Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia
<p>Effect of loss or reduction of CHOP on limb length and growth plate chondrocytes at 4 weeks. Femurs were collected at 4 to 5 weeks of age. (<b>A</b>) Femur lengths were measured from μCT images and growth plate widths were measured from H&E images. Each group was compared to the age-matched MT-COMP control group. Femoral length in MT-COMP was not improved in the absence of or in diminished CHOP (MT-COMP/CHOP<sup>−/+</sup> and CHOP ASO-treated MT-COMP) but trended towards improvement in the absence of CHOP (MT-COMP/CHOP<sup>−/−</sup>). ASO-treated samples are separated by a vertical line to indicate that ASO-mediated knockdown of CHOP operates through a distinct mechanism compared to the genetic reduction of CHOP levels. Femur lengths were measured in at least 5 male mice, compared using a <span class="html-italic">t</span>-test. (<b>B</b>–<b>G</b>) H&E staining of control (C57BL\6), MT-COMP, MT-COMP/CHOP<sup>−/+</sup> (50% CHOP), MT-COMP/CHOP<sup>−/−</sup> (CHOP absent), CHOP<sup>−/−</sup>, and CHOP ASO-treated MT-COMP growth plates at 4 weeks is shown. (<b>H</b>–<b>M</b>) P-eIF2α immunostaining of growth plates (brown signal) is shown in the lower panel. Representative growth plates are shown from the examination of at least 8 mice of both sexes. Bar = 100 μm * = <span class="html-italic">p</span> < 0.05; *** = <span class="html-italic">p</span> < 0.0005.</p> "> Figure 2
<p>Loss or reduction of CHOP reduces ER retention of mutant COMP. Growth plates from 4-week-old control (C57BL\6), MT-COMP, MT-COMP/CHOP<sup>−/+</sup> MT-COMP/CHOP<sup>−/−</sup>, CHOP<sup>−/−</sup>, and CHOP ASO-treated MT-COMP were immunostained for human-COMP (<b>A</b>–<b>F</b>), IL-6 (<b>G</b>–<b>L</b>), pS6 (<b>M</b>–<b>R</b>), PCNA (<b>S</b>–<b>X</b>) antibodies (brown signal), and apoptosis via terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate–biotin nick-end labeling (TUNEL) (<b>Y</b>–<b>AD</b>) (TUNEL green signal; nuclei are blue). ASO-treated samples are separated by a vertical line to indicate that ASO-mediated knockdown of CHOP operates through a distinct mechanism compared to the genetic reduction of CHOP levels. The human-COMP antibody specifically recognizes human mutant-COMP expressed in MT-COMP mice in response to DOX. Controls (<b>A</b>) and CHOP<sup>−/−</sup> (<b>E</b>) showed no intracellular staining for mutant-COMP compared to untreated MT-COMP growth plate chondrocytes where it was present (<b>B</b>). Representative growth plates are shown from examining at least 8 mice in both sexes. Scale bar = 50 μm.</p> "> Figure 3
<p>MT-COMP/CHOP<sup>−/−</sup> mice do not exhibit joint degeneration at 20 weeks. Four joint health parameters were assessed in control (gray bars), MT-COMP (blue bars), MT-COMP/CHOP<sup>−/+</sup> (light green bars), and MT-COMP/CHOP<sup>−/−</sup> (dark green bars) joints: proteoglycan levels in femoral articular cartilage (<b>A</b>) and tibia articular cartilage (<b>B</b>), synovitis (<b>C</b>), and bone/cartilage damage (<b>D</b>). The sum of the scores for each group is shown in panel (<b>E</b>). These assessments were conducted on a minimum of 10 male mice per group. Statistical analysis was performed using the Kruskal–Wallis test with post-hoc Dunn Test with Holm-adjusted <span class="html-italic">p</span>-values; * indicates <span class="html-italic">p</span> < 0.05; ** indicates <span class="html-italic">p</span> < 0.005; <span class="html-italic">p</span>-values between 0.05–0.1 are listed. All groups were compared to MT-COMP.</p> "> Figure 4
