Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. ADCs’ Structure: The Antibody, the Linker, and the Payload
3. ADCs in HER2-Positive NSCLC
3.1. Trastuzumab Deruxtecan
3.2. Trastuzumab Emtasine
4. ADCs in TROP2 NSCLC
4.1. Datopotomab Deruxtecan (Dato-DXd)
4.2. Sacituzumab Govitecan
5. ADCs in HER3 NSCLC
Patritumab Deruxtecan
6. ADCs in MET NSCLC
Telisotuzumab Vedotin
7. ADCs in CEACAM5 NSCLC
Tusamitamab Ravtansine
8. Discussion
9. Conclusions
Funding
Conflicts of Interest
Abbreviations
ADC | Antibody–drug conjugates |
NSCLC | Non-small cell lung cancer |
HER2 | Human epidermal growth factor receptor 2 |
HER3 | Human epidermal growth factor receptor 3 |
TROP2 | Trophoblast cell surface antigen 2 |
C-MET | Mesenchymal–epithelial transition factor |
CEACAM5 | Carcinoembryonic antigen-related cell adhesion molecule 5 |
ICI | Immune checkpoint inhibitor |
T-DM1 | Trastuzumab emtansine |
T-DXd | Trastuzumab deruxtecan |
IHC | Immunohistochemistry |
DAR | Drug-to-antibody ratio |
NK | Natural killer cell |
ERBB2 | Erb-b2 receptor tyrosine kinase 2 |
EGFR | Epidermal growth factor receptor |
HER1 | Human epidermal growth factor receptor 1 |
HER4 | Human epidermal growth factor receptor 4 |
AGA | Actionable genomic alteration |
TKI | Tyrosine kinase inhibitor |
NGS | Next-generation sequencing |
ORR | Objective response rate |
CR | Complete response |
PR | Partial response |
mPFS | Median progression-free survival |
CI | Confidence interval |
mOS | Median overall survival |
CNS | Central nervous system |
DCR | Disease control rate |
mDOR | Median duration of response |
AEs | Adverse event |
TRAE | Treatment-related adverse effect |
ILD | Interstitial Lung Disease |
DFS | Disease-free survival |
ALK | Anaplastic Lymphoma Kinase |
ROS1 | Proto-oncogene tyrosine-protein kinase |
NTRK | Neurotrophic tyrosine receptor kinase |
BRAF | V-raf murine sarcoma viral oncogene homolog B1 |
MET | MET proto-oncogene receptor tyrosine kinase |
RET | Rearranged during transfection |
CT | Chemotherapy |
RCT | Randomized controlled trial |
HR | Hazard ratio |
PD-L1 | Programmed Cell Death Ligand 1 |
UGT1A1 | UDP glucuronosyltransferase family 1 member A1 |
SG | Sacituzumab govitecan |
PI3K | Phosphatidylinositol-3 kinase |
PBC | Platinum-based chemotherapy |
mTOR | Mammalian target of rapamycin |
ERK | Extracellular signal-regulated kinases |
RP2D | Recommended dose for phase 2 |
LD | Loading dose |
IDMC | Independent Data Monitoring Committee |
ctDNA | Circulating tumor DNA |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA A Cancer J Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015, 28, 690–714. [Google Scholar] [CrossRef] [PubMed]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non–Small-Cell Lung Cancer: 5-Year Outcomes From the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Langer, C.J.; Gadgeel, S.; Papadimitrakopoulou, V.A.; Patnaik, A.; Powell, S.F.; Gentzler, R.D.; Martins, R.G.; Stevenson, J.P.; Jalal, S.I.; et al. 24-Month Overall Survival from KEYNOTE-021 Cohort G: Pemetrexed and Carboplatin with or without Pembrolizumab as First-Line Therapy for Advanced Nonsquamous Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2019, 14, 124–129. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z.; Liu, S.; Lou, X.; Liu, P.; Xie, H.; Zhang, S.; Liu, X.; Zhuo, B.; Huang, H. Landscape of Clinical Drug Development of ADCs Used for the Pharmacotherapy of Cancers: An Overview of Clinical Trial Registry Data from 2002 to 2022. BMC Cancer 2024, 24, 898. [Google Scholar] [CrossRef]
- Rosner, S.; Valdivia, A.; Hoe, H.J.; Murray, J.C.; Levy, B.; Felip, E.; Solomon, B.J. Antibody-Drug Conjugates for Lung Cancer: Payloads and Progress. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389968. [Google Scholar] [CrossRef]
- Do Pazo, C.; Nawaz, K.; Webster, R.M. The Oncology Market for Antibody–Drug Conjugates. Nat. Rev. Drug Discov. 2021, 20, 583–584. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Alexander, P.; Weitzel, K.; Linderholm, A.; Haskins, W.E.; Ghone, S.; Chamow, S.M. Manufacturing Challenges of Therapeutic Antibody–Drug Conjugates, 2023. BioProcess International. Available online: https://www.bioprocessintl.com/sponsored-content/manufacturing-challenges-of-therapeutic-antibody-drug-conjugates (accessed on 15 October 2024).
