholar]
- Dai, C.; Charlestin, V.; Wang, M.; Walker, Z.T.; Miranda-Vergara, M.C.; Facchine, B.A.; Wu, J.; Kaliney, W.J.; Dovichi, N.J.; Li, J.; et al. Aquaporin-7 Regulates the Response to Cellular Stress in Breast Cancer. Cancer Res. 2020, 80, 4071–4086. [Google Scholar] [CrossRef] [PubMed]
- Carbrey, J.M.; Gorelick-Feldman, D.A.; Kozono, D.; Praetorius, J.; Nielsen, S.; Agre, P. Aquaglyceroporin AQP9: Solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA 2003, 100, 2945–2950. [Google Scholar] [CrossRef] [PubMed]
- Agre, P.; Kozono, D. Aquaporin water channels: Molecular mechanisms for human diseases. FEBS Lett. 2003, 555, 72–78. [Google Scholar] [CrossRef]
- Liao, S.; Chen, H.; Liu, M.; Gan, L.; Li, C.; Zhang, W.; Lv, L.; Mei, Z. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging 2020, 12, 1527–1544. [Google Scholar] [CrossRef]
- Zhang, W.G.; Li, C.F.; Liu, M.; Chen, X.F.; Shuai, K.; Kong, X.; Lv, L.; Mei, Z.C. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett. 2016, 378, 111–119. [Google Scholar] [CrossRef]
- Zheng, X.; Li, C.; Yu, K.; Shi, S.; Chen, H.; Qian, Y.; Mei, Z. Aquaporin-9, Mediated by IGF2, Suppresses Liver Cancer Stem Cell Properties via Augmenting ROS/β-Catenin/FOXO3a Signaling. Mol. Cancer Res. 2020, 18, 992–1003. [Google Scholar] [CrossRef]
- Gao, C.; Shen, J.; Yao, L.; Xia, Z.; Liang, X.; Zhu, R.; Chen, Z. Low expression of AQP9 and its value in hepatocellular carcinoma. Transl. Cancer Res. 2021, 10, 1826–1841. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, J.; Ding, H.; Wang, Z.; Fang, J.; Fang, X.; Li, M.; Li, R.; Meng, J.; Liu, H.; et al. Integrated multiomics analysis reveals changes in liver physiological function in AQP9 gene knockout mice. Int. J. Biol. Macromol. 2023, 245, 125459. [Google Scholar] [CrossRef]
- Wang, C.; Xie, H.; Lu, D.; Ling, Q.; Jin, P.; Li, H.; Zhuang, R.; Xu, X.; Zheng, S. The MTHFR polymorphism affect the susceptibility of HCC and the prognosis of HCC liver transplantation. Clin. Transl. Oncol. 2018, 20, 448–456. [Google Scholar] [CrossRef]
- Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen, R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am. J. Hum. Genet. 1995, 56, 1052–1059. [Google Scholar]
- Hajiesmaeil, M.; Tafvizi, F.; Sarmadi, S. The effect of methylenetetrahydrofolate reductase polymorphisms on susceptibility to human papilloma virus infection and cervical cancer. Infect. Genet. Evol. 2016, 46, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhao, W.; Dai, D.; Li, C. Associations between MTHFR Ala222Val polymorphism and risks of hepatitis and hepatitis-related liver cancer: A meta-analysis. Tumour Biol. 2014, 35, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Steluti, J.; Carvalho, A.M.; Carioca, A.A.F.; Miranda, A.; Gattás, G.J.F.; Fisberg, R.M.; Marchioni, D.M. Genetic Variants Involved in One-Carbon Metabolism: Polymorphism Frequencies and Differences in Homocysteine Concentrations in the Folic Acid Fortification Era. Nutrients 2017, 9, 539. [Google Scholar] [CrossRef]
- Lau, K.C.K.; Osiowy, C.; Giles, E.; Lusina, B.; van Marle, G.; Burak, K.W.; Coffin, C.S. Deep sequencing shows low-level oncogenic hepatitis B virus variants persists post-liver transplant despite potent anti-HBV prophylaxis. J. Viral Hepat. 2018, 25, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Coffin, C.S.; Mulrooney-Cousins, P.M.; Peters, M.G.; van Marle, G.; Roberts, J.P.; Michalak, T.I.; Terrault, N.A. Molecular characterization of intrahepatic and extrahepatic hepatitis B virus (HBV) reservoirs in patients on suppressive antiviral therapy. J. Viral Hepat. 2011, 18, 415–423. [Google Scholar] [CrossRef]
