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Abstract: One of the most pressing challenges facing society today is the rising prevalence of
physical and cognitive frailty. This geriatric condition makes older adults more vulnerable
to disability, illness, and a heightened risk of mortality. In this scenario, Parkinson’s
disease (PD) and geriatric frailty, which share several common characteristics, are becoming
increasingly prevalent worldwide, underscoring the urgent need for innovative strategies.
Nutraceuticals are naturally occurring bioactive compounds contained in foods, offering
health benefits over and above essential nutrition. By examining the literature from the
past decade, this review highlights how nutraceuticals can act as complementary therapies,
addressing key processes, such as oxidative stress, inflammation, and neuroprotection.
Notably, the antioxidant action of nutraceuticals appears particularly beneficial in regard
to PD and geriatric frailty. For instance, antioxidant-rich nutraceuticals may mitigate the
oxidative damage linked to levodopa therapy in PD, potentially reducing the side effects
and enhancing treatment sustainability. Similarly, the antioxidant effects of nutraceuticals
may amplify the benefits of physical activity, enhancing muscle function, cognitive health,
and resilience, thereby reducing the risk of frailty. This review proposes a holistic approach
integrating nutraceuticals with exercise, pharmacotherapy, and lifestyle adjustments. It
promises to transform the management of ARD, prolong life, and improve the quality of
life and well-being of older people.

Keywords: Parkinson’s disease; frailty; nutraceuticals; bioactive compounds; physiology
and anatomy; antioxidants; inflammation; precision medicine

1. Introduction
Over the past decade, the global population has experienced a notable increase in the

average age, leading to a surge in the elderly demographic [1]. In 2020, the number of
individuals aged 70 and older reached approximately 457.96 million worldwide (World
Population Ageing 2020 Highlights). As people live longer, many face significant health
challenges, with the majority suffering from one or more chronic, age-related diseases
(ARDs), such as cardiovascular diseases, diabetes, neurodegenerative conditions, and
frailty [2–7]. One major issue affecting this population is frailty, a clinically identifiable
syndrome caused by the aging of multiple physiological systems, leading to increased
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vulnerability [8]. The development of frailty is multifactorial, with its underlying patho-
physiology shaped by the interplay of various factors [8]. Frailty is commonly evaluated
using two primary approaches: the frailty phenotype (FP) and the frailty index (FI) [9].
The FP identifies frailty in individuals who meet at least five criteria: weakness, slowness,
low physical activity, self-reported exhaustion, and unintentional weight loss [10]. When
only one or two of these criteria are present, the individual is classified as pre-frail, which
indicates a higher likelihood of progressing to complete frailty [11]. On the other hand,
the FI is a more comprehensive tool that assesses frailty through a 40-item evaluation,
considering diseases, physical and cognitive impairments, psychosocial factors, and other
geriatric syndromes [8]. Despite its thoroughness, the FI can be impractical for primary
care practitioners to implement during routine bedside screenings [8]. A more feasible alter-
native is the Edmonton Frail Scale (EFS), which evaluates nine domains of frailty, including
cognition, general health status, functional independence, social support, medication use,
nutrition, mood, continence, and functional performance [12,13]. The EFS produces a score
ranging from 0 to 17 and is a quicker and more accessible screening method [12,13]. Factors
such as social isolation, depression, and a loss of independence also play a role in reducing
both physical and mental activity, thereby worsening frailty [14]. Furthermore, difficulties
in regard to eating and maintaining proper nutrition, often caused by motor or cognitive
impairments, can result in malnutrition, which weakens physical health and facilitates the
development of frailty [15]. However, frailty often emerges in neurodegenerative diseases
as a result of the complex interactions among motor, cognitive, and physiological declines
that characterize these conditions [8]. In disorders such as Parkinson’s disease (PD), motor
dysfunction, manifested through symptoms like rigidity, slowed movements, and postural
instability, significantly affects physical performance, leading to weakness and an elevated
risk of falls, which are the main indicators of frailty [16]. Cognitive impairment in PD
also plays a crucial role by reducing the ability to perform daily tasks, limiting self-care,
and restricting participation in physical activities. These factors are vital in maintaining
muscle strength and overall independence [17,18]. In addition, chronic inflammation,
which is often associated with neurodegenerative diseases, accelerates muscle wasting
and contributes to fatigue, further exacerbating frailty [19]. Not only is an inflammatory
state commonly observed in both PD and geriatric frailty, but mitochondrial metabolic
dysfunction also emerges as a shared characteristic. In PD, mitochondrial dysfunction
leads to the loss of dopaminergic neurons, a defining feature of the condition [20]. De-
ficiencies in mitochondrial complex I, a key component of the electron transport chain,
result in increased oxidative stress, mitochondrial fragmentation, and impaired metabolic
function [21,22]. These changes accelerate neuronal degeneration and contribute to the
motor symptoms in PD, such as tremors, rigidity, and postural instability [21,22]. In par-
allel, mitochondrial dysfunction is also a significant feature of geriatric frailty, which is
linked to the natural age-related decline in mitochondrial efficiency [23]. This decline
results in decreased energy production, increased oxidative stress, and impaired cellular
function, contributing to muscle weakness, reduced endurance, and functional impairment,
all characteristics of frailty [23]. Studies show that frail older individuals often exhibit
lower mitochondrial content and diminished mitochondrial respiration in their skeletal
muscles, negatively impacting muscle strength and overall physical performance [24,25].
The shared mitochondrial dysfunction seen in both PD and geriatric frailty suggests a
common underlying mechanism that connects motor and cognitive impairment with phys-
ical decline [24,25]. These conditions frequently coexist, with frailty often exacerbating
the symptoms and progression of PD, and vice versa [24,25]. This overlap highlights
the potential for targeting mitochondrial health as a therapeutic strategy. Nutraceuticals,
known for their antioxidant properties and ability to support cellular metabolism, offer a
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promising avenue for intervention [26]. By enhancing mitochondrial function, reducing
oxidative stress, and supporting overall metabolic health, nutraceuticals could help slow
the progression and alleviate the impact of PD and geriatric frailty, ultimately preserving
physical and cognitive health in affected individuals [27]. Nutraceuticals, a term coined
by Stephen DeFelice, are food-derived products offering health benefits beyond essential
nutrition [1]. They encompass a wide range of products, including naturally nutrient-rich
foods, like garlic, isolated nutrients, and herbal products [1]. Nutraceuticals, with their
antioxidant, anti-inflammatory, and neuroprotective properties, offer promising adjuncts to
conventional treatments [1]. In PD, compounds such as curcumin, resveratrol, and omega-3
fatty acids, have shown potential to slow disease progression and alleviate symptoms by
targeting oxidative stress and mitochondrial dysfunction [1]. Similarly, in frailty, these
substances may help enhance muscle function, reduce inflammation, and improve the
overall resilience to physical and psychological stressors [1]. This review aims to explore
the distinct effects of nutraceuticals on PD and frailty, evaluating their ability to influence
the core mechanisms behind these conditions. Moreover, it underscores the importance of
advancing the research and clinical approaches in this field, emphasizing the development
of novel bioactive compounds, using cutting-edge delivery technologies, and incorporating
personalized strategies based on genetic and epigenetic insights. These advancements will
contribute to more precise, effective, and individualized treatments, allowing precision
medicine to extend the health span [1].

2. Methods
To explore the rationale for linking PD and frailty, we aim to investigate the current

research (approximately related to the last decade in terms of the signs of progress) in-
dicating shared underlying mechanisms, outcomes, and possible connections related to
interventions, such as nutraceuticals. The following are some factors that could provide a
meaningful connection between PD and frailty:

a. Shared pathophysiological mechanisms: inflammation and oxidative stress, mito-
chondrial dysfunction;

b. Motor and functional decline: mobility and balance, sarcopenia, and muscle wasting;
c. A risk of malnutrition;
d. Cognitive decline and depression.