- Sigorski, D.; Różanowski, P.; Iżycka-Świeszewska, E.; Wiktorska, K. Antibody–Drug Conjugates in Uro-Oncology. Targ. Oncol. 2022, 17, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Marks, S.; Naidoo, J. Antibody Drug Conjugates in Non-Small Cell Lung Cancer: An Emerging Therapeutic Approach. Lung Cancer 2022, 163, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Xiao, D.; Xie, F.; Liu, L.; Wang, Y.; Fan, S.; Zhou, X.; Li, S. Antibody–Drug Conjugates: Recent Advances in Linker Chemistry. Acta Pharm. Sin. B 2021, 11, 3889–3907. [Google Scholar] [CrossRef] [PubMed]
- ADC Review Editorial Team. What are Stable Linkers?, 2019; ADC Review. Available online: https://www.adcreview.com/the-review/what-are-stable-linkers/ (accessed on 15 October 2024).
- Díaz-Rodríguez, E.; Gandullo-Sánchez, L.; Ocaña, A.; Pandiella, A. Novel ADCs and Strategies to Overcome Resistance to Anti-HER2 ADCs. Cancers 2021, 14, 154. [Google Scholar] [CrossRef]
- Zuo, S. Measuring Drug-to-Antibody Ratio (DAR) for Antibody-Drug Conjugates (ADCs) with UHPLCQ-TOF. 2016. Available online: https://www.semanticscholar.org/paper/Measuring-Drug-to-Antibody-Ratio-(-DAR-)-for-(-ADCs-Zuo/459658132a71511e0e7b24afad2f9c806814c72d (accessed on 15 October 2024).
- Tang, Y.; Tang, F.; Yang, Y.; Zhao, L.; Zhou, H.; Dong, J.; Huang, W. Real-Time Analysis on Drug-Antibody Ratio of Antibody-Drug Conjugates for Synthesis, Process Optimization, and Quality Control. Sci. Rep. 2017, 7, 7763. [Google Scholar] [CrossRef]
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the Potential of Antibody–Drug Conjugates for Cancer Therapy. Nat. Rev. Clin. Oncol. 2021, 18, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB Signalling Network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
- Rubin, I.; Yarden, Y. The Basic Biology of HER2. Ann. Oncol. 2001, 12, S3–S8. [Google Scholar] [CrossRef]
- Passaro, A.; Jänne, P.A.; Peters, S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J. Clin. Oncol. 2023, 41, 3747–3761. [Google Scholar] [CrossRef] [PubMed]
- Khasraw, M.; Yalamanchili, P.; Santhanagopal, A.; Wu, C.; Salas, M.; Meng, J.; Karnoub, M.; Esker, S.; Felip, E. Clinical Management of Patients with Non-Small Cell Lung Cancer, Brain Metastases, and Actionable Genomic Alterations: A Systematic Literature Review. Adv. Ther. 2024, 41, 1815–1842. [Google Scholar] [CrossRef]
- Coleman, N.; Yap, T.A.; Heymach, J.V.; Meric-Bernstam, F.; Le, X. Antibody-Drug Conjugates in Lung Cancer: Dawn of a New Era? NPJ Precis. Oncol. 2023, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Jebbink, M.; De Langen, A.J.; Boelens, M.C.; Monkhorst, K.; Smit, E.F. The Force of HER2—A Druggable Target in NSCLC? Cancer Treat. Rev. 2020, 86, 101996. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, Y.; Li, H.; Fan, Y. Targeting HER2 Alterations in Non-Small Cell Lung Cancer: Therapeutic Breakthrough and Challenges. Cancer Treat. Rev. 2023, 114, 102520. [Google Scholar] [CrossRef]
- Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in Non-Small-Cell Lung Cancer (NSCLC): A Glimpse of Hope? An Updated Review on Therapeutic Strategies in NSCLC Harbouring HER2 Alterations. ESMO Open 2021, 6, 100260. [Google Scholar] [CrossRef] [PubMed]
