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Abstract: DNA methylation is an essential epigenetic modification that plays a crucial role
in regulating gene expression and maintaining genomic stability. With the advancement
in sequencing technology, methylation studies have provided valuable insights into the
diagnosis of rare diseases through the various identification of episignatures, epivariation,
epioutliers, and allele-specific methylation. However, current methylation studies are
not without limitations. This mini-review explores the current understanding of DNA
methylation in rare diseases, highlighting the key mechanisms and diagnostic potential,
and emphasizing the need for advanced methodologies and integrative approaches to
enhance the understanding of disease progression and design more personable treatment
for patients, given the nature of rare diseases.
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1. Introduction
Rare diseases (RDs) are medical conditions affecting fewer than 200,000 individuals

in the United States and less than 1 in 2000 in the European Union [1]. While individ-
ual RDs affect a limited number of the population, on aggregate, RDs encompass more
than 10,000 unique disorders [2] and impact approximately 300 million people [3,4]. The
majority of RDs are Mendelian genetic disorders [5,6] and comprehensive genetic testing,
using exome sequencing and more recently, genome sequencing, is often used to identify
causal variation. Sequencing technology advancements have also led to increased use of
multi-omic approaches for variant identification, interpretation, and prioritization, which
may include phenomics, transcriptomics, proteomics, metabolomics, and epigenomics [7].
While most rare diseases are associated with genetic factors, there is growing recognition
of epigenetic involvement, particularly DNA methylation (DNAm), as a significant con-
tributor to a subset of RDs. This is exemplified by Mendelian disorders of the epigenetic
machinery (MDEM) [8], also referred to as chromatinopathies [9]. These insights high-
light the complementary relationship between genetic and epigenetic factors, offering new
avenues for understanding pathogenesis and potential therapeutic interventions [8].

DNA methylation is a crucial epigenetic modification involved in the regulation of
gene expression. The most common and best-described methylation of DNA is the addition
of a methyl group to carbon 5 of cytosine bases, forming 5-methylcytosine or 5mC [10]
(Figure 1A). It is known that 5mC is often, but not exclusively, maintained in the context
of cytosine-phosphate-guanine (CpG) dinucleotides [10]. DNA methylation patterns are
commonly established and maintained by groups of DNA methyltransferases, such as
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the DNMT family and associated proteins [11]. The ten-eleven translocation (TET) family
proteins mediate the reversal of 5mC methylation through iterative oxidation of 5mC to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC) and a
complete reversal is achieved by thymine-DNA glycosylase (TDG)-mediated abasic site
(AP) and base excision repair (BER) [11]. It is believed that genetic variants that alter the
functions of these regulatory proteins can lead to aberrant DNA methylation patterns,
including hypermethylation (excessive methylation) or hypomethylation (reduced methy-
lation), subsequently affecting gene expression patterns and chromatin structure [12]. In
summary, DNA methylation is one of the primary epigenetic mechanisms that coordinates
gene activity at the transcriptional level and regulates critical developmental and physio-
logical pathways. As such, dysregulation of methylation is an important contributor to the
manifestation of RDs [13,14].
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Figure 1. Schematic of DNA methylation modulated gene transcription and associated episignatures
and epivariations. (A) General representation of the association between DNA methylation state
and gene transcription. Hypomethyaltion in promoter generally leads to transcription activation,
where the establishment and maintenance of DNA methylation through DNMT family proteins leads
to hypermethylation in the promoter, which represses transcription. The methylation state can be
reversed in a process initiated by the TET family proteins. (B) General representation of disease-
associated episignatures. Left most represents the reference methylation patterns, with methylated or
unmethylated CpGs within a gene. Hypothetical syndromes are shown with red arrows to indicate
DNA methylation patterns at specific genes that differ from the reference methylation patterns.
(C) General representation of disease-associated epivariations. Aberrant DNA methylation can be
either hyper- or hypo-methylation. Hypermethylation can be either germline or somatic, primary or
secondary, and ultimately leads to the repression of haploinsufficient genes. Hypomethylation occurs
globally (genome-wide) or locally, global hypomethylation leads to chromosomal instability, while
local hypomethylation leads to the activation of disease-associated genes.
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2. DNA Methylation and Rare Diseases
DNA methylation profiles have been extensively investigated using DNA methylation

