Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in Impatiens hawkeri ‘Sakimp005’
<p>Determination of total chlorophylls, total carotenoids, and total flavonoids in the leaves of <span class="html-italic">I. hawkeri</span> ‘Sakimp005’ at four developmental stages. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>PLA-DA assay. (<b>A</b>) PLS-DA score diagram; (<b>B</b>) PLS-DA replacement inspection diagram.</p> "> Figure 3
<p>Clustering heatmap of various carotenoids in the leaves of <span class="html-italic">I. hawkeri</span> ‘Sakimp005’ at four developmental stages. Red indicates a high level and green indicates a low level.</p> "> Figure 4
<p>Proportion of different carotenoids in the leaves of <span class="html-italic">I. hawkeri</span> ‘Sakimp005’ at four developmental stages. (<b>A</b>) S1-G; (<b>B</b>) S2-C; (<b>C</b>) S3-C; and (<b>D</b>) S4-C.</p> "> Figure 5
<p>Lutein and zeaxanthin content in the leaves of <span class="html-italic">I. hawkeri</span> ‘Sakimp005’ at four developmental stages. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Unigenes function annotation diagrams. (<b>A</b>) GO annotation diagram; (<b>B</b>) KOG annotation diagram.</p> "> Figure 7
<p>Violin diagram of gene expression.</p> "> Figure 8
<p>DEG volcano diagrams for each comparison group. (<b>A</b>) S2-C vs. S1-G; (<b>B</b>) S3-C vs. S1-G; (<b>C</b>) S4-C vs. S1-G; (<b>D</b>) S3-C vs. S2-C; (<b>E</b>) S4-C vs. S2-C; and (<b>F</b>) S4-C vs. S3-C.</p> "> Figure 9
<p>DEG function enrichment bubble maps. (<b>A</b>) GO enrichment bubble map; (<b>B</b>) KEGG enrichment bubble map.</p> "> Figure 10
<p>Integrative analysis of DEGs and DEMs. (<b>A</b>) Heatmap of correlation clustering between DEMs and DEGs; (<b>B</b>) co-expression network analysis diagram of DEMs and DEGs.</p> "> Figure 11
<p>Heatmap of carotenoid metabolic pathways. Red indicates the gene is up-regulated and green indicates the gene is down-regulated.</p> "> Figure 12
<p>The expression pattern of carotenoid biosynthesis-related genes in the leaves of <span class="html-italic">I. hawkeri</span> ‘Sakimp005’ at four developmental stages. (<b>A</b>) <span class="html-italic">IhLUT1</span>; (<b>B</b>) <span class="html-italic">IhLUT5</span>; (<b>C</b>) <span class="html-italic">IhBCH2-1</span>; and (<b>D</b>) <span class="html-italic">IhBCH2-1</span>. Different lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 13
<p>A proposed model for the leaf coloration in <span class="html-italic">I. hawkeri</span> ‘Sakimp005’. Red arrows indicate up-regulation and green arrows indicate down-regulation.</p> "> Figure 14
<p>Leaf coloration process in <span class="html-italic">I. hawkeri</span> ‘Sakimp005’. S1-S4 were the four crucial developmental stages during leaf coloration; G: green; and C: color.</p> ">
Abstract
:1. Introduction
2. Result
2.1. Measurement of Colorimetric Values
2.2. Determination of the Pigment Content
2.3. Metabolomic Analysis
2.4. Transcriptomic Analysis
2.4.1. Filtering and Analyzing Transcriptome Assembly Data
2.4.2. Functional Annotation Analysis of Genes
2.4.3. Analysis of DEGs in Transcriptome Data
2.4.4. Functional Analysis of DEGs
2.5. Analysis of the Correlation Between DEGs and DEMs
2.6. Screening and Analysis of Gene Expression Linked to the Carotenoid Biosynthesis
3. Discussion
3.1. Explanation of Leaf Coloration in I. hawkeri ‘Sakimp005’ Based on Plant Phenotypic Observations and Physiological and Biochemical Indicators
3.2. Interpretation of Leaf Color Mechanism of I. hawkeri ‘Sakimp005’ Based on Targeted Metabolomics and Transcriptomics Data
4. Materials and Methods
4.1. Plant Materials
4.2. Measurement of Colorimetric Values
4.3. Determination of the Pigment Content
4.4. Carotenoid-Targeted Metabolomics Assays Analysis
4.5. RNA-Seq Sequencing Analysis