- Nakada, T.; Sugihara, K.; Jikoh, T.; Abe, Y.; Agatsuma, T. The Latest Research and Development into the Antibody–Drug Conjugate, [Fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Chem. Pharm. Bull. 2019, 67, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2 -Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Smit, E.F.; Felip, E.; Uprety, D.; Nagasaka, M.; Nakagawa, K.; Paz-Ares Rodríguez, L.; Pacheco, J.M.; Li, B.T.; Planchard, D.; Baik, C.; et al. Trastuzumab Deruxtecan in Patients with Metastatic Non-Small-Cell Lung Cancer (DESTINY-Lung01): Primary Results of the HER2-Overexpressing Cohorts from a Single-Arm, Phase 2 Trial. Lancet Oncol. 2024, 25, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.-W.; Planchard, D.; Ahn, M.-J.; Smit, E.F.; De Langen, A.J.; Pérol, M.; et al. Trastuzumab Deruxtecan in Patients With HER2 -Mutant Metastatic Non–Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Ahn, M.-J.; Goto, K.; Mazieres, J.; Padda, S.K.; William, W.N.; Wu, Y.-L.; Dearden, S.; Ragone, A.; Viglianti, N.; et al. Open-Label, Randomized, Multicenter, Phase 3 Study Evaluating Trastuzumab Deruxtecan (T-DXd) as First-Line Treatment in Patients with Unresectable, Locally Advanced, or Metastatic Non–Small Cell Lung Cancer (NSCLC) Harboring HER2 Exon 19 or 20 Mutations (DESTINY-Lung04). J. Clin. Oncol. 2022, 40, TPS9137. [Google Scholar] [CrossRef]
- He, J.; Yu, S.-F.; Yee, S.; Kaur, S.; Xu, K. Characterization of in Vivo Biotransformations for Trastuzumab Emtansine by High-Resolution Accurate-Mass Mass Spectrometry. mAbs 2018, 10, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Hotta, K.; Aoe, K.; Kozuki, T.; Ohashi, K.; Ninomiya, K.; Ichihara, E.; Kubo, T.; Ninomiya, T.; Chikamori, K.; Harada, D.; et al. A Phase II Study of Trastuzumab Emtansine in HER2-Positive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 273–279. [Google Scholar] [CrossRef]
- Peters, S.; Stahel, R.; Bubendorf, L.; Bonomi, P.; Villegas, A.; Kowalski, D.M.; Baik, C.S.; Isla, D.; Carpeno, J.D.C.; Garrido, P.; et al. Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non–Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clin. Cancer Res. 2019, 25, 64–72. [Google Scholar] [CrossRef]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients With HER2 -Mutant Lung Cancers: Results From a Phase II Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef] [PubMed]
- Dum, D.; Taherpour, N.; Menz, A.; Höflmayer, D.; Völkel, C.; Hinsch, A.; Gorbokon, N.; Lennartz, M.; Hube-Magg, C.; Fraune, C.; et al. Trophoblast Cell Surface Antigen 2 Expression in Human Tumors: A Tissue Microarray Study on 18,563 Tumors. Pathobiology 2022, 89, 245–258. [Google Scholar] [CrossRef]
- Pak, M.G.; Shin, D.H.; Lee, C.H.; Lee, M.K. Significance of EpCAM and TROP2 Expression in Non-Small Cell Lung Cancer. World J. Surg. Oncol. 2012, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Chen, M.-B.; Zhou, L.-N.; Tang, M.; Liu, C.-Y.; Lu, P.-H. Impact of TROP2 Expression on Prognosis in Solid Tumors: A Systematic Review and Meta-Analysis. Sci Rep 2016, 6, 33658. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ahn, M.-J.; Lisberg, A.E.; Kitazono, S.; Cho, B.C.; Blumenschein, G.; Shum, E.; Pons-Tostivint, E.; Goto, Y.; Yoh, K.; et al. 1314MO TROPION-Lung05: Datopotamab Deruxtecan (Dato-DXd) in Previously Treated Non-Small Cell Lung Cancer (NSCLC) with Actionable Genomic Alterations (AGAs). Ann. Oncol. 