<p>Pain is reduced with the absence or reduction of CHOP in MT-COMP mice. Grooming was used as a proxy for pain assessment by measuring the efficiency of fluorescent dye removal from the fur. The higher score indicates better dye elimination (maximum score = 5). All male mice received DOX from birth until grooming was evaluated at 4, 8, 12, 16, 20, 24, 30, and 36 weeks in control C57BL\6 (Control) and MT-COMP, MT-COMP/CHOP<sup>−/+</sup>, and MT-COMP/CHOP<sup>−/−</sup> mice. All groups were compared to MT-COMP mice. The average grooming scores were analyzed with Kruskal–-Wallis with a post-hoc Dwass–Steel–Critchlow–Fligner (DSCF) significant pairwise test between the control and each group, and significant differences are shown by asterisks. For more information, refer to <a href="#ijms-26-00016-t001" class="html-table">Table 1</a>. These assessments were conducted on a minimum of 10 male mice per group. The standard deviation is shown by error bars. (Abbreviations: weeks = wks). ** <span class="html-italic">p</span> < 0.05; *** <span class="html-italic">p</span> < 0.0005.</p> "> Figure 5
<p>Articular cartilage chondrocyte ER stress is reduced with the absence or reduction of CHOP in MT-COMP mice. Articular cartilage from control (C57BL\6), MT-COMP, MT-COMP/CHOP<sup>−/+</sup> (reduced CHOP), and MT-COMP/CHOP<sup>−/−</sup> (absent CHOP) groups was immunostained for human-COMP (<b>A</b>–<b>E</b>), P-eIF2α (<b>F</b>–<b>J</b>), IL-6 (<b>K</b>–<b>O</b>), pS6 (<b>P</b>–<b>T</b>), p16INK4a (<b>U</b>–<b>Y</b>) (brown signal) and TUNEL (green signal with blue nuclei) (<b>Z</b>–<b>AD</b>) in 20-week-old mice. Representative growth plates from at least 8 mice (both sexes). Dotted line denotes the top of the articular cartilage; bar = 50 μm.</p> "> Figure 6
<p>Articular chondrocytes show dampened degradation in the absence or reduction of CHOP. (<b>A</b>) Schematic showing the interaction of molecules examined in articular cartilage from control (C57BL\6), MT-COMP, MT-COMP/CHOP<sup>−/+</sup> (reduced CHOP), MT-COMP/CHOP<sup>−/−</sup> (absent CHOP), and CHOP<sup>−/−</sup> mice were immunostained for IL-10 (<b>B</b>–<b>F</b>), SIRT1 (<b>G</b>–<b>K</b>), TNFα (<b>L</b>–<b>P</b>), and MMP13 (<b>Q</b>–<b>U</b>) antibodies at 20 weeks. Representative growth plates are shown from the examination of at least 8 mice (both sexes). Dotted line denotes the top of the articular cartilage; bar = 50 μm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Loss of CHOP in MT-COMP Mice Does Not Improve Femur Length
2.2. Reduction of CHOP Partially Normalizes COMP Localization in the Growth Plate
2.3. Joint Health Is Preserved with Loss of CHOP
2.4. Pain Mitigation Is Associated with the Absence or Reduction of CHOP in MT-COMP Mice
2.5. Articular Chondrocyte Death and Markers of Pathologic Processes That Lead to Cell Death Are Reduced in the Absence or Reduction of CHOP
2.6. Loss or Reduction of CHOP in MT-COMP Lessens Inflammation and Downstream Molecules in Articular Chondrocytes
3. Discussion
4. Materials and Methods
4.1. Bigenic Mice
4.2. Mutant COMP Induction
4.3. CHOP ASO Treatment
4.4. Immunohistochemistry
4.5. Limb Length Measurements
4.6. Grooming Assessments
4.7. Joint Degeneration Scoring
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halasz, K.; Kassner, A.; Morgelin, M.; Heinegard, D. COMP acts as a catalyst in collagen fibrillogenesis. J. Biol. Chem. 2007, 282, 31166–31173. [Google Scholar] [CrossRef] [PubMed]