- Kim, J.H.; Sinn, D.H.; Kang, W.; Gwak, G.Y.; Paik, Y.H.; Choi, M.S.; Lee, J.H.; Koh, K.C.; Paik, S.W. Low-level viremia and the increased risk of hepatocellular carcinoma in patients receiving entecavir treatment. Hepatology 2017, 66, 335–343. [Google Scholar] [CrossRef]
- Ashouri, S.; Khor, S.S.; Hitomi, Y.; Sawai, H.; Nishida, N.; Sugiyama, M.; Kawai, Y.; Posuwan, N.; Tangkijvanich, P.; Komolmit, P.; et al. Genome-Wide Association Study for Chronic Hepatitis B Infection in the Thai Population. Front. Genet. 2022, 13, 887121. [Google Scholar] [CrossRef]
- Li, D.; Hamadalnil, Y.; Tu, T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024, 16, 1361. [Google Scholar] [CrossRef]
- Jeong, Y.; Han, J.; Jang, K.L. Reactive Oxygen Species Induction by Hepatitis B Virus: Implications for Viral Replication in p53-Positive Human Hepatoma Cells. Int. J. Mol. Sci. 2024, 25, 6606. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, H.; Yang, G.; Yun, H.; Zhao, M.; Liu, Z.; Zhao, L.; Geng, Y.; Liu, L.; Wang, J.; et al. IFN-α confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin. Epigenet. 2020, 12, 135. [Google Scholar] [CrossRef]
- Hu, K.; Zai, W.; Xu, M.; Wang, H.; Song, X.; Huang, C.; Liu, J.; Chen, J.; Deng, Q.; Yuan, Z.; et al. Augmented epigenetic repression of hepatitis B virus covalently closed circular DNA by interferon-α and small-interfering RNA synergy. mBio 2024, 15, e0241524. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.J.; Yang, H.I.; Hu, H.H.; Liu, J.; Lin, Y.L.; Chang, C.L.; Luo, W.S.; Jen, C.L.; Chen, C.J. HBV genotype-dependent association of HLA variants with the serodecline of HBsAg in chronic hepatitis B patients. Sci. Rep. 2023, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Guha Roy, D.; Bhushan, A.; Bharatiya, S.; Chinnaswamy, S. Functional genetic variants of the IFN-λ3 (IL28B) gene and transcription factor interactions on its promoter. Cytokine 2021, 142, 155491. [Google Scholar] [CrossRef] [PubMed]
- Schollmeier, A.; Glitscher, M.; Hildt, E. Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int. J. Mol. Sci. 2023, 24, 4964. [Google Scholar] [CrossRef]
- Dossaji, Z.; Haque, L.; Khattak, A.; Hsu, M.; Gish, R. A Review of Hepatitis B Reactivation Risk on Immunosuppressants with a Focus on Newer Immunomodulators. Curr. Hepatol. Rep. 2024, 23, 253–267. [Google Scholar] [CrossRef]
- Jilg, N.; Baumert, T.F. Unfolding the mechanism of hepatocyte injury of HBV precore and core promoter variants. Hepatology 2023, 78, 702–705. [Google Scholar] [CrossRef]
- Reddy, K.R.; Beavers, K.L.; Hammond, S.P.; Lim, J.K.; Falck-Ytter, Y.T. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology 2015, 148, 215–219. [Google Scholar] [CrossRef]
- Park, G.C.; Hwang, S.; Kim, M.S.; Jung, D.H.; Song, G.W.; Lee, K.W.; Kim, J.M.; Lee, J.G.; Ryu, J.H.; Choi, D.L.; et al. Hepatitis B Prophylaxis after Liver Transplantation in Korea: Analysis of the KOTRY Database. J. Korean Med. Sci. 2020, 35, e36. [Google Scholar] [CrossRef]
- Orfanidou, A.; Papatheodoridis, G.V.; Cholongitas, E. Antiviral prophylaxis against hepatitis B recurrence after liver transplantation: Current concepts. Liver Int. 2021, 41, 1448–1461. [Google Scholar] [CrossRef]