4.6. Expression and Analysis of IhLUT1, IhLUT5, IhBCH2-1, and IhBCH2-2 Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panda, P.; Nigam, A.; Rao, G.P. Multilocus gene analysis reveals the presence of two phytoplasma groups in Impatiens balsamina showing flat stem and phyllody. 3 Biotech 2021, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Đurić, M.J.; Subotić, A.R.; Prokić, L.T.; Trifunović-Momčilov, M.M.; Cingel, A.D.; Dragićević, M.B.; Simonović, A.D.; Milošević, S.M. Molecular characterization and expression of four aquaporin genes in Impatiens walleriana during drought stress and recovery. Plants 2021, 10, 154. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Y.; Li, X.; Liu, Z.; Li, F.; Huang, H.; Huang, M. Analysis of transcriptome and expression of C4H and FLS genes on four flower colors of Impatiens uliginosa. Horticulturae 2024, 10, 415. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Liu, Y.; Huang, Q.; Gao, S.; Huang, M.J.; Huang, H.Q. Effects of cell morphology, physiology, biochemistry and CHS genes on four flower colors of Impatiens uliginosa. Front. Plant Sci. 2024, 15, 1343830. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Chen, X.; Wang, T.; Zhang, X.; Liu, Z.; Qu, S.; Gu, Z.; Huang, M.; Huang, H. Flower development and a functional analysis of related genes in Impatiens uliginosa. Front. Plant Sci. 2024, 15, 1370949. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, C.M.; Li, X.Y.; Meng, D.C.; Gu, Z.J.; Qu, S.P.; Huang, M.-J.; Huang, H.-Q. De novo transcriptome sequencing of Impatiens uliginosa and the analysis of candidate genes related to spur development. BMC Plant Biol. 2022, 22, 553. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, W.L.; Li, X.Y.; Zhang, Y.-D.; Meng, D.-C.; Wei, C.-M.; Huang, M.-J.; Huang, H.-Q. The cellular and molecular basis of the spur development in Impatiens uliginosa. Hortic. Res. 2024, 11, uhae015. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Li, Z.F.; Zhang, X.L.; Yang, M.Q.; Wu, P.Q.; Huang, M.J.; Huang, H.-Q. Adaptation mechanism of three Impatiens species to different habitats based on stem morphology, lignin, and MYB4 gene. BMC Plant Biol. 2024, 24, 453. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Salazar, C.; Castroagudín, V.L.; LeBlanc, N.R.; Daughtrey, M.L.; Hausbeck, M.K.; Palmer, C.L.; Shishkoff, N.; Warfield, C.; Crouch, J.A. The Impatiens Downy Mildew Epidemic in the United States is caused by new, introgressed lineages of plasmopara destructor with prominent genotypic diversity and high evolutionary potential. Plant Dis. 2022, 107, 2027–2038. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Yao, R.B.; Chen, G.Y.; Huang, J.W.; Hong, C.F. First report of New Guinea Impatiens (Impatiens hawkeri) leaf spot caused by Alternaria burnsii-A. tomato species complex in Taiwan. Plant Dis. 2023, 107, 2251. [Google Scholar] [CrossRef] [PubMed]
- Otani, M.; Kitayama, K.; Ishikuro, H.; Hattan, J.I.; Maoka, T.; Harada, H.; Shiotani, Y.; Eguchi, A.; Nitasaka, E.; Misawa, N. Construction of transgenic Ipomoea obscura that exhibits new reddish leaf and flower colors due to introduction of β-carotene ketolase and hydroxylase genes. Plant Biotechnol. 2021, 38, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, K.; Li, L.; Wang, M.; Fang, L.; Zeng, S. Cytological, biochemical, and transcriptomic analyses of a novel yellow leaf variation in a Paphiopedilum (Orchidaceae) SCBG COP15. Genes 2021, 13, 71. [Google Scholar] [CrossRef]
- Wang, Y.; Zhen, J.; Che, X.; Zhang, K.; Zhang, G.; Yang, H.; Wen, J.; Wang, J.; Wang, J.; He, B.; et al. Transcriptomic and metabolomic analysis of autumn leaf color change in Fraxinus angustifolia. PeerJ 2023, 11, e15319. [Google Scholar] [CrossRef] [PubMed]
- Sinkkonen, A.; Somerkoski, E.; Paaso, U.; Holopainen, J.K.; Rousi, M.; Mikola, J. Genotypic variation in yellow autumn leaf colours explains aphid load in silver birch. New Phytol. 2012, 195, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.H.; Li, X.; Zhang, X.X.; Zhang, H.; Zhao, X.Y. Mutation mechanism of leaf color in plants: A review. Forests 2020, 11, 851. [Google Scholar] [CrossRef]