- Merritt, T.M.; Bick, R.; Poindexter, B.J.; Alcorn, J.L.; Hecht, J.T. Unique matrix structure in the rough endoplasmic reticulum cisternae of pseudoachondroplasia chondrocytes. Am. J. Pathol. 2007, 170, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Thur, J.; Rosenberg, K.; Nitsche, D.P.; Pihlajamaa, T.; Ala-Kokko, L.; Heinegard, D.; Paulsson, M.; Maurer, P. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J. Biol. Chem. 2001, 276, 6083–6092. [Google Scholar] [CrossRef] [PubMed]
- Bleasel, J.F.; Poole, A.R.; Heinegard, D.; Saxne, T.; Holderbaum, D.; Ionescu, M.; Jones, P.; Moskowitz, R.W. Changes in serum cartilage marker levels indicate altered cartilage metabolism in families with the osteoarthritis-related type II collagen gene COL2A1 mutation. Arthritis Rheum. 1999, 42, 39–45. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Saxne, T.; Heinegard, D.K. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann. Rheum. Dis. 1994, 53, 8–13. [Google Scholar] [CrossRef]
- Mann, H.H.; Ozbek, S.; Engel, J.; Paulsson, M.; Wagener, R. Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J. Biol. Chem. 2004, 279, 25294–25298. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Y.; Ilalov, K.; Carlson, C.S.; Feng, J.Q.; Di Cesare, P.E.; Liu, C.J. Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J. Biol. Chem. 2007, 282, 11347–11355. [Google Scholar] [CrossRef]
- Chen, F.H.; Thomas, A.O.; Hecht, J.T.; Goldring, M.B.; Lawler, J. Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J. Biol. Chem. 2005, 280, 32655–32661. [Google Scholar] [CrossRef]
- Unger, S.; Hecht, J.T. Pseudoachondroplasia and multiple epiphyseal dysplasia: New etiologic developments. Am. J. Med. Genet. 2001, 106, 244–250. [Google Scholar] [CrossRef]
- Posey, K.L.; Hayes, E.; Haynes, R.; Hecht, J.T. Role of TSP-5/COMP in pseudoachondroplasia. Int. J. Biochem. Cell Biol. 2004, 36, 1005–1012. [Google Scholar] [CrossRef]
- Posey, K.L.; Hecht, J.T. The role of cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr. Drug Targets 2008, 9, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Posey, K.L.; Coustry, F.; Hecht, J.T. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol. 2018, 71–72, 161–173. [Google Scholar] [CrossRef] [PubMed]
- McKeand, J.; Rotta, J.; Hecht, J.T. Natural history study of pseudoachondroplasia. Am. J. Med. Genet. 1996, 63, 406–410. [Google Scholar] [CrossRef]
- Deere, M.; Sanford, T.; Ferguson, H.L.; Daniels, K.; Hecht, J.T. Identification of twelve mutations in cartilage oligomeric matrix protein (COMP) in patients with pseudoachondroplasia. Am. J. Med. Genet. 1998, 80, 510–513. [Google Scholar] [CrossRef]
- Deere, M.; Sanford, T.; Francomano, C.A.; Daniels, K.; Hecht, J.T. Identification of nine novel mutations in cartilage oligomeric matrix protein in patients with pseudoachondroplasia and multiple epiphyseal dysplasia. Am. J. Med. Genet. 1999, 85, 486–490. [Google Scholar] [CrossRef]
- Hecht, J.T.; Veerisetty, A.C.; Hossain, M.G.; Patra, D.; Chiu, F.; Coustry, F.; Posey, K.L. Joint Degeneration in a Mouse Model of Pseudoachondroplasia: ER Stress, Inflammation, and Block of Autophagy. Int. J. Mol. Sci. 2021, 22, 9239. [Google Scholar] [CrossRef]
- Posey, K.L.; Coustry, F.; Veerisetty, A.C.; Hossain, M.; Alcorn, J.L.; Hecht, J.T. Antioxidant and anti-inflammatory agents mitigate pathology in a mouse model of pseudoachondroplasia. Hum. Mol. Genet. 2015, 24, 3918–3928. [Google Scholar] [CrossRef]
- Posey, K.L.; Veerisetty, A.C.; Liu, P.; Wang, H.R.; Poindexter, B.J.; Bick, R.; Alcorn, J.L.; Hecht, J.T. An inducible cartilage oligomeric matrix protein mouse model recapitulates human pseudoachondroplasia phenotype. Am. J. Pathol. 2009, 175, 1555–1563. [Google Scholar] [CrossRef]