- Yang, J.; Jeong, J.C.; Lee, J.; Kim, Y.H.; Paik, H.C.; Kim, J.J.; Park, H.Y.; Kim, M.S.; Ahn, C. Design and Methods of the Korean Organ Transplantation Registry. Transplant. Direct 2017, 3, e191. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [Google Scholar] [CrossRef]
Chromosome | Position | rs Number | Closest Gene a | Allele | MAF | OR b (Dis) | p c (Dis) | OR b (Rep) | p c (Rep) |
---|---|---|---|---|---|---|---|---|---|
1q25.3 | 183743399 | rs147360905 | RGL1 | C > T | 0.013 | 21.92 (7.82–61.44) | 4.32 × 10−9 | 9.71 (0.89–105.75) | 0.062 |
183659995 | rs139293187 | RGL1 | C > T | 0.013 | 20.96 (7.50–58.52) | 6.34 × 10−9 | 9.71 (0.89–105.75) | 0.062 | |
183600161 | rs144590902 | RGL1 | T > C | 0.013 | 20.96 (7.49–58.43) | 6.54 × 10−9 | 9.71 (0.89–105.75) | 0.062 |
Entire Cohort (n = 1226) | Discovery Cohort (n = 909) | Replication Cohort (n = 317) | |
---|---|---|---|
HBV reactivation, n (%) | 26 (2) | 21 (2) | 5 (2) |
No HBV reactivation, n (%) | 1200 (98) | 888 (98) | 312 (98) |
Male, n (%) | 994 (81) | 736 (81) | 258 (81) |
Age, year (range) | 55 (23–76) | 54 (23–74) | 56 (29–76) |
Donor type | |||
Living, related, n (%) | 1001 (82) | 745 (82) | 256 (81) |
Living, unrelated, n (%) | 206 (17) | 148 (16) | 58 (18) |
Dual graft, n (%) | 19 (2) | 16 (2) | 3 (1) |
Donor serology | |||
HBsAg-negative, n (%) | 1225 (100) | 908 (100) | 317 (100) |
Anti-HBs-positive, n (%) | 862 (70) | 627 (69) | 235 (74) |
Anti-HBc-negative, n (%) | 929 (76) | 691 (76) | 238 (75) |
Recipient serology | |||
HBsAg-positive, n (%) | 1129 (92) | 843 (93) | 286 (90) |
Anti-HBs-negative, n (%) | 1124 (92) | 842 (93) | 282 (89) |
Anti-HBc-positive, n (%) | 1162 (95) | 865 (95) | 297 (94) |
Post-transplant HBV prophylaxis | |||
None, n (%) | 9 (1) | 4 (0) | 5 (2) |
HBIG only, n (%) | 383 (31) | 316 (35) | 67 (21) |
Antiviral therapy only, n (%) | 10 (1) | 2 (0) | 8 (3) |
HBIG + antiviral therapy, n (%) | 824 (67) | 587 (65) | 237 (75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, D.Y.; Gee, H.Y.; Yu, H.C.; Yang, J.D.; Hwang, S.; Choi, Y.; Lee, J.G.; Rhu, J.; Choi, D.; et al. Genome-Wide Association Study to Identify Genetic Factors Linked to HBV Reactivation Following Liver Transplantation in HBV-Infected Patients. Int. J. Mol. Sci. 2025, 26, 259. https://doi.org/10.3390/ijms26010259
Park J, Kim DY, Gee HY, Yu HC, Yang JD, Hwang S, Choi Y, Lee JG, Rhu J, Choi D, et al. Genome-Wide Association Study to Identify Genetic Factors Linked to HBV Reactivation Following Liver Transplantation in HBV-Infected Patients. International Journal of Molecular Sciences. 2025; 26(1):259. https://doi.org/10.3390/ijms26010259
Chicago/Turabian StylePark, Joonhong, Dong Yun Kim, Heon Yung Gee, Hee Chul Yu, Jae Do Yang, Shin Hwang, YoungRok Choi, Jae Geun Lee, Jinsoo Rhu, Donglak Choi, and et al. 2025. "Genome-Wide Association Study to Identify Genetic Factors Linked to HBV Reactivation Following Liver Transplantation in HBV-Infected Patients" International Journal of Molecular Sciences 26, no. 1: 259. https://doi.org/10.3390/ijms26010259
APA StylePark, J., Kim, D. Y., Gee, H. Y., Yu, H. C., Yang, J. D., Hwang, S., Choi, Y., Lee, J. G., Rhu, J., Choi, D., You, Y. K., Ryu, J. H., Nah, Y. W., Kim, B. -W., Kim, D. -S., Cho, J. Y., & Group, T. K. O. T. R. S. (2025). Genome-Wide Association Study to Identify Genetic Factors Linked to HBV Reactivation Following Liver Transplantation in HBV-Infected Patients. International Journal of Molecular Sciences, 26(1), 259. https://doi.org/10.3390/ijms26010259