- Zhao, C.L.; Guo, H.C. Research advances in the subcellular organization of the enzymes catalyzing anthocyanins biosynthesis in higher plants. Acta Bot. Boreal 2007, 27, 1695–1701. [Google Scholar]
- Dong, X.; Huang, L.; Chen, Q.; Lv, Y.; Sun, H.; Liang, Z. Physiological and anatomical differences and differentially expressed genes reveal yellow leaf coloration in Shumard Oak. Plants 2020, 9, 169. [Google Scholar] [CrossRef]
- Jiang, C.C.; Zhang, Y.F.; Lin, Y.J.; Chen, Y.; Lu, X.K. Illumina® sequencing reveals candidate genes of carotenoid metabolism in three pummelo cultivars (Citrus Maxima) with different pulp color. Int. J. Mol. Sci. 2019, 20, 2246. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Q.; Mao, L.; Zhou, Y.; Shen, Y.; Wu, W.; Dai, Y.; Liu, Z. Integrated transcriptome and metabolome analysis reveals the mechanism of carotenoid regulation in the yellowing-leaf mutant of pepper (Capsicum annuum L.) in response to different temperatures. Sci. Hortic. 2023, 323, 112530. [Google Scholar] [CrossRef]
- Brychkova, G.; De Oliveira, C.L.; Gomes, L.A.A.; De Souza Gomes, M.; Fort, A.; Esteves-Ferreira, A.A.; Sulpice, R.; McKeown, P.C.; Spillane, C. Regulation of carotenoid biosynthesis and degradation in lettuce (Lactuca sativa L.) from seedlings to harvest. Int. J. Mol. Sci. 2023, 24, 10310. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Zhang, S.; Liu, Y.; Huang, Y.; Yang, M.; Wang, J. The reason for growth inhibition of Ulmus pumila ‘Jinye’: Lower resistance and abnormal development of chloroplasts slow down the accumulation of energy. Int. J. Mol. Sci. 2019, 20, 4227. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Yang, S.B.; Lu, Z.; He, Z.C.; Ye, Y.L.; Zhao, B.B.; Wang, L.; Jin, B. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Hortic. Res. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, K.; Amoo, O.; Yu, Y.; Guo, M.; Deng, S.; Li, M.; Hu, L.; Wang, J.; Fan, C.; et al. Site-directed mutagenesis of the Carotenoid Isomerase Gene BnaCRTISO alters the color of petals and leaves in Brassica napus L. Front. Plant Sci. 2022, 13, 801456. [Google Scholar] [CrossRef] [PubMed]
- Krubasik, P.; Sandmann, G. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem. Soc. Trans. 2000, 28, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.C.; Pizarro, L.; Fuentes, P.; Handford, M.; Cifuentes, V.; Stange, C. Levels of Lycopene β-Cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS ONE. 2013, 8, e58144. [Google Scholar] [CrossRef]
- Moise, A.R.; Al-Babili, S.; Wurtzel, E.T. Mechanistic Aspects of Carotenoid Biosynthesis. Chem. Rev. 2013, 114, 164–193. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Liu, S.; Hu, L.; Shi, J.; Chen, J. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. Hortic. Res. 2020, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Lätari, K.; Wüst, F.; Hübner, M.; Schaub, P.; Beisel, K.G.; Matsubara, S.; Beyer, P.; Welsch, R. Tissue-specific apocarotenoid glycosylation contributes to carotenoid homeostasis in Arabidopsis Leaves. Plant Physiol. 2015, 168, 1550–1562. [Google Scholar] [CrossRef]
- Giorio, G.; Stigliani, A.L.; D’Ambrosio, C. Phytoene synthase genes in tomato (Solanumlycopersicum L.)—New data on the structures, the deduced amino acid sequences, and the expression patterns. FEBS J. 2007, 275, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Musetti, V.; Kim, J.; Magallanes-Lundback, M.; DellaPenna, D. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity. Proc. Natl. Acad. Sci. USA 2004, 101, 402–407. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, J.; Zhu, S.; Sun, Q.; Zhang, Y.; Xie, Z.; Ye, J.; Deng, X. Citrus β-carotene hydroxylase 2 (BCH2) participates in xanthophyll synthesis by catalyzing the hydroxylation of β-carotene and compensates for BCH1 in citrus carotenoid metabolism. Hortic. Res. 2022, 10, uhac290. [Google Scholar] [CrossRef]