Developing a comprehensive and well-documented search formula is essential to
ensure replicability and transparency in relation to the literature search.

PubMed serves as a critical source of biomedical research and will be used as the
primary database for this search, given its extensive coverage of medical, biological, and life
sciences literature. Target key terms and concepts for inclusion in the research questions:
“Parkinson’s disease”, which encompasses synonyms and related terms such as “PD” or
“parkinsonism” to capture all the relevant articles; “Frailty”, which is expanded with
terms such as ‘frail elderly,’ ‘frailty syndrome,’ or ‘physical frailty’ to include variants
used in the literature; “Nutraceuticals”, which includes such interrelated terms as “dietary
supplements”, “functional foods”, or specific nutraceuticals (e.g., “omega-3”, “curcumin”)
to cover various types of interventions. Our study focuses on recent advancements, limiting
the search to studies published in English in the last 10 years.

We searched ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06352099?cond=
frailty&intr=Nutraceutical&rank=2 (accessed on 15 November 2024) to identify potential
studies exploring the use of nutraceuticals in managing Parkinson’s disease and frailty.

https://clinicaltrials.gov/study/NCT06352099?cond=frailty&intr=Nutraceutical&rank=2
https://clinicaltrials.gov/study/NCT06352099?cond=frailty&intr=Nutraceutical&rank=2
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3. Parkinson’s Disease vs. Frailty
PD and geriatric frailty are characterized by a gradual decline in physical and cog-

nitive functions [28,29]. In both pathological conditions, the accumulation of senescent
cells in tissues becomes more pronounced, leading to a heightened susceptibility to os-
teoarthritis, characterized by joint degeneration and impaired mobility [30,31]. PD and
geriatric frailty also affect various organ systems, leading to physiological changes, such as
reduced cell turnover, diminished function of mucous membranes, and muscle wasting.
Furthermore, both pathological conditions lead to the gradual loss of muscle mass and
strength (sarcopenia), impaired immune function, and increased vulnerability to infections
and other illnesses [32–34]. Cognitive decline, ranging from mild memory lapses to severe
forms of dementia, becomes more prevalent with age and is accompanied by reduced
physiological resilience, making it harder for elderly individuals to recover from illness,
injury, or stress [35–37]. PD and geriatric frailty diminish the quality of life of patients
and increase the burden on the healthcare system, as elderly individuals often require
more medical care and assistance [29]. Common conditions associated with aging include
neurodegenerative diseases, such as PD and frailty [38]. These conditions diminish the
quality of life of patients and increase the burden on the healthcare system, as elderly
individuals often require more medical care and assistance [39].

3.1. Parkinson’s Disease

PD is a complex neurodegenerative disorder primarily characterized by the loss of
dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) and the accumulation
of Lewy bodies (LBs) in the brain, which are aggregates of alpha-synuclein (αS) [40,41]. The
diagnosis of PD is based on the patient’s history and a neurological examination [42,43]. Al-
though primarily designed for research purposes, the diagnostic criteria established by the
International Parkinson and Movement Disorder Society can aid clinicians in confirming
the diagnosis [44,45]. The TRAP mnemonic can be helpful during diagnosis, as it includes
tremors (T), rigidity (R), akinesia (A), and postural instability (P) [46,47]. However, PD
also presents a wide range of less visible, non-motor symptoms, such as cognitive decline,
depression, and pain, which contribute significantly to the overall disability experienced
by patients [48,49]. These non-motor symptoms can be assessed using a specialized rating
scale to quantify their burden on the patient [48,49]. Early indicators include symptoms like
constipation (the most common early sign), acting out dreams during REM sleep (indicative
of REM sleep behavior disorder), loss of smell (hyposmia), asymmetrical shoulder pain,
and depression [50–53]. It is essential to recognize that general practitioners cannot be
faulted for missing a diagnosis in the early stages, as these symptoms are often nonspecific
and overlap with many other conditions [44,45]. The exact cause of PD remains elusive,
but it is believed to result from a combination of genetic predispositions and environmental
factors. Mutations in genes such as Leucine-rich repeat kinase 2 (LRRK2), Parkin7 (PARK7),
and αS have been linked to familial forms of PD, while environmental exposure to toxins,
such as pesticides, has been associated with an increased risk of the disease [54–57]. Addi-
tionally, mitochondrial dysfunction, oxidative stress, and neuroinflammation are critical
contributors to the pathogenesis of PD. These factors lead to the accumulation of reactive
oxygen species (ROS), which damage cellular components, further exacerbating neuronal
death [58–61]. Dopaminergic agonists are a key therapeutic option in the treatment of
PD [62,63]. Levodopa, the gold standard treatment for alleviating PD motor symptoms, is
often administered with carbidopa, a peripheral dopa decarboxylase inhibitor, to increase
levodopa’s availability in the brain, while reducing peripheral side effects, like nausea and
vomiting [46,47].
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Unlike levodopa, which needs to be converted into dopamine in the brain, dopamine
agonists directly stimulate DA receptors, compensating for the dopamine deficit [62,63].
They are often used as an add-on with levodopa in advanced stages of the disease to
manage motor fluctuations, such as “wearing-off” episodes [62,63]. While non-ergot DA
agonists, including pramipexole, ropinirole, rotigotine, and apomorphine, are commonly
used, their use increases ROS species [62,63]. Indeed, DA agonists are not without side
effects; they can cause nausea, orthostatic hypotension, hallucinations, sleep disturbances,
and impulse control disorders, such as compulsive gambling or hypersexuality, requiring
careful monitoring [62,63]. Despite these risks, their ability to provide sustained symptom
relief and improve motor function makes them essential in the comprehensive management
of PD [62,63]. Dopaminergic agonists, while effective, are just one component of the broader
therapeutic landscape for PD; understanding the current therapeutic approaches provides
further insight into the various strategies used to manage the disease’s symptoms and
progression [46,47,62,63].

3.1.1. Current Therapeutic Approaches

Despite the wide range of treatment options, including pharmacological, non-
pharmacological, and surgical interventions like brain, spinal, and vague nerve stimulators,
patients still suffer from ongoing muscle weakness and no therapy has proven to be a
definitive disease-modifying solution [62,63].

Conventional Pharmacological Treatments

Levodopa and Derivatives: Levodopa remains a central treatment for PD, being
converted into dopamine in the brain to alleviate motor symptoms, like tremors and
rigidity [64,65]. Its effectiveness diminishes over time, leading to side effects like dysk-
inesia [64,65]. Co-administration with carbidopa improves its efficacy and reduces pe-
ripheral side effects. However, as the disease progresses, the effectiveness of levodopa
diminishes, and patients often experience motor fluctuations and dyskinesias (involuntary
movements) [64–66].

MAO-B Inhibitors: Monoamine oxidase B inhibitors delay levodopa breakdown, ex-
tending its benefits in early-stage PD [67,68]. Although less potent than levodopa, they pose
fewer risks of inducing dyskinesias [66]. These drugs are commonly combined with other
therapies to enhance motor symptom management, especially as PD progresses [67–69].

COMT Inhibitors: Catechol-O-methyltransferase inhibitors increase levodopa’s avail-
ability in the brain by reducing its breakdown [69,70]. Drugs like entacapone and opicapone
extend levodopa’s effects. However, they may cause adverse effects, such as dyskinesia and
confusion. Tolcapone, though effective, is rarely used due to the risk of liver failure [69,70].