microarrays to identify epigenetic dysregulation in many RDs [15]; reviewed in [16]. The
resulting distinct and stable DNA methylation signatures that are induced by pathogenic
variants in disease-causing genes, e.g., [5,12,17–19], coined “episignatures”, have been
associated with more than 70 Mendelian conditions [7,20] (Figure 1B). The number of
novel diagnostic episignatures is on the rise, with many identified for RDs, including
α-thalassemia mental retardation syndrome (MIM: 300032) [21], Kabuki syndrome (MIM:
602113 and 300128) [22], CHARGE syndrome (MIM: 214800) [22], Sotos syndrome (MIM:
606681) [23], Floating Harbor syndrome (MIM: 611421) [24], Coffin–Siris syndrome, and
other BAFopathies (MIM: 135900, 614607, 614608, 614609, and 615866) [25]. Episigna-
tures have shown the capabilities to distinguish between different genetic conditions [26],
support variant classification by defining phenotypic specificity, and are effective diag-
nostic modalities for rare Mendelian conditions following inconclusive testing [27,28]. As
Sadikovic et al. (2021) reported, the validation rate for VUS reclassification in a selected
cohort of patients with previous ambiguous/inconclusive genetic findings can reach 35%
using methylation signature (EpiSign) analysis [28].

Episignatures are typically discovered using epigenome-wide association studies
(EWAS) investigating DNA methylation patterns from microarrays, followed by the ap-
plication of a multiclass machine learning classifier [29]. Moreover, the use of artificial
intelligence tools for epigenomic studies in RDs has increased over the last decade [30]. For
example, Aref-Eshgi et al. (2019) introduced a computational model using whole genome
methylation data to aid in diagnosing 14 neurodevelopmental disorders characterized by
known episignatures [24]. The model effectively identified methylation profiles suggestive
of specific Mendelian conditions for 31% (21/67) of individuals with uncertain diagnosis,
including cases where conventional molecular testing failed to identify any candidate
variants. In addition, Turinsky et al. (2020) created EpigenCentral, a free portal to interac-
tively classify and analyze epigenome data for known disease-associated episignatures [29].
Further optimization of episignature classifiers is important to improve model sensitivity
and molecular diagnosis of Mendelian disorders of the epigenetic machinery. Walsh et al.
(2024) introduced a machine learning method that uses an age- and sex-stratified methyla-
tion model for outlier detection, which significantly reduces false negatives in array-based
methylation signature analysis. By accounting for age- and sex-related methylation changes,
this approach improved the classification of samples with potential methylation-associated
congenital disorders [31]. Oexle et al. (2023) trained episignature classifiers to robustly de-
tect low-level mosaics while also revoking erroneous exome calls of mosaicism to highlight
improved diagnostic yield for RDs [32].

In addition to episignatures, epivariations and epimutations, can also be detected by
methylation microarrays. The term “epimutation” was originally intended to describe
epigenetic changes that occur without alterations in the underlying DNA sequence [33].
Over time, it has been applied more broadly to various epigenetic changes [34]. The
term “epivariations” was later introduced to describe rare epigenetic aberrations [30,35].
While the two terms are now often used interchangeably, “epivariation” generally refers to
regions exhibiting aberrant methylation patterns, characterized by significant enrichment
in epimutations, which are abnormal mutational changes that do not change the DNA
sequence [35,36] (Figure 1C).

Epivariations, or in some literature, epimutations, can be subdivided into primary or
secondary types based on their origin [37]. Primary epivariations are thought to arise from
stochastic (random) errors in the establishment or maintenance of the epigenome by the
DNA methyltransferase proteins family [38]. These errors are sporadic and not necessarily
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linked to the changes in the DNA sequences, such as certain types of imprinting anomalies
seen in Prader–Willi (MIM: 176270) and Angelman Syndromes (MIM: 105830) [33]. On
the other hand, secondary epivariations derive from underlying changes in local DNA
sequence, including copy number variations (CNVs), where segments of DNA are dupli-
cated or deleted, or single nucleotide variations (SNVs), which are single base changes
in the DNA sequence [37] at differentially methylated loci. Additionally, mutations that
disrupt regulatory elements [38] and expansions of CpG-rich tandem repeats (STR) [39]—
repetitive sequences rich in CpG sites—are believed to contribute to changes in the local
DNA sequence. For example, Fragile X syndrome (MIM: 309550) is caused by secondary
epivariations in the FMR1 gene [40]. Both epivariation types are found in patients with RDs.