2023, 34, S755–S756. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Tanaka, K.; Paz-Ares, L.; Cornelissen, R.; Girard, N.; Pons-Tostivint, E.; Vicente Baz, D.; Sugawara, S.; Cobo, M.; Pérol, M.; et al. Datopotamab Deruxtecan Versus Docetaxel for Previously Treated Advanced or Metastatic Non–Small Cell Lung Cancer: The Randomized, Open-Label Phase III TROPION-Lung01 Study. J. Clin. Oncol. 2024, JCO-24-01544. [Google Scholar] [CrossRef] [PubMed]
- Sands, J.; Lisberg, A.; Okamoto, I.; Paz-Ares, L.; Cornelissen, R.; Girard, N.; Pons-Tostivint, E.; Vicente, D.; Sugawara, S.; Cobo Dols, M.; et al. OA08.03 Datopotamab Deruxtecan Vs Docetaxel in Patients with Non-Small Cell Lung Cancer: Final Overall Survival from TROPION-Lung01. J. Thorac. Oncol. 2024, 19, S24. [Google Scholar] [CrossRef]
- Okamoto, I.; Kuyama, S.; Girard, N.; Lu, S.; Franke, F.; Li, Z.; Danchaivijitr, P.; Han, J.-Y.; Sun, J.-M.; Sugawara, S.; et al. TROPION-Lung07: Phase III Study of Dato-DXd + Pembrolizumab ± Platinum-Based Chemotherapy as 1L Therapy for Advanced Non-Small-Cell Lung Cancer. Future Oncol. 2024, 20, 2927–2936. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.P.; Felip, E.; Reck, M.; Yang, J.C.; Cappuzzo, F.; Yoneshima, Y.; Zhou, C.; Rawat, S.; Xie, J.; Basak, P.; et al. TROPION-Lung08: Phase III Study of Datopotamab Deruxtecan plus Pembrolizumab as First-Line Therapy for Advanced NSCLC. Future Oncol. 2023, 19, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Messersmith, W.A.; Kio, E.A.; Berlin, J.D.; Vahdat, L.; Masters, G.A.; Moroose, R.; Santin, A.D.; Kalinsky, K.; Picozzi, V.; et al. Sacituzumab Govitecan, a Trop-2-Directed Antibody-Drug Conjugate, for Patients with Epithelial Cancer: Final Safety and Efficacy Results from the Phase I/II IMMU-132-01 Basket Trial. Ann. Oncol. 2021, 32, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.G.; Juan-Vidal, O.; Mountzios, G.S.; Felip, E.; Reinmuth, N.; De Marinis, F.; Girard, N.; Patel, V.M.; Takahama, T.; Owen, S.P.; et al. Sacituzumab Govitecan Versus Docetaxel for Previously Treated Advanced or Metastatic Non–Small Cell Lung Cancer: The Randomized, Open-Label Phase III EVOKE-01 Study. J. Clin. Oncol. 2024, 42, 2860–2872. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Liu, S.V.; Owen, S.P.; Reck, M.; Neal, J.W.; Vicente, D.; Mekan, S.F.; Safavi, F.; Fernando, N.; Mok, T.S.K. EVOKE-02: A Phase 2 Study of Sacituzumab Govitecan (SG) plus Pembrolizumab (Pembro) with or without Platinum Chemotherapy in First-Line Metastatic Non–Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2022, 40, TPS9146. [Google Scholar] [CrossRef]
- Moskovitz, M.; Okamoto, I.; Chen, P.; Patel, J.; Mekan, S.; Pietanza, M.C.; Zhu, Y.; Eiras, R.; Tiseo, M. Abstract CT067: Pembrolizumab with and without Sacituzumab Govitecan as First-Line Treatment for Metastatic Non-Small-Cell Lung Cancer (NSCLC) with PD-L1 TPS ≥50%: Phase 3 KEYNOTE-D46/EVOKE-03 Study. Cancer Res. 2023, 83, CT067. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.; Zhang, R.; Xing, J.; Wu, Y.; Chen, W.; Liang, B.; Xing, D.; Xu, J.; Zhang, M. The Clinical Development of Antibody-Drug Conjugates for Non-Small Cell Lung Cancer Therapy. Front. Immunol. 2023, 14, 1335252. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.; Jänne, P.A.; Nishio, M.; Novello, S.; Reck, M.; Steuer, C.; Wu, Y.-L.; Fougeray, R.; Fan, P.-D.; Meng, J.; et al. HERTHENA-Lung02: Phase III Study of Patritumab Deruxtecan in Advanced EGFR -Mutated NSCLC after a Third-Generation EGFR TKI. Future Oncol. 2024, 20, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Yonesaka, K. HER2-/HER3-Targeting Antibody—Drug Conjugates for Treating Lung and Colorectal Cancers Resistant to EGFR Inhibitors. Cancers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Koyama, K.; Kamai, Y.; Hirotani, K.; Ogitani, Y.; Zembutsu, A.; Abe, M.; Kaneda, Y.; Maeda, N.; Shiose, Y.; et al. A Novel HER3-Targeting Antibody–Drug Conjugate, U3-1402, Exhibits Potent Therapeutic Efficacy through the Delivery of Cytotoxic Payload by Efficient Internalization. Clin. Cancer Res. 2019, 25, 7151–7161. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Goto, Y.; Hayashi, H.; Felip, E.; Chih-Hsin Yang, J.; Reck, M.; Yoh, K.; Lee, S.-H.; Paz-Ares, L.; Besse, B.; et al. HERTHENA-Lung01, a Phase II Trial of Patritumab Deruxtecan (HER3-DXd) in Epidermal Growth Factor Receptor–Mutated Non–Small-Cell Lung Cancer After Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. J. Clin. Oncol. 2023, 41, 5363–5375. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.; He, T.; Gadgeel, S.; Halmos, B. MET/HGF Pathway Activation as a Paradigm of Resistance to Targeted Therapies. Ann. Transl. Med. 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Cuellar, S. The Current Landscape for METex14 Skipping Mutations in Non–Small Cell Lung Cancer. J. Adv. Pract. Oncol. 2022, 13, 539–544. [Google Scholar] [CrossRef]
- Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; et al. ABBV-399, a c-Met Antibody–Drug Conjugate That Targets Both MET –Amplified and c-Met–Overexpressing Tumors, Irrespective of MET Pathway Dependence. Clin. Cancer Res. 2017, 23, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Weekes, C.D.; Nemunaitis, J.; Ramanathan, R.K.; Heist, R.S.; Morgensztern, D.; Angevin, E.; Bauer, T.M.; Yue, H.; Motwani, M.; et al. First-in-Human Phase I, Dose-Escalation and -Expansion Study of Telisotuzumab Vedotin, an Antibody–Drug Conjugate Targeting c-Met, in Patients With Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 3298–3306. [Google Scholar] [CrossRef] [PubMed]
- Reuss, J.E.; Gosa, L.; Liu, S.V. Antibody Drug Conjugates in Lung Cancer: State of the Current Therapeutic Landscape and Future Developments. Clin. Lung Cancer 2021, 22, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Bar, J.; Horinouchi, H.; Goldman, J.; Moiseenko, F.; Filippova, E.; Cicin, I.; Ciuleanu, T.; Daaboul, N.; Liu, C.; et al. Telisotuzumab Vedotin Monotherapy in Patients With Previously Treated C-Met Protein–Overexpressing Advanced Nonsquamous EGFR -Wildtype Non–Small Cell Lung Cancer in the Phase II LUMINOSITY Trial. J. Clin. Oncol. 2024, 42, 3000–3011. [Google Scholar] [CrossRef] [PubMed]
- A Study to Assess Disease Activity and Adverse Events of Intravenous (IV) Telisotuzumab Vedotin Compared to IV Docetaxel in Adult Participants With Previously Treated Non-Squamous Non-Small Cell Lung Cancer (NSCLC), ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT04928846 (accessed on 3 November 2024).