- Malhotra, J.D.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal. 2007, 9, 2277–2293. [Google Scholar] [CrossRef]
- Gotoh, T.; Endo, M.; Oike, Y. Endoplasmic reticulum stress-related inflammation and cardiovascular diseases. Int. J. Inflam. 2011, 2011, 259462. [Google Scholar] [CrossRef]
- Salminen, A.; Kauppinen, A.; Suuronen, T.; Kaarniranta, K.; Ojala, J. ER stress in Alzheimer’s disease: A novel neuronal trigger for inflammation and Alzheimer’s pathology. J. Neuroinflamm. 2009, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Cullinan, S.B.; Diehl, J.A. Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol. 2006, 38, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140, 900–917. [Google Scholar] [CrossRef] [PubMed]
- Posey, K.L.; Coustry, F.; Veerisetty, A.C.; Hossain, M.G.; Gambello, M.J.; Hecht, J.T. Novel mTORC1 Mechanism Suggests Therapeutic Targets for COMPopathies. Am. J. Pathol. 2019, 189, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Hecht, J.T.; Coustry, F.; Veerisetty, A.C.; Hossain, M.G.; Posey, K.L. Resveratrol Reduces COMPopathy in Mice Through Activation of Autophagy. J. Bone Miner. Res. Plus 2021, 5, e10456. [Google Scholar] [CrossRef]
- Hecht, J.T.; Makitie, O.; Hayes, E.; Haynes, R.; Susic, M.; Montufar-Solis, D.; Duke, P.J.; Cole, W.G. Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate. J. Orthop. Res. 2004, 22, 759–767. [Google Scholar] [CrossRef]
- Hecht, J.T.; Montufar-Solis, D.; Decker, G.; Lawler, J.; Daniels, K.; Duke, P.J. Retention of cartilage oligomeric matrix protein (COMP) and cell death in redifferentiated pseudoachondroplasia chondrocytes. Matrix Biol. 1998, 17, 625–633. [Google Scholar] [CrossRef]
- Merritt, T.M.; Alcorn, J.L.; Haynes, R.; Hecht, J.T. Expression of mutant cartilage oligomeric matrix protein in human chondrocytes induces the pseudoachondroplasia phenotype. J. Orthop. Res. 2006, 24, 700–707. [Google Scholar] [CrossRef]
- Cooper, R.R.; Ponseti, I.V.; Maynard, J.A. Pseudoachondroplasia dwarfism. A rough-surfaced endoplasmic reticulum disorder. J. Bone Jt. Surg. Am. 1973, 55A, 475–484. [Google Scholar] [CrossRef]
- Posey, K.L.; Alcorn, J.L.; Hecht, J.T. Pseudoachondroplasia/COMP-translating from the bench to the bedside. Matrix Biol. 2014, 37, 167–173. [Google Scholar] [CrossRef]
- Posey, K.L.; Coustry, F.; Veerisetty, A.C.; Liu, P.; Alcorn, J.L.; Hecht, J.T. Chop (Ddit3) is essential for D469del-COMP retention and cell death in chondrocytes in an inducible transgenic mouse model of pseudoachondroplasia. Am. J. Pathol. 2012, 180, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Posey, K.L.; Coustry, F.; Veerisetty, A.C.; Liu, P.; Alcorn, J.L.; Hecht, J.T. Chondrocyte-specific pathology during skeletal growth and therapeutics in a murine model of pseudoachondroplasia. J. Bone Miner. Res. 2014, 29, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Posey, K.L.; Hecht, J.T. Novel therapeutic interventions for pseudoachondroplasia. Bone 2017, 102, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, R.J. Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes Dev. 1999, 13, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
- Coustry, F.; Posey, K.L.; Maerz, T.; Baker, K.; Abraham, A.M.; Ambrose, C.G.; Nobakhti, S.; Shefelbine, S.J.; Bi, X.; Newton, M.; et al. Mutant cartilage oligomeric matrix protein (COMP) compromises bone integrity, joint function and the balance between adipogenesis and osteogenesis. Matrix Biol. 2018, 67, 75–89. [Google Scholar] [CrossRef]