It is important to note that next-generation sequencing (NGS) technologies, including
targeted (e.g., reduced representation bisulfite sequencing or RRBS), offer high specificity
for targeted CpG-rich regions and sensitivity for detecting small changes in methylation
levels at individual CpG sites. Whole genome (e.g., whole genome bisulfite sequencing or
WGBS, enzymatic methyl sequencing or EMseq) provides comprehensive coverage for CpG
sites across the entire genome, which allows higher sensitivity for detecting methylation
changes even in non-CpG regions. Additionally, long-read sequencing (LRS) provides
higher resolution of complex genomic regions and improves assembly quality, generating
methylation profiling data that can help clarify variant pathogenicity and aid in the diagno-
sis of RDs [14]. Moreover, the usage of optical genome mapping (OGM) has enhanced the
detection of large structural variants (SVs), CNVs, and repetitive sequence motifs at the
single-cell level, enabling a more detailed characterization of cellular heterogeneity [41].

Several published studies have illustrated epigenomic approaches for improving the
diagnosis of rare diseases and shortening diagnostic journeys for patients. Gatto et al.
(2017) identified a rare pathogenic variant in DNMT3B by studying the methylation profiles
in immunodeficiency-centromeric instability-facial anomalies syndrome 1 (ICF1; MIM:
242860) through RRBS [42]. Sun et al. (2014) studied genome-wide DNA methylation
profiles of hereditary sensory and autonomic neuropathy type 1E (HSAN1E) patients
with DNMT1 mutations using WGBS and discovered all chromosomes hypomethylated
with enrichment of NAD+/NADH pathway-associated genes in differentially methylated
regions (DMRs) [43]. More recent examples include Smith et al. (2021) which found
that loss-of-function variants of DNMT3A lead to decreased global DNA methylation in
Tatton–Brown–Rahman syndrome (TBRS; MIM: 615879) [44]. Zhu et al. (2022) utilized
WGBS to identify autism spectrum disorder (ASD)-associated methylation changes with an
enrichment of DMRs in ASD-associated genes [45]. Miller et al. (2020) leveraged targeted
long-read sequencing to identify the cause of altered GNAS exon A/B methylation in
autosomal dominate pseudohypoparathyroidism type 1b (PHP1B; MIM: 603233) [46]. In
summary, multiple studies have demonstrated the power of DNA methylation profiling
as a valuable functional tool to aid in the diagnosis of RD cases, complementing standard
genomic sequencing to unambiguously identify and interpret variation [47–49].

3. Limitations
The reported diagnostic yield among patients with neurodevelopmental disorders

varies by method, with chromosomal microarray achieving a yield of 15–20% [50] and
30–40% for exome sequencing [51]. When compared to these benchmarks, DNA methy-
lation profiling has demonstrated a diagnostic yield of approximately 30% in a selected
cohort exhibiting features suggestive of rare neurodevelopmental conditions [28,52]. While
promising, the described episignature and epivariation detection methods are not with-
out limitations. With the number of identified episignatures and epivariations steadily
growing, the specificity of the signature for different cell types and tissues remains to be
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defined. Epigenetic profiles vary between tissues and show cell-type heterogenicity which
hamper EWAS studies that are primarily conducted using data derived from whole blood
specimens [53,54]. For tissues that are not always easily accessible, such as the brain, using
blood as a surrogate may not fully capture the tissue-specific methylation pattern due
to variability in correlation, as observed in previous studies [55,56]. In addition, the lack
of consensus methods to correct for population heterogeneity (e.g., genetic background,
environmental exposures, and demographic factors) in disease cohort samples limits the re-
producibility of analysis across methods and impacts subsequent result interpretation [57].
For example, genetic background can influence baseline methylation patterns, making it
challenging to distinguish disease-associated changes from population-specific variations.
Similarly, environmental exposures, such as smoking or diet, can alter methylation profiles
independently of disease status. Demographic factors, like age and sex, are associated with
dynamic and tissue-specific methylation changes. These challenges have been reported in
studies [57,58] describing the influence of experimental design, training data size, normal-
ization method, and effect size as limitations of episignature generation. It was observed
that the lack of consensus methodology led to the generation of different episignatures
for similar pathologies [17,23,59]. Moreover, although improvements have been made
to enhance the detection of genetic mosaicism [32,60], existing DNA methylation array
technologies remain susceptible to molecular misdetection and fail to detect low-level
mosaicism, with the reported resolution limit for detecting mosaicism being 10–15% [60].
There is also a reliance on pre-existing characterized episignatures to identify Mendelian
disorders, together reducing diagnostic sensitivity [61]. Additionally, the expansion on
syndrome-specific episignatures should be considered, as exemplified by the paralogous
genes CREBBP and EP300. Loss-of-function variants in either gene cause Rubinstein–Taybi
syndrome (RSTS), whereas pathogenic gain-of-function missense and in-frame indel vari-
ants in exons 30 and 31 lead to Menke–Hennekam syndrome (MKHK). While the current
MKHK subtype categorizations are gene-specific (subtype 1 for CREBBP; subtype 2 for
EP300), the observed distinct domain-specific episignatures in MKHK subtypes suggest the
need for a more nuanced, domain-specific categorization [62,63]. The clinical interpretation
of rare epivariants can also be challenging, especially within intragenic regions or genes
not yet associated with the patient’s phenotype [64].