- Camidge, D.R.; Barlesi, F.; Goldman, J.W.; Morgensztern, D.; Heist, R.; Vokes, E.; Spira, A.; Angevin, E.; Su, W.-C.; Hong, D.S.; et al. Phase Ib Study of Telisotuzumab Vedotin in Combination With Erlotinib in Patients With C-Met Protein–Expressing Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2023, 41, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Huffman, K.E.; Chu, M.; Zhang, Y.; Minna, J.D.; Yu, Y. Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer. J. Proteome Res. 2016, 15, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Bedard, P.L.; Bang, Y.-J.; Vieito, M.; Ryu, M.-H.; Fagniez, N.; Chadjaa, M.; Soufflet, C.; Masson, N.; Gazzah, A. Tusamitamab Ravtansine in Patients with Advanced Solid Tumors: Phase I Study of Safety, Pharmacokinetics, and Antitumor Activity Using Alternative Dosing Regimens. Cancer Res. Commun. 2023, 3, 1662–1671. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Abdayem, P.; Adjei, A.A.; Planchard, D. Antibody-Drug Conjugates: A Promising Novel Therapeutic Approach in Lung Cancer. Lung Cancer 2022, 163, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, J. CARMEN-LC03: Tusamitamab Ravtansine vs Docetaxel in Previously Treated Advanced Nonsquamous NSCLC, 2024. The ASCO Post. Available online: https://ascopost.com/news/october-2024/carmen-lc03-tusamitamab-ravtansine-vs-docetaxel-in-previously-treated-advanced-nonsquamous-nsclc/ (accessed on 4 November 2024).
- Dy, G.K.; Cho, B.C.; Oliveira, J.; Isla Casado, M.D.; Blasco Cordellat, A.; Zemanova, M.; Roubec, J.; Vila Martinez, L.; Charbonnier, L.; Soufflet, C.; et al. 1411P Tusamitamab Ravtansine plus Ramucirumab as 2L Therapy or beyond in Patients with Metastatic NSq NSCLC and High CEACAM5 Expression (CARMEN-LC04). Ann. Oncol. 2023, 34, S807. [Google Scholar] [CrossRef]
- Rodriguez Abreu, D.; Veillon, R.; Ravoire, M.; Gonzalez-Larriba, J.L.; Orlandi, F.J.; Nagy, T.; Paz-Ares, L.G.; Huang, C.H.; Roubec, J.; Isambert, N.; et al. 1311P Phase II, Open-Label Study of Frontline Tusamitamab Ravtansine with Pembrolizumab ± Chemotherapy in Advanced Non-Squamous Non-Small Cell Lung Cancer: Updated Results from CARMEN-LC05 Trial. Ann. Oncol. 2024, 35, S834. [Google Scholar] [CrossRef]
- Verma, S.; Breadner, D.; Raphael, J. ‘Targeting’ Improved Outcomes with Antibody-Drug Conjugates in Non-Small Cell Lung Cancer—An Updated Review. Curr. Oncol. 2023, 30, 4329–4350. [Google Scholar] [CrossRef] [PubMed]
- Reuss, J.E.; Rosner, S.; Levy, B.P. Antibody-Drug Conjugates in Advanced Lung Cancer: Is This a New Frontier? Clin. Adv. Hematol. Oncol. 2024, 22, 217–226. [Google Scholar] [PubMed]
- Rugo, H.S.; Crossno, C.L.; Gesthalter, Y.B.; Kelley, K.; Moore, H.N.; Rimawi, M.F.; Westbrook, K.E.; Buys, S.S. Real-World Perspectives and Practices for Pneumonitis/Interstitial Lung Disease Associated With Trastuzumab Deruxtecan Use in Human Epidermal Growth Factor Receptor 2–Expressing Metastatic Breast Cancer. J. Clin. Oncol. Oncol. Pract. 2023, 19, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Loriot, Y.; Matsubara, N.; Huddart, R.A.; Houede, N.; Laguerre, B.; Guadalupi, V.; Ku, J.H.; Triantos, S.; Akapame, S.; Deprince, K.; et al. Erdafitinib (Erda) vs Chemotherapy (Chemo) in Patients (Pts) with Advanced or Metastatic Urothelial Cancer (mUC) with Select FGFR Alterations (FGFRalt): Subgroups from the Phase III THOR Study. Ann. Oncol. 2023, 34, S1201. [Google Scholar] [CrossRef]