Anticholinergic Agents: These drugs, including trihexyphenidyl and benztropine,
reduce tremors, particularly in younger patients [71,72]. However, their use is limited due
to side effects like blurred vision and urinary retention [71,72].

Non-Conventional Pharmacological Treatments

Antidiabetic Agents: Medications such as glucagon-like peptide 1 (GLP-1) agonists
and Dipeptidyl peptidase 4 (DPP-4) inhibitors may offer neuroprotective effects in PD by
reducing neuroinflammation and oxidative stress [73–75]. Studies have shown potential
benefits in regard to improving motor and cognitive symptoms in PD patients [76].

Intranasal Insulin: Insulin, administered intranasally, has shown promise in protecting
dopaminergic neurons and improving motor function in PD patients, without affecting
blood glucose levels [77,78].

Biguanides (Metformin): Although primarily used for treating type 2 diabetes, met-
formin has potential neuroprotective effects in PD [79,80]. Specific genetic polymorphisms
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in IL-1β and TNF-α genes may elevate PD risk [81], and metformin’s ability to reduce these
pro-inflammatory cytokines could make it especially beneficial for PD patients with these
specific gene variations [81]. Polymorphisms in Complex I, especially when coupled with
pesticide exposure, are known to influence PD risk [81]. Since metformin acts as a Complex
I inhibitor, it is plausible that particular Complex I gene variants could alter metformin’s
impact on PD progression, particularly in individuals exposed to environmental toxins [81].
Moreover, metformin’s intracellular transport is mediated by organic cation transporters,
which rely on their membrane concentrations to function effectively [81].

Non-Pharmacological Treatments

Stem Cell Therapy: Using pluripotent stem cells to regenerate damaged dopaminergic
neurons is a promising future therapy for PD. Early trials using fetal cell transplants have
shown long-term benefits, but also present risks like dyskinesia [82–84].

Gene Therapy: Gene therapies targeting defective genes like AADC and neurotrophic
factors are being explored to modify disease progression in PD [85,86]. While promising in
animal models, clinical application has faced gene distribution and efficacy challenges [85,86].

Surgical Treatments

Lesioning Procedures: Ablative surgeries, like pallidotomy and thalamotomy, target
specific brain areas to alleviate motor symptoms [87]. Although effective, these procedures
are reserved for patients that are unresponsive to medication, as they present the risk of
neurological side effects [87].

Deep Brain Stimulation (DBS): DBS is widely used to control PD motor symptoms by
delivering electrical impulses to the brain [88,89]. It improves motor function and reduces
the reliance on medications, although it requires careful management to avoid side effects
like dyskinesia and cognitive impairment [88,89].

Focused Ultrasound (FUS): FUS is a non-invasive method that uses ultrasound waves
to target deep brain tissues, offering a promising alternative to traditional surgery for motor
symptom relief in PD [90].

Gamma Knife Thalamotomy (GKT): GKT uses targeted gamma radiation to treat
tremors in PD. It is minimally invasive, with fewer long-term complications, although risks
such as radiation-induced neurological changes remain [91,92].

3.1.2. Limitations of Conventional Treatments

Despite the availability of various treatments for PD, limitations and side effects
persist across both pharmacological and non-pharmacological approaches [93]. Levodopa,
a cornerstone therapy that is converted into dopamine to alleviate motor symptoms like
tremors and rigidity, loses its effectiveness over time and can lead to side effects, such as
dyskinesia and motor fluctuations [94]. While MAO-B inhibitors help delay levodopa’s
breakdown and extend its benefits, they are less potent and are usually used in combination
with other treatments [95]. COMT inhibitors increase levodopa availability, but may
induce dyskinesia and confusion, with some drugs, like tolcapone, posing a risk of liver
failure [96]. Anticholinergic agents, used for tremor control, particularly in younger patients,
come with side effects like blurred vision and urinary retention, limiting their use [97].
Non-conventional pharmacological treatments also present challenges [93]. Antidiabetic
agents, like GLP-1 agonists and DPP-4 inhibitors, have shown potential for reducing
neuroinflammation, but their off-target effects remain under investigation [98]. Intranasal
insulin may protect dopaminergic neurons and improve motor function, although it is still
in the early-stage of research [98]. Metformin, an antidiabetic drug, has been associated
with a reduced risk of PD, but raises concerns about vitamin B12 deficiency and possible
cognitive decline. Non-pharmacological and surgical options carry their own risks [99,100].
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Stem cell therapy is promising in regard to the regeneration of dopaminergic neurons,
but carries the risk of dyskinesia and poses ethical challenges [101]. Gene therapy faces
obstacles in regard to gene distribution and efficacy in clinical applications [102]. Surgical
approaches, like lesioning procedures, are reserved for patients that are unresponsive
to medication and come with neurological side effects [103]. DBS, although effective in
controlling motor symptoms, can lead to dyskinesia and cognitive impairment [104]. Newer
techniques, like FUS and GKT, offer less invasive alternatives, although they carry risks of
tissue damage and radiation-induced neurological changes, respectively [105] (Table 1).

Table 1. Overview of therapeutic approaches to PD.

Category Treatment Mechanism Benefits Limitations/Side
Effects Ref.

Levodopa and
Derivatives

Converted into
dopamine to

alleviate motor
symptoms.

Effective for
tremors and

rigidity.

Diminished
effectiveness over
time, dyskinesia,

motor fluctuations.

[64–66]

Conventional
Pharmacological

Treatments

MAO-B
Inhibitors

Delays
breakdown of

levodopa,
extending
benefits.

Fewer patients
develop

dyskinesias,
used in

early-stage PD.

Less potent than
levodopa, often

used in
combination with
other therapies.

[64–69]

COMT
Inhibitors

Increases
levodopa

availability by
reducing

breakdown.

Extends
levodopa’s

effects.

Dyskinesia,
confusion,

tolcapone risk of
liver failure.

[96]

Antidiabetic
Agents

May reduce neu-
roinflammation
and oxidative

stress.

Potential
neuroprotective

effects, motor
and cognitive
improvements

Potential off-target
effects; still under

study.
[73–76]

Biguanides
(Metformin)

Potential
neuroprotective

effects.

Neuroprotective
effects in PD.

Risk of vitamin
B12 deficiency,

potential cognitive
decline.

[79,80,106]

Non-
Pharmacological

Treatments

Stem Cell
Therapy

Regenerates
dopaminergic

neurons.

Long-term motor
benefits.

Risk of dyskinesia,
ethical concerns,

early-stage
research.

[82–84]

Gene Therapy

Targets defective
genes and

neurotrophic
factors.

Promising
disease-

modifying
potential.

Gene distribution
challenges, efficacy
concerns in regard

to clinical
application.

[85,86]

Lesioning
Procedures

Targets specific
brain areas to

alleviate motor
symptoms.

Effective for
motor symptom

relief.

Neurological side
effects, reserved
for medication-
unresponsive

patients.

[87]



Int. J. Mol. Sci. 2025, 26, 122 8 of 37

Table 1. Cont.

Category Treatment Mechanism Benefits Limitations/Side
Effects Ref.

Surgical
Treatments

DBS

Delivers
electrical

impulses to
control motor

symptoms.

Improves motor
function, reduces

medication
reliance.

Risk of dyskinesia,
cognitive

impairment,
requires careful
management.

[88,89]

FUS

Non-invasive
ultrasound used
to target brain

tissue.

Promising
alternative to

traditional
surgery.

Still under study,
potential for tissue

damage.
[90]

GKT
Uses gamma

radiation to treat
tremors.

Minimally
invasive, fewer

long-term
complications.