- Kim, J.E.; Cheng, K.M.; Craft, N.E.; Hamberger, B.; Douglas, C.J. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Phytochemistry 2009, 71, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid metabolism in plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Arango, J.; Jourdan, M.; Geoffriau, E.; Beyer, P.; Welsch, R. Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell 2014, 26, 2223–2233. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiang, N.; Chen, H.; Zhao, Y.; Wang, L.; Cheng, X.; Guo, X. The modulation of light quality on carotenoid and tocochromanol biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem. 2023, 6, 100170. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.H.; Strack, D. Carotenoids and their cleavage products: Biosynthesis and functions. Nat. Prod. Rep. 2011, 28, 663. [Google Scholar] [CrossRef] [PubMed]
- Park, B.G.; Lee, J.H.; Shin, E.J.; Kim, E.A.; Nam, S.Y. Light quality influence on growth performance and physiological activity of Coleus cultivars. Int. J. Plant Biol. 2024, 15, 807–826. [Google Scholar] [CrossRef]
- Jang, I.T.; Lee, J.H.; Shin, E.J.; Nam, S.Y. Evaluation of growth, flowering, and chlorophyll fluorescence responses of Viola cornuta cv. Penny Red Wing according to spectral power distributions. J. People Plants Environ. 2023, 26, 335–349. [Google Scholar] [CrossRef]
- Lei, T.; Song, Y.; Jin, X.; Su, T.; Pu, Y. Effects of pigment constituents and their distribution on spathe coloration of Zantedeschia hybrida. HortScience 2017, 52, 1840–1848. [Google Scholar] [CrossRef]
- Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 2010, 52, 98–111. [Google Scholar] [CrossRef]
- Hörtensteiner, S. The loss of green color during chlorophyll degradation prerequisite to prevent cell death? Planta 2004, 219, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Markwell, J.; Namuth, D. Plant pigments and photosynthesis. J. Nat. Resour. Life Sci. Educ. 2003, 32, 137. [Google Scholar] [CrossRef]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and photosynthesis. Regul. Funct. 2016, 79, 111–139. [Google Scholar] [CrossRef]
- Guo, P.; Huang, Z.; Zhao, W.; Lin, N.; Wang, Y.; Shang, F. Mechanisms for leaf color changes in Osmanthus fragrans ‘Ziyan Gongzhu’ using physiology, transcriptomics and metabolomics. BMC Plant Biol. 2023, 23, 453. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A new exploration of licorice metabolome. Food Chem. 2016, 221, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Peng, J.; Zhao, Y.; Huang, W.; Jiang, Y.; Li, M.; Wu, X.; Lu, B. Varietal classification and antioxidant activity prediction of Osmanthus fragrans Lour. flowers using UPLC–PDA/QTOF–MS and multivariable analysis. Food Chem. 2016, 217, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Guo, J.; Jin, Y.; Li, Z.; Chen, J.; Bie, Z.; Luo, C.; Peng, F.; Yan, D.; Kong, Q.; et al. Integrative analysis of transcriptome and metabolome provides insights into the mechanisms of leaf variegation in Heliopsis helianthoides. BMC Plant Biol. 2024, 24, 731. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhu, Q.; Wei, Z.; Owens, L.A.; Fish, T.; Kim, H.; Thannhauser, T.W.; Cahoon, E.B.; Li, L. Multi-strategy engineering greatly enhances provitamin a carotenoid accumulation and stability in Arabidopsis seeds. aBIOTECH 2021, 2, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-M.; To, K.-Y.; Lai, H.-M.; Jeng, S.-T. Modification of flower colour by suppressing β-ring carotene hydroxylase genes in Oncidium. Plant Biol. 2015, 18, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Xu, B.; Li, Y.; Ma, Y.; Wang, G. Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’. Front. Plant Sci. 2015, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid metabolism in plants: The role of plastids. Mol. Plant 2017, 11, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, K.; Yan, M.; Yi, B.; Wen, J.; Ma, C.; Shen, J.; Fu, T.; Tu, J. Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus. Mol. Genet. Genom. 2020, 295, 981–999. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Yang, Y.; Fei, Z.; Yuan, H.; Fish, T.; Thannhauser, T.W.; Mazourek, M.; Kochian, L.V.; Wang, X.; Li, L. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. J. Exp. Bot. 2013, 64, 949–961. [Google Scholar] [CrossRef]