- Yong, J.; Parekh, V.S.; Reilly, S.M.; Nayak, J.; Chen, Z.; Lebeaupin, C.; Jang, I.; Zhang, J.; Prakash, T.P.; Sun, H.; et al. Chop/Ddit3 depletion in beta cells alleviates ER stress and corrects hepatic steatosis in mice. Sci. Transl. Med. 2021, 13, eaba9796. [Google Scholar] [CrossRef]
- Glasson, S.S.; Chambers, M.G.; Van Den Berg, W.B.; Little, C.B. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr. Cartil. 2010, 18, S17–S23. [Google Scholar] [CrossRef]
- Hecht, J.T.; Veerisetty, A.C.; Patra, D.; Hossain, M.G.; Chiu, F.; Mobed, C.; Gannon, F.H.; Posey, K.L. Early Resveratrol Treatment Mitigates Joint Degeneration and Dampens Pain in a Mouse Model of Pseudoachondroplasia (PSACH). Biomolecules 2023, 13, 1553. [Google Scholar] [CrossRef]
- Husa, M.; Petursson, F.; Lotz, M.; Terkeltaub, R.; Liu-Bryan, R. C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Res. Ther. 2013, 15, R218. [Google Scholar] [CrossRef]
- Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front. Immunol. 2018, 9, 3083. [Google Scholar] [CrossRef]
- Yang, C.; Dong, W.; Wang, Y.; Dong, X.; Xu, X.; Yu, X.; Wang, J. DDIT3 aggravates TMJOA cartilage degradation via Nrf2/HO-1/NLRP3-mediated autophagy. Osteoarthr. Cartil. 2024, 32, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Uehara, Y.; Hirose, J.; Yamabe, S.; Okamoto, N.; Okada, T.; Oyadomari, S.; Mizuta, H. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthr. Cartil. 2014, 22, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Hecht, J.T.; Veerisetty, A.C.; Hossain, M.G.; Chiu, F.; Posey, K.L. CurQ+, a Next-Generation Formulation of Curcumin, Ameliorates Growth Plate Chondrocyte Stress and Increases Limb Growth in a Mouse Model of Pseudoachondroplasia. Int. J. Mol. Sci. 2023, 24, 3845. [Google Scholar] [CrossRef] [PubMed]
- Coustry, F.; Posey, K.L.; Liu, P.; Alcorn, J.L.; Hecht, J.T. D469del-COMP retention in chondrocytes stimulates caspase-independent necroptosis. Am. J. Pathol. 2012, 180, 738–748. [Google Scholar] [CrossRef]
- Posey, K.L.; Coustry, F.; Veerisetty, A.C.; Hossain, M.; Gattis, D.; Booten, S.; Alcorn, J.L.; Seth, P.P.; Hecht, J.T. Antisense Reduction of Mutant COMP Reduces Growth Plate Chondrocyte Pathology. Mol. Ther. 2017, 25, 705–714. [Google Scholar] [CrossRef]
- Perez-Arancibia, R.; Rivas, A.; Hetz, C. (off)Targeting UPR signaling: The race toward intervening ER proteostasis. Expert Opin. Ther. Targets 2018, 22, 97–100. [Google Scholar] [CrossRef]
- Linnane, E.; Davey, P.; Zhang, P.; Puri, S.; Edbrooke, M.; Chiarparin, E.; Revenko, A.S.; Macleod, A.R.; Norman, J.C.; Ross, S.J. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res. 2019, 47, 4375–4392. [Google Scholar] [CrossRef]
- Crooke, S.T.; Liang, X.H.; Baker, B.F.; Crooke, R.M. Antisense technology: A review. J. Biol. Chem. 2021, 296, 100416. [Google Scholar] [CrossRef]
- Doxtader Lacy, K.A.; Liang, X.H.; Zhang, L.; Crooke, S.T. RNA modifications can affect RNase H1-mediated PS-ASO activity. Mol. Ther. Nucleic Acids 2022, 28, 814–828. [Google Scholar] [CrossRef]
- Hunziker, E.B. Growth plate structure and function. Pathol. Immunopathol. Res. 1988, 7, 9–13. [Google Scholar] [CrossRef]
- Gamble, C.; Nguyen, J.; Hashmi, S.S.; Hecht, J.T. Pseudoachondroplasia and painful sequelae. Am. J. Med. Genet. A 2015, 167, 2618–2622. [Google Scholar] [CrossRef] [PubMed]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Eddy, N.B.; Leimbach, D. Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J. Pharmacol. Exp. Ther. 1953, 107, 385–393. [Google Scholar] [PubMed]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef]