Radiation-induced
neurological

changes possible.
[91,92]

3.2. Frailty

Frailty is a clinical syndrome characterized by a reduction in physiological reserves
and increased vulnerability to stressors, leading to adverse health outcomes, such as falls,
hospitalization, disability, and death [107,108]. It is often seen in older adults and is asso-
ciated with a decline in multiple body systems [107,108]. Clinically, frailty is diagnosed
using criteria like the Fried frailty phenotype, which includes unintentional weight loss,
self-reported exhaustion, weakness (grip strength), slow walking speed, and low physical
activity [109,110]. The presence of three or more of these criteria indicates frailty, while one
or two suggests a pre-frail state [111,112]. Frailty is not merely a consequence of aging, but
rather a distinct clinical entity that significantly impacts an individual’s quality of life and
functional independence [111,112]. It is associated with a higher risk of adverse outcomes,
particularly in the presence of acute illnesses or surgical interventions [113]. Frailty is a
growing global health issue, with significant consequences for healthcare systems and
individual well-being. Defined by the deterioration of various physiological systems and a
heightened susceptibility to external stressors, frailty dramatically increases the likelihood
of mortality, hospitalization, and the need for long-term care, and reduces the patient’s
quality of life. Research indicates a reciprocal association between severe depressive dis-
orders and frailty, where each condition can exacerbate the risk of the other [114]. On
one hand, frailty, a state of decreased physiological reserves and increased vulnerability
to stressors, can heighten the risk of developing or experiencing worsening depressive
symptoms due to its physical, social, and emotional burdens [114]. On the other hand,
severe depressive disorders are linked to behaviors, hormonal imbalances, and inflam-
matory pathways that may accelerate frailty [114]. Antidepressant use, while essential in
managing depressive symptoms, can also influence this relationship [115]. These medi-
cations may improve mental health and overall function, potentially mitigating frailty’s
progression [115]. However, some antidepressants are associated with side effects, such
as sedation, falls, or weight changes, which may inadvertently contribute to frailty in
susceptible populations [115]. This interplay highlights the need for a personalized and
cautious approach to managing depression in frail older adults, emphasizing both pharma-
cological and non-pharmacological interventions to optimize patient outcomes [115]. The
pathophysiology of frailty is multifaceted, involving complex interactions between various
biological systems [107,108]. Chronic inflammation plays a central role, with elevated levels
of pro-inflammatory cytokines, such as inteleukin-6 (IL-6) and tumor necrosis factor-alpha
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(TNFα), contributing to muscle catabolism, reduced muscle mass, and strength, a condition
known as sarcopenia, which is a core component of frailty [116–118]. Additionally, hor-
monal imbalances, including decreased levels of anabolic hormones, like testosterone and
growth hormones, exacerbate the decline in muscle and bone health [119]. Mitochondrial
dysfunction is also a critical factor in frailty, leading to decreased energy production and
increased oxidative stress, which further accelerates cellular aging and tissue damage [120].
Additionally, frailty is associated with insulin resistance, dysregulated glucose metabolism,
and impaired autophagy, all of which contribute to the decline in cellular and systemic
resilience [121].

3.2.1. Current Therapeutic Approaches

Patients affected by the clinical syndromes of frailty have limited options to effectively
slow disease progression outside of exercise training [122]. Given the difficulty in reversing
disability in older adults, its impact is both severe for individuals and costly for society [123].
Therefore, developing new strategies to maintain functional capacity and independence in
later life is crucial, particularly in the context of chronic illness [123]. A combined approach
involving exercise, nutrition, and pharmacological interventions may help mitigate the
onset and progression of frailty [124].

Drug Therapy

Hormone Therapies: Among the potential pharmacological treatments extensively
studied in preclinical settings are hormone therapies and myostatin inhibitors [125]. Hor-
mone therapies include the administration of testosterone, growth hormones (GHs), ghre-
lin, insulin, and thyroid hormones [126–129]. Testosterone replacement therapy, given
its known metabolic and anabolic effects, has been explored as a possible treatment for
frailty [130]. Clinical trials have shown that testosterone can modestly improve muscle
function and overall physical capacity in frail patients [131,132]. However, side effects
like the risk of prostatic hyperplasia necessitate further large-scale studies to validate its
safety and efficacy [133]. While showing promise in preclinical studies for its anabolic,
anti-inflammatory, and antioxidant benefits, GH therapy has yet to demonstrate clinical
effectiveness [125]. Ghrelin is another potential treatment, due to its ability to stimulate the
patient’s appetite and enhance gastric motility [134].

Insulin: By increasing amino acid delivery and intramuscular blood flow, insulin pro-
motes muscle protein synthesis [135]. The thyroid hormone, a critical metabolic regulator
targeting skeletal muscle, has been linked to muscle wasting and diminished function in
overt and latent thyroid dysfunction cases [136].

Myostatin: Myostatin, a cytokine within the transforming growth factor-β (TGF-
β) family, is highly expressed in skeletal muscles and regulates muscle growth [137,138].
However, several trials involving myostatin inhibitors have yielded underwhelming results,
showing limited therapeutic benefit [139]. Nevertheless, a study involving bimagrumab, a
myostatin inhibitor, demonstrated positive outcomes, improving both functional capacity
and independence in elderly sarcopenic individuals [140].

GDF-15: Another promising target has recently gained attention, growth differenti-
ation factor 15 (GDF-15), a key regulator in muscle pathophysiology and a global stress
mediator [141,142]. Evidence indicates that GDF-15 is associated with reduced muscle
mass, impaired performance, and heightened inflammation [143]. Neutralizing GDF-15 has
shown promise in reversing these effects, helping to restore muscle function and physical
capacity [144]. In experimental models, anti-GDF-15 treatment significantly increased mus-
cle mass by boosting the patient’s appetite and food intake, leading to improved physical
function [145].
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Exercise: Exercise is now recognized as the most effective therapy for slowing the
progression of frailty [146,147]. Well-structured and closely supervised exercise training
programs are designed to combat muscle atrophy, stimulate muscle growth, and preserve
muscle function, as individuals age [146,147]. Resistance exercise benefits muscle health
through various physiological mechanisms and signaling pathways, including vasodilation,
antithrombotic effects, reduced oxidative stress, anti-inflammatory responses, activation
of the mechanistic target of rapamycin complex-1 (mTORC1), enhanced mitochondrial
biogenesis, increased Insulin-like Growth Factor 1 (IGF-1), stimulation of peroxisomes, and
improved insulin sensitivity [148,149]. These molecular adaptations show that the skeletal
muscle is highly responsive and adaptable to activity. Low-intensity training enhances
mitochondrial efficiency and oxygen utilization, while high-intensity exercise stimulates
muscle cell proliferation and increases contractile protein production [150]. Exercise also
upregulates gene transcription related to calcium (Ca2+) signaling via the Adenosine
monophosphate-activated protein kinase (AMPK) pathway, influencing the energy status
of muscle cells [151].