- Rugo, H.; Bardia, A.; Marmé, F.; Cortés, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Abstract GS1-11: Sacituzumab Govitecan (SG) vs Treatment of Physician’s Choice (TPC): Efficacy by Trop-2 Expression in the TROPiCS-02 Study of Patients (Pts) With HR+/HER2– Metastatic Breast Cancer (mBC). Cancer Res. 2023, 83, GS1-11. [Google Scholar] [CrossRef]
- Bardia, A.; Tolaney, S.M.; Punie, K.; Loirat, D.; Oliveira, M.; Kalinsky, K.; Zelnak, A.; Aftimos, P.; Dalenc, F.; Sardesai, S.; et al. Biomarker Analyses in the Phase III ASCENT Study of Sacituzumab Govitecan versus Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Ann. Oncol. 2021, 32, 1148–1156. [Google Scholar] [CrossRef]
- Jänne, P.A.; Baik, C.; Su, W.-C.; Johnson, M.L.; Hayashi, H.; Nishio, M.; Kim, D.-W.; Koczywas, M.; Gold, K.A.; Steuer, C.E.; et al. Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor–Resistant, EGFR -Mutated Non–Small Cell Lung Cancer. Cancer Discov. 2022, 12, 74–89. [Google Scholar] [CrossRef]
- Ascione, L.; Crimini, E.; Trapani, D.; Marra, A.; Criscitiello, C.; Curigliano, G. Predicting Response to Antibody Drug Conjugates: A Focus on Antigens’ Targetability. Oncologist 2023, 28, 944–960. [Google Scholar] [CrossRef]
- Ascione, L.; Guidi, L.; Prakash, A.; Trapani, D.; LoRusso, P.; Lou, E.; Curigliano, G. Unlocking the Potential: Biomarkers of Response to Antibody-Drug Conjugates. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e431766. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Yagisawa, M.; Satoh, T.; Kadowaki, S.; Sunakawa, Y.; Nishina, T.; Komatsu, Y.; Esaki, T.; Sakai, D.; Doi, A.; et al. Tissue-Agnostic Efficacy of Trastuzumab Deruxtecan (T-DXd) in Advanced Solid Tumors with HER2 Amplification Identified by Plasma Cell-Free DNA (cfDNA) Testing: Results from a Phase 2 Basket Trial (HERALD/EPOC1806). J. Clin. Oncol. 2023, 41, 3014. [Google Scholar] [CrossRef]
- Loganzo, F.; Sung, M.; Gerber, H.-P. Mechanisms of Resistance to Antibody–Drug Conjugates. Mol. Cancer Ther. 2016, 15, 2825–2834. [Google Scholar] [CrossRef]
- Loganzo, F.; Tan, X.; Sung, M.; Jin, G.; Myers, J.S.; Melamud, E.; Wang, F.; Diesl, V.; Follettie, M.T.; Musto, S.; et al. Tumor Cells Chronically Treated with a Trastuzumab–Maytansinoid Antibody–Drug Conjugate Develop Varied Resistance Mechanisms but Respond to Alternate Treatments. Mol. Cancer Ther. 2015, 14, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Abelman, R.O.; Spring, L.; Fell, G.G.; Ryan, P.; Vidula, N.; Medford, A.J.; Shin, J.; Abraham, E.; Wander, S.A.; Isakoff, S.J.; et al. Sequential Use of Antibody-Drug Conjugate after Antibody-Drug Conjugate for Patients with Metastatic Breast Cancer: ADC after ADC (A3) Study. J. Clin. Oncol. 2023, 41, 1022. [Google Scholar] [CrossRef]
- Mai, N.; Klar, M.; Ferraro, E.; Bromberg, M.; Chen, Y.; Razavi, P.; Modi, S.; Chandarlapaty, S.; Walsh, E.M.; Drago, J.Z. Real World Outcomes of Sequential ADC Therapy in Metastatic Breast Cancer: Patients Treated with Sacituzumab Govitecan and Trastuzumab Deruxtecan. J. Clin. Oncol. 2024, 42, 1085. [Google Scholar] [CrossRef]
ADC | Antibody Target | Linker | Payload | Payload Action |
---|---|---|---|---|
Trastuzumab deruxtecan | HER2 | Cleavable | DXd | Topoisomerase I inhibitor |
Trastuzumab emtasine | HER2 | Non-cleavable | DM1 | Microtubule inhibitor payload |