4. Methylation for Single Patient (N = 1) Rare Disease Studies
In addition to the limitations discussed above, conventional group vs. group or

multigroup comparisons with appropriate cohort sizes to meet statistical significance in
standard randomized control trials are often not feasible for studying RDs [65,66]. Rare
diseases often have very few reported patients, resulting in small and heterogeneous co-
horts where canonical group comparison method assumptions are not met, particularly
in DNA methylation studies that utilize bisulfite sequencing. These group comparison
methods, such as t-tests or ANOVA, assume independence of observations, normality of
data, homogeneity of variances, and sufficient sample size to detect statistically meaningful
differences in methylation patterns [67]. Despite ongoing sequencing efforts, the lack of
publicly available population epigenome datasets as a benchmark to study changes in
DNA methylation creates analytical challenges [64]. In addition, without adequate control
groups, the ability to capture interpatient heterogeneity, including disease presentation,
progression, genetic makeup, and environmental exposures, is often complicated. Within
the context of rare diseases, similarities in aberrant CpG methylation patterns have been
observed in certain neurodegenerative diseases when targeting a defined gene set [68].
However, disease-associated aberrant DNA methylation at a specific locus in an individ-
ual is presumably significantly different from individuals with unrelated phenotypes or
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control group cohorts [69]. Outlier strategies for identifying potentially causal findings in
transcriptomic studies have improved rare disease diagnosis and discovery [70,71]. More
recently, investigating methylation levels to understand outlier effects has facilitated the
diagnosis of unsolved rare disease cases [31,72,73].

Cheung et al. (2023) proposed that screening for outlier methylation events genome-
wide could aid in the identification of coding and noncoding, functional rare SNVs and
structural variants (SVs) in unsolved rare cases to improve the diagnosis rate [74]. The
authors further demonstrated that rare methylation outliers are heritable and proximally
linked to causal rare noncoding or complex SV events using long-read sequencing. Further,
Oliver et al. (2021) presented BOREALIS, a tool to identify outlier methylation events using
sequence-based methylation data as a novel avenue of exploration in undiagnosed cases
of rare disease [66]. These studies highlight the potential of methylation outlier detection
methods as a complementary approach to increase diagnostic rates in rare disease patients
(Figure 2).
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(ASM), aberrant DNA methylation, and DNA methylation outlier studies. The purpose of the integra-
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Allele-specific methylation (ASM) is another phenomenon that may contribute to rare
disease diagnosis. ASM events are reportedly increased in cancers, including lymphoma
and myeloma, due to global allele-specific CpG hypomethylation [75]. ASM is considered a
hallmark of both genomic imprinting, where the methylation of an allele is determined by
its parent-of-origin, and non-imprinted status, or haplotype-dependent ASM (hap-ASM).
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Hap-ASM refers to the difference in methylation state between two alleles in a het-
erozygous individual. This phenomenon occurs when cis-acting polymorphisms, such as
single-nucleotide polymorphisms (SNPs), influence the methylation status of nearby CpGs.
These SNPs can alter transcription factor (TF) binding, which affects the recruitment of
methyltransferases and subsequently modulates the methylation landscape of one allele
compared to the other. In hap-ASM regions, the presence of heterozygous SNPs is com-
monly observed, they are responsible for genetic differences between the two homologous
chromosomes [76–78].

Traditionally, hap-ASM was assessed directly by WGBS or methylation quantitative
trait loci (mQTL) analysis, which correlates the net methylation of single CpGs with
genotypes at nearby SNPs [79]. For these methods, simultaneous observation of the DNA
methylation state within each genetic variant of a haplotype (i.e., allele) and the allele of
origin are needed [80]. The lack of ASM detection tools has historically limited research
into its potential as a diagnostic method; however, the recent development of several ASM
detection tools—MethPipe [81,82], MONOD2 [83], MethHaplo [84], DAMEfinder [85], and
CpelAsm [86]—have expanded the possibilities for genome-wide ASM analysis. These
advancements have made it possible to identify ASM events, potentially opening the door
for the using ASM in the diagnosis of complex cases in RD patients.