- Dvir-Ginzberg, M.; Mobasheri, A.; Kumar, A. The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis. Curr. Rheumatol. Rep. 2016, 18, 43. [Google Scholar] [CrossRef]
- Kim, K.H.; Jo, J.H.; Cho, H.J.; Park, T.S.; Kim, T.M. Therapeutic potential of stem cell-derived extracellular vesicles in osteoarthritis: Preclinical study findings. Lab. Anim. Res. 2020, 36, 10. [Google Scholar] [CrossRef]
- Hamamura, K.; Nishimura, A.; Iino, T.; Takigawa, S.; Sudo, A.; Yokota, H. Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis. Bone Jt. Res. 2015, 4, 84–92. [Google Scholar] [CrossRef]
- Mehana, E.E.; Khafaga, A.F.; El-Blehi, S.S. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019, 234, 116786. [Google Scholar] [CrossRef]
- Yu, M.; Yi, S.Q.; Wu, Y.R.; Sun, H.L.; Song, F.F.; Wang, J.W. Ddit3 suppresses the differentiation of mouse chondroprogenitor cells. Int. J. Biochem. Cell Biol. 2016, 81, 156–163. [Google Scholar] [CrossRef]
- Wang, C.; Tan, Z.; Niu, B.; Tsang, K.Y.; Tai, A.; Chan, W.C.W.; Lo, R.L.K.; Leung, K.K.H.; Dung, N.W.F.; Itoh, N.; et al. Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. Elife 2018, 7, e37673. [Google Scholar] [CrossRef]
- Posey, K.L.; Yang, Y.; Veerisetty, A.C.; Sharan, S.K.; Hecht, J.T. Model systems for studying skeletal dysplasias caused by TSP-5/COMP mutations. Cell. Mol. Life Sci. 2008, 65, 687–699. [Google Scholar] [CrossRef]
- Hecht, J.T.; Veerisetty, A.C.; Wu, J.; Coustry, F.; Hossain, M.G.; Chiu, F.; Gannon, F.H.; Posey, K.L. Primary Osteoarthritis Early Joint Degeneration Induced by Endoplasmic Reticulum Stress Is Mitigated by Resveratrol. Am. J. Pathol. 2021, 191, 1624–1637. [Google Scholar] [CrossRef]
Comparison | p Value at Time Points in Weeks (wks) | ||||||
---|---|---|---|---|---|---|---|
8 wk | 12 wk | 16 wk | 20 wk | 24 wk | 30 wk | 36 wk | |
Control vs. MT-COMP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Control vs. MT-COMP/CHOP−/− | 0.292 | 0.716 | 0.408 | 0.056 | 0.598 | 1.000 | 0.814 |
Control vs. MT-COMP/CHOP−/+ | 0.079 | 0.999 | 0.111 | 0.294 | - | - | - |
MT-COMP vs. Control | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MT-COMP vs. MT-COMP/CHOP−/− | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 |
MT-COMP vs. MT-COMP/CHOP−/+ | <0.001 | <0.001 | <0.001 | 0.007 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hecht, J.T.; Veerisetty, A.C.; Hossain, M.G.; Patra, D.; Carrer, M.; Chiu, F.; Relic, D.; Jafar-nejad, P.; Posey, K.L. Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia. Int. J. Mol. Sci. 2025, 26, 16. https://doi.org/10.3390/ijms26010016
Hecht JT, Veerisetty AC, Hossain MG, Patra D, Carrer M, Chiu F, Relic D, Jafar-nejad P, Posey KL. Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia. International Journal of Molecular Sciences. 2025; 26(1):16. https://doi.org/10.3390/ijms26010016
Chicago/Turabian StyleHecht, Jacqueline T., Alka C. Veerisetty, Mohammad G. Hossain, Debabrata Patra, Michele Carrer, Frankie Chiu, Dorde Relic, Paymaan Jafar-nejad, and Karen L. Posey. 2025. "Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia" International Journal of Molecular Sciences 26, no. 1: 16. https://doi.org/10.3390/ijms26010016
APA StyleHecht, J. T., Veerisetty, A. C., Hossain, M. G., Patra, D., Carrer, M., Chiu, F., Relic, D., Jafar-nejad, P., & Posey, K. L. (2025). Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia. International Journal of Molecular Sciences, 26(1), 16. https://doi.org/10.3390/ijms26010016