Nutrition: Malnutrition encompasses various forms of undernutrition, such as wast-
ing, stunting, the patient being underweight, vitamin and mineral deficiencies, obesity, and
related non-communicable diseases [152]. Nutritional deficiencies in terms of micronutri-
ents (e.g., vitamins and minerals) and macronutrients (such as energy stores and substrates)
contribute to a worsening catabolic state in conditions like frailty [153–155]. For example,
vitamin D deficiency can impair muscle function, alter calcium flow, and promote inflamma-
tion. However, it also reduces muscle mass and contributes to poor physical performance
in older adults [156]. Consequently, vitamin D supplementation is potentially a therapeutic
option for managing frailty [157,158]. New insights into the link between muscle health
and nutrition reveal that proper nutrition supports muscle function, stimulates muscle
growth (anabolism), and regulates muscle protein synthesis, glucose, insulin levels, and
neuromuscular and vascular functions [159]. Nutrition also plays a crucial role in nutrient
sensing, mitochondrial efficiency, and communication between muscles and the immune
system. When combined, nutritional interventions and exercise can have additive effects,
particularly when resistance training is paired with protein supplementation, improving
muscle mass and function [160]. Dietary protein is vital for maintaining muscle structure,
function, and a healthy balance between anabolic and catabolic processes in frail elderly
individuals [161]. Essential amino acids, like leucine, trigger strong anabolic responses by
activating muscle signaling pathways that enhance mRNA translation and muscle protein
synthesis [162]. Omega-3 polyunsaturated fatty acids also offer a potential benefit, due
to their anti-inflammatory properties [163]. Despite their crucial role in managing frailty,
nutritional interventions face challenges. These include the complexity of food and nutrient
interactions, difficulty in blinding treatments, low patient adherence, and the influence of
confounding factors like ethnicity, genetics, and physiological condition, along with dietary
habits and food culture variations [152].

3.2.2. Limitations of Conventional Treatments

Pharmacological and nutritional interventions for treating frailty come with notable
limitations and potential side effects [164]. Testosterone therapy, despite its ability to
improve muscle function, carries risks, such as prostatic hyperplasia, necessitating large-
scale trials to confirm its safety [165]. Though promising in preclinical studies, GH treatment
has yet to demonstrate clinical efficacy [126–129]. Ghrelin and insulin therapies, while
showing potential in regard to improving muscle function and protein synthesis, may
pose risks, with insulin linked to poorer outcomes in heart failure (HF) patients with
diabetes [134]. Thyroid hormone interventions face challenges in managing muscle wasting,
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particularly in cases of thyroid dysfunction [165]. Myostatin inhibition trials, including
those involving bimagrumab, have yielded limited therapeutic benefits and further research
is needed [166]. Nutritional interventions, like protein and vitamin D supplementation,
also require careful consideration, particularly in frail patients with chronic kidney disease
or heart failure [167]. Additionally, compliance with dietary interventions remains low, and
factors like ethnicity, genetics, and food culture introduce significant variability, making
treatment outcomes less predictable [168] (Table 2).

Table 2. Overview of therapeutic approaches to frailty.

Category Treatment Mechanism Benefits Limitations/Side Effects Ref.

Hormone Therapy

Testosterone

Increases anabolic and
metabolic activity,
promoting muscle

growth and improving
physical capacity.

Modestly improves
muscle function and

overall physical
capacity in frail

patients.

Requires large-scale studies
for safety and efficacy

validation. Risk of prostatic
hyperplasia.

[67–69,131–133]

GH

Anabolic,
anti-inflammatory, and
antioxidant effects in
preclinical models.

Shows promise in
preclinical studies in

regard to muscle
growth and function.

Has not demonstrated
clinical effectiveness.

Uncertain due to lack of
clinical efficacy data.

[125]

Ghrelin Stimulates appetite and
enhances gastric motility.

Potential to improve
muscle mass and

nutritional status by
stimulating appetite.

Clinical benefits are not
fully validated. [134]

Insulin

Promotes muscle protein
synthesis by increasing

amino acid delivery and
blood flow to muscles.

Enhances muscle
protein synthesis and
may prevent muscle

wasting.

Associated with poorer
outcomes in heart failure

patients with diabetes. Risk
of adverse effects in

patients with heart failure.

[73–75,135,136]

Thyroid
Hormones

Critical metabolic
regulator affecting

skeletal muscle.

Linked to improved
muscle metabolism and

function.

Limited effectiveness in
cases of overt and latent

thyroid dysfunction.
Potential to worsen muscle

wasting in thyroid
dysfunction cases.

[64–66,136]

Myostatin

Blocks myostatin, a
cytokine that regulates

muscle growth, to
promote muscle mass

increase.

Positive outcomes in
improving muscle

function and
independence in

elderly sarcopenic
individuals.

Limited therapeutic
benefits found in many
clinical trials. Unknown

practical value due to
limited clinical success.

[137,138]

GDF-15

Neutralizes GDF-15,
which is associated with
reduced muscle mass and
heightened inflammation,

to restore muscle
function.

Significantly increases
muscle mass, boosts

appetite, and improves
physical function in

experimental models.

Experimental models
developed so far; requires

further validation in clinical
settings.

[137,138,145]

Exercise Resistance
Training

Involves mTORC1
activation, mitochondrial

biogenesis, increased
IGF-1, and enhanced

insulin sensitivity,
reducing oxidative stress

and inflammation.

Preserves and enhances
muscle mass, strength,

and function in frail
individuals.

Requires structured
programs and close
supervision, making

adherence challenging. Risk
of injury in frail patients if
not supervised properly.

[146–149]
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Table 2. Cont.

Category Treatment Mechanism Benefits Limitations/Side Effects Ref.

Nutrition

Vitamin D

Regulates calcium flow
and reduces

inflammation, impacting
muscle function.

May improve muscle
mass and physical

performance in older
adults with a

deficiency.

Effectiveness limited by
patient adherence and

variability in dietary habits.
Uncertain in patients with
chronic kidney disease or

heart failure.

[156]

Protein

Stimulates muscle protein
synthesis and anabolism,

particularly through
essential amino acids like

leucine, and
inflammation.

Helps maintain muscle
structure and function,
and improves muscle
mass in frail elderly

individuals

Compliance issues due to
variability in diet, ethnicity,

and genetics.
[146,147,160,161]

Omega-3 Fatty
Acids

Anti-inflammatory
properties that support

muscle health.

May reduce
inflammation and

support muscle
function in frailty.

Challenges include low
adherence and complex
interactions with other

nutrients.

[146,147,152,163]

4. Unveiling the Differences: Nutraceuticals vs. Conventional Food
Interest in nutraceuticals and functional foods is increasing, driven by ongoing re-

search into their properties and applications and increasing consumer demand [169,170].
“Functional foods” and “nutraceuticals” are often used interchangeably, contributing to
confusion, due to their overlapping characteristics [169,170]. Functional foods are broadly
defined as “foods and food components that provide health benefits beyond basic nutri-
tion”, as stated by the Institute of Food Technologists (IFT) [171]. These foods are typically
consumed as part of a regular diet and include naturally occurring bioactive substances,
such as dietary fiber or enriched components, like probiotics and antioxidants [169,170].
In contrast, nutraceuticals are formulated products that provide health benefits through
specific doses and formats, such as capsules, tablets, or powders, often more closely re-
sembling pharmaceutical products [172]. While functional foods and nutraceuticals offer
health-promoting effects, their distinction lies in their format and regulatory classifica-
tion. Functional foods are consumed as ordinary foods and often lack specific dosing
requirements [173,174]. Conversely, nutraceuticals are designed to address specific health
conditions or preventive needs with precise compositions, making them distinct from
conventional dietary sources [173,174]. Globally, regulatory frameworks highlight these
differences. For instance, in Japan, functional foods are categorized under the Food for
Specified Health Use (FOSHU) program, which emphasizes scientifically validated health
benefits [175–177]. In the U.S., the FDA regulates functional foods and nutraceuticals under
the Federal Food, Drug, and Cosmetic Act and the Dietary Supplement Health and Educa-
tion Act (DSHEA). However, they are not classified as medicines [178,179]. Similarly, in
Europe, functional foods are defined by their ability to improve health and reduce disease
risk, as part of the General Food Law and Framework Directive [180–183]. By consolidating
these definitions, we emphasize that functional foods are primarily dietary components
with health benefits when consumed regularly, while nutraceuticals are more targeted,
formulated interventions. Clear distinctions are essential to avoid confusion in research,
regulatory contexts, and consumer education [184,185].