Identification of methylation outliers or ASM events alone may not be sufficient to
assess the causal relationship between a variant and an RD phenotype. Understanding
the allelic specificity of these methylation events is critical in attributing observation to a
suspected RD diagnosis. Cheung et al. (2023) reported that 80% of rare hypermethylation
events from an RD cohort appeared to be allele-specific [74]. Non-diagnostic exome
sequencing is typically followed by genome sequencing and transcriptome profiling, where
expression outlier identification is often coupled with allele-specific expression (ASE) and
structural variant analysis to determine allelic specificity and identify pathogenic SVs [64].
As methylation studies are increasingly used for RD diagnosis, similar strategies using
correlated evidence should be pursued (Figure 2).

The limited number of tools available to study methylation in the scope of RDs and the
dependency on accurately phased data to distinguish maternal and paternal alleles impose
significant challenges. Most current phasing methods do not use parental data [87]; instead,
the calculation of alleles from each chromosome, or subchromosomal phase block, are
grouped into two haplotypes. Subsequent ASM events are then inferred from the identified
haplotypes without a clear understanding of the allele or parent of origin. This creates a
burden in terms of analysis and result interpretation when sequence data from at least one
parent are not available. The emerging use of long-read sequencing has begun to overcome
this issue, as tools such as MethPhaser [88] and PatMat [87], improve the quality of phasing
through parental data inclusion. Epigenomics has the potential to significantly expand and
improve clinical testing modalities in rare disease patients; however, the development of
guidelines and standardized workflows is critical in a rapidly growing field.

5. Future Perspectives
There is increasing global awareness and attention to the impact of rare diseases on

human health, with studies demonstrating the importance of early and unambiguous
diagnosis. Despite significant advancements in sequence-based testing over the last decade,
most patients suspected of having a rare genetic disease remain undiagnosed. As answers
are sought for undiagnosed patients, studies are evaluating the intricate interplay between
epigenetic mechanisms and disease pathogenesis. Methylation studies may provide valu-
able data to complement traditional genomic testing and significantly advance diagnostic
and therapeutic strategies. Such studies will benefit from increased adoption of long-read
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technologies, where methylation signals can be obtained directly from the genomic sequenc-
ing of a sample. However, before DNA methylation profiling can be broadly implemented,
several gaps require further attention and exploration. The presence of comprehensive,
open reference databases containing epigenomes of individuals across different tissues and
cell types is needed. Loyfer et al. (2023) highlighted the importance of addressing this
deficiency, emphasizing the need for robust reference datasets that accurately capture the
epigenomic landscape of healthy individuals [89]. Methylation reference datasets serve as
invaluable resources for researchers seeking to compare epigenetic patterns observed in
individuals affected by rare diseases with those in healthy populations. The availability of
large-scale, well-annotated reference datasets will enable broader accessibility, establish
a comprehensive benchmark, and foster interdisciplinary collaboration to train complex
algorithms to improve clinical utility and diagnostics.

It is also critical to collaboratively invest in developing standardized analytical
pipelines for epigenomic data to ensure the reproducibility and reliability of findings
derived from individual rare diseases. Harmonized data generation, processing, and
interpretation across research laboratories will facilitate cross-study comparisons and meta-
analyses. DNA methylation analysis has the utility to become another critical care tool
for RD patients. Early diagnosis using epigenome profiling may support the implemen-
tation of interventions through behavioral therapy, specialized learning programs, and
individualized medicine [16].

In conclusion, technological advancements have not only significantly advanced our
understanding of the role of epigenetics in rare diseases, but they have also provided
valuable insights into the diagnosis of rare diseases through the various identification of
episignatures, epivariation, epioutliers, and ASMs. Identifying the links between these
epigenetic factors and the underlying disease phenotype requires robust basic research
efforts. Moreover, overcoming the limitations outlined depends on sustained funding for
current and future rare disease research programs, as the associated costs can accumulate
for both the researchers and patients.

Looking forward, that with the future establishment of comprehensive reference
databases, promotion of standardization efforts, and encouragement of data sharing and
collaboration will unlock the full potential of epigenomic studies to support the diagnosis
and management of rare diseases. These developments will improve diagnostic precision
and support the creation of more effective, personalized (targeted) therapies for individuals
affected by rare diseases.
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