Datopotomab Deruxtecan | TROP2 | Cleavable | DXd | Topoisomerase I inhibitor |
Sacituzumab govitecan | TROP2 | Cleavable | SN-38 (active metabolite of irinotecan) | Topoisomerase I inhibitor |
Patritumumab deruxtecan | HER3 | Cleavable | DXd | Topoisomerase I inhibitor |
Telisotuzumab vedotin | MET | Cleavable | Monomethyl auristatin E (MMAE) | Microtubule inhibitor |
Tusamitamab ravtansine | CEACAM5 | Cleavable | DM4 | Microtubule inhibitor |
ADC | Target | Study | Fase | Population |
---|---|---|---|---|
Trastuzumab deruxtecan | HER2 | Destiny-Lung 02 (Trastuzumab deruxtecan 5.4 or 6.4 mg/kg/21 days) | II | HER2-mutated metastatic NSCLC with recurrence or progression during/after at least one regimen of prior anti-cancer therapy that must have contained a platinum-based Ct drug |
Datopotecan Deruxtecan | TROP2 | TROPION-Lung07 (Dato-DXd + pembrolizumab + platinum Ct vs. pembrolizumab + platinum Ct and pemetrexed) | III | Advanced/metastatic NSCLC with a PDL1 TPS < 50% |
TROPION-Lung08 (Dato-DXd plus pembrolizumab vs. pembrolizumab) | III | Advanced/metastatic NSCLC with a PDL1 TPS ≥ 50% | ||
Sacituzumab govitecan | TROP2 | EVOKE 01 (Sacituzumab govitecan vs. Docetaxel) | III | After progression under platinum Ct and checkpoint inhibitor therapy |
EVOKE 02 (Sacituzumab govitecan plus pembrolizumab ± platinum Ct) | II | Naïve metastatic NSCLC, TPS < 50% or ≥50% | ||
Patritumab deruxtecan | HER3 | HERTHENA-Lung01 (Patritumab deruxtecan 5.6 mg/kg fixed dose or an up-titration dose regimen) | II | Previously treated metastatic/locally advanced EGFR-mutated who have progressed on or after at least 1 EGFR TKI and 1 platinum-based Ct |
HERTHENA-Lung02 (Patritumab deruxtecan 5.6 mg/kg/21 days vs. platinum-based Ct) | III | Metastatic NSCLC with EGFR alteration following one or two EGFR TKIs | ||
Telisotuzumab vedotin | c-MET | TeliMET NSCLC-01 (Telisotuzumab vedotin vs. Docetaxel) | III | Patients with metastatic NSQ NSCLC EGFR wild-type and c-MET+ who progressed on at least one systemic therapy |
Tusamitamab ravtansine | CAECAM5 | CARMEN-LC03 (Tusamitamab ravtansine (100 mg/m2/14 days) vs. Docetaxel) | III | Metastatic NSQ NSCLC CEACAM5 with high expression following checkpoint inhibitor plus platinum-based Ct |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanchetta, C.; De Marchi, L.; Macerelli, M.; Pelizzari, G.; Costa, J.; Aprile, G.; Cortiula, F. Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2025, 26, 221. https://doi.org/10.3390/ijms26010221
Zanchetta C, De Marchi L, Macerelli M, Pelizzari G, Costa J, Aprile G, Cortiula F. Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives. International Journal of Molecular Sciences. 2025; 26(1):221. https://doi.org/10.3390/ijms26010221
Chicago/Turabian StyleZanchetta, Carol, Lorenzo De Marchi, Marianna Macerelli, Giacomo Pelizzari, Jacopo Costa, Giuseppe Aprile, and Francesco Cortiula. 2025. "Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives" International Journal of Molecular Sciences 26, no. 1: 221. https://doi.org/10.3390/ijms26010221
APA StyleZanchetta, C., De Marchi, L., Macerelli, M., Pelizzari, G., Costa, J., Aprile, G., & Cortiula, F. (2025). Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives. International Journal of Molecular Sciences, 26(1), 221. https://doi.org/10.3390/ijms26010221