4.1. Categories of Major Nutraceuticals

The growing interest in nutraceuticals stems from their potential to improve individu-
als’ quality of life, addressing modern challenges and consumer demand for alternative
forms of healthcare [172]. Regardless of their origin, these compounds can provide various
health benefits, from antioxidant and anti-inflammatory properties, to supporting specific
health conditions [186]. Despite their potential, nutraceuticals face several challenges. Their
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diverse composition and varied modes of action make it difficult to develop standardized
delivery methods [187]. Additionally, their low bioavailability and potential interactions
with other food components hinder their practical use [187]. To address these challenges,
researchers are exploring encapsulation technologies [187]. By encapsulating nutraceuticals
within protective structures, it is possible to improve their stability, solubility, and bioavail-
ability [184,185]. Various methods, including micro and nano-encapsulation, are being
investigated to optimize the delivery of these valuable compounds [184,185]. Ultimately,
the successful development and utilization of nutraceuticals depend on a clear understand-
ing of their properties, effective delivery systems, and robust regulatory frameworks [187].
Nutraceuticals are categorized according to their applications into various classes, includ-
ing traditional, non-traditional, fortified, recombinant, phytochemicals, herbal products,
functional foods, dietary supplements, probiotics, and prebiotics [188]. Each class of nu-
traceuticals relates to distinct applications and offers distinct benefits, depending on its
specific characteristics [188]. The categories include conventional foods, fortified, enriched,
enhanced, and dietary supplements [188].

4.1.1. Traditional Nutraceuticals
Functional Foods

Functional foods contain ingredients that enhance antioxidant and anti-inflammatory
activities [182,189]. Examples of functional foods include rice, wheat, beans, soybeans,
lentils, chocolate, citrus fruits, nuts, and fermented milk [182,189]. Rice, for instance, is a
staple food rich in carbohydrates and low in fat, salt, and sugar. It also contains resistant
starch, which supports gut health [190]. Similarly, wheat is valued for its fiber-rich bran,
which promotes gastrointestinal health [191]. Other examples of such foods, like carrots and
broccoli, contain active components such as sulforaphane and lycopene, which are known
for their health benefits [192]. However, more scientific studies are needed to validate the
health claims on these product labels, including in regard to the following aspects:

• Carotenoids: Carotenoids are natural pigments found in plants, fruits, vegetables,
and algae, known for their antioxidant and anti-inflammatory properties [193]. These
compounds, including β-carotene and lutein, offer various health benefits, such as
improving vision, cognitive function, and heart health, while helping prevent can-
cer [194]. Their antioxidant activity is due to their chemical structure, which allows
them to neutralize free radicals [182,189,193,194];

• Collagen hydrolysate: Collagen hydrolysate, derived from collagen found in animal
connective tissues, has several health benefits, including antioxidant, anti-aging, and
anti-inflammatory effects [195,196]. Studies have shown that collagen hydrolysate can
boost the immune system, improve skin hydration elasticity, and reduce wrinkles,
especially in cases of photoaged skin [197,198];

• Dietary fibers: Dietary fibers are non-digestible carbohydrates found in vegetables,
fruits, and whole grains [191]. They are classified into soluble and insoluble fibers, each
offering specific health benefits [199]. For example, soluble fibers can help manage
digestive health by delaying gastric emptying, while insoluble fibers can alleviate
constipation [191]. High-fiber diets are also linked to a reduced risk of inflammatory
bowel diseases [191];

• Fatty acids: Fatty acids in oils, fats, and fish supplements are crucial for energy
storage and offer anti-inflammatory and immune-boosting benefits [200]. Omega-3
polyunsaturated fatty acids (PUFAs), in particular, have been shown to reduce the
severity of symptoms in conditions like rheumatoid arthritis, when taken in sufficient
doses [201];
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• Phytochemicals: Phytochemicals are bioactive compounds derived from plants that
support various biochemical and metabolic functions in the body [202]. They of-
fer neuroprotective benefits and can reduce the risk of cancer, heart disease, and
neurodegenerative disorders through their antioxidant properties [202];

• Herbs: Herbs like garlic, ginger, and aloe have been used for centuries for their health
benefits, which include reducing cholesterol, promoting wound healing, and offering
antioxidant properties [203]. The effectiveness of herbs can vary depending on how
they are processed and consumed [203];

• Probiotics: According to the World Health Organization, probiotics are defined as “live
microorganisms which, when administered in adequate amounts, confer a health bene-
fit on the host” https://ehpm.org/wp-content/uploads/2024/07/EHPM_Probiotics_
Guidelines_2022_digital_v02.pdf (accessed on 15 November 2024). They are commonly
found in fermented foods, especially dairy products, that promote digestive health and
support the immune system [204]. Lactobacillus, Bifidobacterium, and Streptococcus
are among the most commonly used probiotic strains, known to maintain a healthy
balance of gut bacteria [204];

• Prebiotics: Prebiotics are non-digestible ingredients that stimulate the activity of
probiotics in the gut [205]. They act as a fertilizer for beneficial gut bacteria, enhancing
the health benefits provided by probiotics [206]. Fructo-oligosaccharides and inulin
are prebiotics used in functional foods to improve digestive health [207];

• Dietary supplements: Dietary supplements, available in various forms like tablets,
capsules, and powders, are intended to supplement the diet and ensure adequate
nutrient intake [208]. Joint supplements include omega-3 fatty acids, vitamins, and
minerals, which can prevent nutrient deficiencies and support overall health [209,210].

4.1.2. Non-Traditional Nutraceuticals

Non-traditional nutraceuticals are artificially synthesized food products that enhance
health through biotechnology and agricultural breeding [188]. These nutraceuticals can be
categorized into fortified and recombinant types, based on how they are processed [188].
Examples include rice enriched with β-carotene and cereals fortified with vitamins and
minerals, which boost antioxidant activity and provide essential nutrients, like provitamin
A [188].

• Fortified nutraceuticals: Fortified nutraceuticals are foods enhanced with additional
vitamins or micronutrients to improve their nutritional value [211]. For instance,
orange juice fortified with calcium or milk enriched with vitamin D, which helps
prevent deficiencies and supports overall health [212]. Such products can also offer
specific benefits, like enhanced glycemic control when calcium is added to orange
juice [213].

• Recombinant nutraceuticals: Recombinant nutraceuticals are genetically modified
foods created through biotechnology to include beneficial compounds [214,215]. Ex-
amples include iron-fortified rice, golden rice, and multivitamin corn [216]. These
products contain genes that enhance their nutritional content, such as increasing the
levels of vitamins, carotenoids, and proteins [217,218]. Gold kiwifruit, for example,
has been modified to boost its vitamin C, carotenoid, and lutein content, making it a
rich source of essential nutrients [219].

5. Mechanisms of Nutraceutical Action in Geriatric Frailty and
Parkinson’s Disease

Nutraceuticals are believed to enhance human health, extend life expectancy, and
delay the onset of aging and chronic diseases [220]. Numerous nutraceutical supplements

https://ehpm.org/wp-content/uploads/2024/07/EHPM_Probiotics_Guidelines_2022_digital_v02.pdf
https://ehpm.org/wp-content/uploads/2024/07/EHPM_Probiotics_Guidelines_2022_digital_v02.pdf
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have demonstrated positive effects on conditions like PD and frailty [8,221]. Their ability to
address mitochondrial dysfunction, first, and also oxidative stress, inflammation, mitochon-
drial dysfunction, and protein aggregation, underscores their potential as complementary
strategies for promoting cellular health and healthy aging and mitigating disease progres-
sion [222]. The primary challenge in managing both PD and frailty lies in addressing their
clinical symptoms, while minimizing the side effects of pharmacological treatments, partic-
ularly concerning mitochondrial bioenergetics. Patients with these conditions often require
multiple medications, which can negatively affect mitochondrial function by promoting
oxidative stress and inflammation.