- Li, J.W.; Ma, J.; Feng, K.; Liu, J.X.; Que, F.; Xiong, A.S. Carotenoid accumulation and distinct transcript profiling of structural genes involved in carotenoid biosynthesis in Celery. Plant Mol. Biol. Rep. 2018, 36, 663–674. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Xu, Z.; Wang, F.; Xiong, A. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochim. Biophys. Sin. 2018, 50, 481–490. [Google Scholar] [CrossRef]
- Shen, Y.H.; Yang, F.Y.; Lu, B.G.; Zhao, W.W.; Jiang, T.; Feng, L.; Chen, X.J.; Ming, R. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genom. 2019, 20, 49. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Z.; Deng, X.; Gu, M.; Zhu, Z.; Ren, J.; Fu, S. Transcriptomic and metabolomic analyses of non-structural carbohydrates in red maple leaves. Funct. Integr. Genom. 2021, 21, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Perrin, F.; Brahem, M.; Dubois-Laurent, C.; Huet, S.; Jourdan, M.; Geoffriau, E.E.; Peltier, D.; Gagné, S. Differential pigment accumulation in carrot leaves and roots during two growing periods. J. Agric. Food Chem. 2016, 64, 906–912. [Google Scholar] [CrossRef]
- Saeed, B.; Das, M.; Khurana, P. Overexpression of β-carotene hydroxylase1 (BCH1) in Indian mulberry, Morus indica cv. K2, confers tolerance against UV, high temperature and high irradiance stress-induced oxidative damage. Plant Cell Tissue Organ Cult. 2014, 120, 1003–1014. [Google Scholar] [CrossRef]
- Gonnet, J.F. Colour effects of co-pigmentation of anthocyanins revisited—1. A colorimetric definition using the CIELAB scale. Food Chem. 1998, 63, 409–415. [Google Scholar] [CrossRef]
- Li, J.J.; Sakata, Y.; Wang, L.S.; Hashimoto, F.; Shiraishi, A.; Aoki, N. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation. J. Plant Res. 2004, 117, 47–55. [Google Scholar] [CrossRef]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT Food Sci. Technol. 2021, 150, 111932. [Google Scholar] [CrossRef]
Developmental Stages | L* | a* | b* | c* |
---|---|---|---|---|
S1-G | 45.33 ± 0.33 d | −16.33 ± 0.33 d | 14.33 ± 0.33 d | 21.74 ± 0.24 d |
S2-C | 62.33 ± 0.33 c | −1.67 ± 0.33 c | 54.00 ± 0.67 b | 53.03 ± 1.52 b |
S3-C | 74.67 ± 0.33 b | 1.33 ± 0.33 b | 63.67 ± 0.58 a | 63.68 ± 0.67 a |
S4-C | 93.00 ± 0.33 a | 4.67 ± 0.33 a | 28.33 ± 0.88 c | 28.73 ± 0.87 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-Q.; Yu, D.-C.; Ren, S.-Y.; Zhang, X.-L.; Li, X.-Y.; Huang, M.-J.; Huang, H.-Q. Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in Impatiens hawkeri ‘Sakimp005’. Int. J. Mol. Sci. 2025, 26, 174. https://doi.org/10.3390/ijms26010174
He J-Q, Yu D-C, Ren S-Y, Zhang X-L, Li X-Y, Huang M-J, Huang H-Q. Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in Impatiens hawkeri ‘Sakimp005’. International Journal of Molecular Sciences. 2025; 26(1):174. https://doi.org/10.3390/ijms26010174
Chicago/Turabian StyleHe, Jia-Qi, Dou-Cheng Yu, Si-Yu Ren, Xiao-Li Zhang, Xin-Yi Li, Mei-Juan Huang, and Hai-Quan Huang. 2025. "Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in Impatiens hawkeri ‘Sakimp005’" International Journal of Molecular Sciences 26, no. 1: 174. https://doi.org/10.3390/ijms26010174
APA StyleHe, J.-Q., Yu, D.-C., Ren, S.-Y., Zhang, X.-L., Li, X.-Y., Huang, M.-J., & Huang, H.-Q. (2025). Integrative Targeted Metabolomics and Transcriptomics Reveal the Mechanism of Leaf Coloration in Impatiens hawkeri ‘Sakimp005’. International Journal of Molecular Sciences, 26(1), 174. https://doi.org/10.3390/ijms26010174