In PD, mitochondrial dysfunction is a well-documented issue and treatments like the
use of dopaminergic agents (e.g., levodopa) can further damage mitochondria by increas-
ing oxidative stress and mitochondrial fragmentation [223,224]. In the context of geriatric
frailty, polypharmacy is also common, and the concurrent use of multiple medications
often exacerbates mitochondrial impairment, resulting in higher levels of oxidative stress
and inflammation. These effects contribute to the progression of frailty, weakening muscle
function and the patient’s overall resilience [225]. The influence of pharmacological treat-
ments on mitochondrial health highlights the critical need for a more strategic approach to
medication management [223,224]. Clinicians should carefully evaluate pharmacological
interventions, seeking to optimize treatments, while considering alternatives that protect
mitochondrial function, reduce oxidative damage, and minimize inflammation, ensuring
better long-term outcomes for patients with PD and geriatric frailty [223,224]. Nutraceuti-
cals are believed to enhance human health, extend life expectancy, and delay the onset of
aging and chronic diseases [220]. Numerous nutraceutical supplements have had positive
effects on conditions like PD and frailty [8,221]. Their ability to address oxidative stress,
inflammation, mitochondrial dysfunction, and protein aggregation underscores their po-
tential as complementary strategies for promoting healthy aging and mitigating disease
progression [222].

5.1. Anti-Inflammatory Activity

Nutraceuticals are known for their anti-inflammatory properties, which are crucial
for preventing and treating diseases associated with chronic inflammation [226]. One
significant advantage of using nutraceuticals as anti-inflammatory agents is that they can
complement traditional anti-inflammatory drugs, enabling lower drug dosages to be used
and reducing potential side effects [227].

Chronic inflammation is a leading cause of several major diseases, including frailty
and PD [228,229]. Nutraceuticals can help mitigate this type of inflammation by sup-
pressing inflammatory cytokines, like interleukins, tumor necrosis factor-alpha (TNF-α),
and cyclooxygenase-2 (COX-2) [230]. For example, curcumin, the active compound in
turmeric, has potent anti-inflammatory properties. It works by inhibiting key inflammatory
pathways, including nuclear factor kappa B (NF-κB) and COX-2 pathways, and reducing
the production of pro-inflammatory cytokines, like TNF-α, interleukins-6 (IL-6), and IL-
1β. These cytokines are implicated in muscle degradation and systemic inflammation in
frailty [231,232]. Despite its apparent pharmacokinetic limitations, curcumin, a well-known
anti-inflammatory compound, has been shown to exhibit a wide range of pharmacologi-
cal activities and has demonstrated effectiveness against numerous diseases [233]. These
include its anticarcinogenic effects [234], hepatoprotective properties [235], thrombosup-
pressive action [236], cardioprotective benefits [237], antiarthritic effects [238], and its role
in combating infections [239]. The study of the chemical biology of aging is expected to
reveal candidate compounds and fundamental mechanisms that will drive the develop-
ment of treatments for age-related diseases [240]. Curcumin exemplifies this concept due
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to its multiple in vitro benefits. It has been shown to extend the lifespan in C. elegans and
Drosophila, although similar effects have not been observed in mice [241,242]. Still, consid-
erable evidence suggests that curcumin may aid in treating neurodegenerative and other
age-related diseases, potentially enhancing the health span [243]. Polyunsaturated fatty
acids (PUFAs) are another class of nutraceuticals that effectively manage inflammatory dis-
orders. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to reduce
inflammation by inhibiting the production of pro-inflammatory cytokines and eicosanoids,
such as prostaglandins and leukotrienes [244]. They also promote the production of spe-
cialized pro-resolving mediators (SPMs), like resolvins and protectins, which help combat
inflammation [245]. PUFA treatment has been shown to decrease the expression of NF-κB
and reduce pro-inflammatory markers, while increasing anti-inflammatory markers like
IL-10 in patients with conditions such as Duchenne muscular dystrophy [246]. Additionally,
DHA has demonstrated neuroprotective effects in various animal models of neurodegenera-
tive diseases [247,248]. While there is less research on DHA consumption and its impact on
PD, recent epidemiological studies suggest that a high intake of unsaturated fatty acids may
lower the risk of developing PD and offer protection against pesticide-induced neurotoxic-
ity [247,248]. Research involving the MPTP animal model of PD has also highlighted the
protective effects of PUFAs against MPTP-induced neurotoxicity [249]. Although the exact
mechanisms behind these effects are not fully understood, several studies have shown that
PUFAs enhance the release of neurotrophic factors, regulate genes involved in oxidative
stress and apoptosis, and reduce inflammation associated with PD [250]. Polyphenols are
bioactive compounds found in fruits, vegetables, and teas [251,252]. They exhibit strong
anti-inflammatory and antioxidant activities by modulating signaling pathways, like NF-κB
and Nrf2, and reducing oxidative stress [251,252]. Resveratrol, found in red grapes, and
quercetin, found in apples and onions, specifically inhibit inflammatory mediators and
support muscle health [251,253]. Indeed, it activates SIRT1 and improves mitochondrial
function, protecting against cognitive decline [254]. Resveratrol, found in red grapes, has
shown promise in terms of improving mitochondrial function and reducing oxidative
stress, both critical in regard to muscle preservation and physical resilience associated with
frailty [251,253]. Abundant in onions, apples, and tea, quercetin combats inflammation and
enhances muscle strength. Studies suggest it can ameliorate sarcopenia, a key component
of frailty. Found in green tea, catechins exhibit anti-inflammatory properties and support
vascular function, contributing to overall physical robustness in humans. In dark-colored
berries (e.g., blueberries, blackberries), anthocyanins promote vascular health and cog-
nitive function. Derived from turmeric, curcumin reduces inflammation and oxidative
stress, improving muscle and joint health. This is particularly beneficial in preventing
frailty-related mobility limitations. Found in pomegranates and nuts, these compounds
foster gut health by enhancing microbiota composition and reducing systemic inflamma-
tion. Lycopene (LYC), a natural carotenoid pigment primarily found in red fruits and
vegetables, such as tomatoes, papayas, pink grapefruits, pink guavas, and watermelons,
has garnered significant attention for its diverse biological activities [255,256]. LYC is an
unsaturated acyclic carotenoid, with eleven linear conjugated and two non-conjugated
double bonds [257]. Studies have demonstrated that LYC exhibits potent antioxidant and
anti-inflammatory properties, both in vitro and in vivo, and it can also cross the blood–
brain barrier [258,259]. Furthermore, higher serum levels of carotenoid pigments, like
lycopene, lutein, and zeaxanthin, have been associated with a reduced risk of neurode-
generative diseases [260]. The discovery of a pro-inflammatory shift in the gut microbiota
associated with PD and its potential involvement in the progression of this neurodegen-
erative disorder has sparked interest in exploring gut microbiota-modulating treatments,
such as probiotics, as possible therapeutic options for PD [41,261]. Probiotics provide these
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health benefits through various mechanisms, such as restoring the balance to a disrupted
intestinal microbiome [262], enhancing the function of the intestinal barrier [263], and
activating enzymes that produce metabolites, which help to regulate both peripheral and
central energy metabolism and inflammation, in addition to promoting neurogenesis, neu-
rotransmission, and even behavioral changes [264]. Animal studies of PD, for instance,
have demonstrated that probiotics can lower the level of inflammatory cytokines, like
IL-1β and IL-6, which in turn helps prevent neuroinflammation [265]. Indeed, probiotics
exhibit anti-inflammatory effects by modulating the NF-κB signaling pathway, inflam-
matory cytokines, and the regulatory T-cell response [266]. A combination of probiotics,
such as Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifidobacterium longum, has been
shown to induce IL-10 production and reduce pro-inflammatory cytokines [267,268]. Pre-
biotics, like β-(1,3)-glucan, also demonstrate anti-inflammatory and immunomodulatory
effects [269]. In animal studies, pre-treatment with β-(1,3)-glucan prevented symptoms of
inflammatory bowel disease and inhibited inflammatory cytokines and reactive oxygen
species (ROS) [270]. Other nutraceuticals, including ginger, cinnamon, and peppermint,
also possess potent anti-inflammatory activities [271]. Emerging evidence from both in vivo
and in vitro studies highlights the neuroprotective properties of ginger and its vital active
components, namely zingerone, 6-shogaol, and 6-gingerol, in regard to PD [272]. These pro-
tective effects are primarily linked to the regulation of neuroinflammation, oxidative stress,
intestinal permeability, dopamine synaptic transmission, and potentially mitochondrial
dysfunction [272]. Several transcription factors and signaling pathways are involved in
mediating these benefits, including NF-κB, p38 mitogen-activated protein kinase (MAPK),
phosphatidylinositol-3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK) 1/2,
and AMP-activated protein kinase (AMPK)/proliferator-activated receptor gamma coac-
tivator one alpha (PGC1α) [273]. These pathways contribute to ginger’s neuroprotective
effects in PD [272]. Similarly, cinnamon and peppermint extracts have shown strong
anti-inflammatory effects, by significantly reducing the expression of inflammatory cy-
tokines IL-1 and IL-6, respectively, in experimental animal models and individuals with
various CNS complications, like PD and frailty [274]. Ginkgolides, bioactive compounds
derived from the Ginkgo biloba tree, have been used in traditional Chinese medicine for
centuries [275]. Extensive research has validated their neuroprotective properties, making
them a valuable component of treatments for various neurological disorders, including
PD [275]. Ginkgolides exert a multifaceted influence on the CNS. They modulate neu-
rotransmitter activity, such as glutamate and dopamine, and inhibit platelet-activating
factors (PAFs), a critical inflammatory mediator [275]. These actions contribute to their
neuroprotective effects [275].

5.2. Antioxidant Activity

Curcumin increases antioxidant defense mechanisms by upregulating transcription
and expression levels of antioxidant enzymes and improving mitochondrial function [276].
In vitro studies have shown that curcumin presents senolytic properties, causing a re-
duction in some hallmarks of senescence (i.e., p16, IL-6, IL-8, MMP3, and MMP13) [277].
However, curcumin has low bioavailability, which compromises its senolytic activity [278].
In combination with piperine, alginates, or nanocapsules, the stability and bioavailability
of curcumin is improved [279]. PD is characterized by a chronic, low-grade inflammatory
process, in which activated microglia release cytotoxic compounds, most notably peroxyni-
trite, that contribute to the death and dysfunction of nearby dopaminergic neurons [280].
As neurons die, they release damage-associated molecular pattern proteins, like the high
mobility group of proteins, which further activates microglia through various receptors,
amplifying the inflammatory response [281]. Since peroxynitrite is central to this destruc-
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tive cycle, nutraceutical approaches that either reduce microglial peroxynitrite production
or enhance the scavenging of peroxynitrite-derived oxidants could be valuable for pre-
venting and managing PD [281]. Peroxynitrite formation can be mitigated by inhibiting
microglial NADPH oxidase activity, which produces its precursor, superoxide, or by down-
regulating signaling pathways that stimulate the microglial expression of inducible nitric
oxide synthase (iNOS) [281]. Nutrients and compounds, such as phycocyanobilin from
spirulina, ferulic acid, long-chain omega-3 fatty acids, adequate vitamin D levels, hydrogen
sulfide-promoting substances like taurine and N-acetylcysteine, caffeine, epigallocatechin-
gallate, butyrogenic fiber, and probiotics, may help reduce microglial iNOS induction [282].
Additionally, scavenging peroxynitrite-derived radicals can be enhanced through supple-
mentation with zinc or inosine. Astaxanthin may protect the mitochondrial respiratory
chain from peroxynitrite damage and environmental toxins [280]. Plant-based diets low in
protein and possibly diets rich in corn and spermidine might offer protection by enhancing
mitophagy and supporting mitochondrial health. Furthermore, low-protein diets can help
maintain a more stable response to levodopa therapy [280]. Exogenous antioxidants, like
vitamin C, E, and phenolic compounds, are crucial in neutralizing free radicals [283]. In
contrast to traditional antioxidants like vitamins C, E, and β-carotene, natural compounds
such as flavonoids (quercetin, curcumin, luteolin, and catechins) and magnolol/honokiol
have demonstrated superior efficacy in inhibiting oxidative processes in various in vitro
and in vivo models of aging and PD [283]. Vitamin C is highly effective at scavenging
harmful free radicals, such as hydroxyl and superoxide anion radicals, and helps pro-
tect cells and DNA from oxidative damage [284]. Alongside vitamin C, vitamin E also
contributes to safeguarding cells by preventing lipid peroxidation [285]. Gingerols, the
bioactive compounds found in ginger, have demonstrated various neuroprotective proper-
ties, including antioxidant and anti-amyloidogenic properties [286]. Moreover, 6-Gingerol,
a key component of ginger, has been shown to inhibit astrocyte overactivation and reduce
inflammation in microglia [287]. Both environmental and genetic factors, including iron
accumulation and oxidative stress, contribute to PD development [55]. Through its active
compounds, ginger may offer potential benefits for individuals with PD [272]. Ginger could
potentially mitigate cognitive dysfunction associated with this condition by inhibiting in-
flammation, increasing the nerve growth factor, and promoting synapse formation [272]. In
conclusion, the antioxidant properties of nuts offer a promising approach to mitigating the
health challenges associated with aging, making them a valuable dietary addition for older
individuals [288].

Saffron, a prized spice derived from the Crocus sativus plant, has long been valued
for its culinary and cosmetic applications [289]. Recent research has unveiled its potential
therapeutic benefits, particularly in regard to neurological disorders [289]. Saffron’s an-
tioxidant properties have shown promise in mitigating the effects of neurodegenerative
conditions [289]. Saffron and its components have been found to enhance antioxidant
defenses against reactive oxygen species, lipid peroxidation, and other oxidative dam-
age [289]. While preclinical studies have provided encouraging results, further clinical
research is essential to fully elucidate the mechanisms underlying saffron’s antioxidant
actions and to validate its potential as a therapeutic agent for neurological disorders [289].

5.3. Promoting Healthy Aging

PD and geriatric frailty are often viewed as age-related conditions (ARDs), and it is
essential to acknowledge the potential role of nutraceuticals in mitigating the effects of ag-
ing [290]. Research indicates that specific nutraceuticals, particularly those with antioxidant
and anti-inflammatory properties, can help address the cellular and molecular damage
associated with the aging process [290]. As a result, these compounds may contribute to
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reducing the severity of neurodegenerative diseases, such as PD, and geriatric frailty [8].
Nutraceuticals have the potential to support mitochondrial function, decrease oxidative
stress, and enhance cellular resilience, which are crucial factors in maintaining overall
health in aging individuals [291]. By targeting these cellular mechanisms, nutraceutical
interventions may offer a promising approach to improving physical function, cognitive
health, and overall well-being in populations affected by PD and geriatric frailty, ultimately
promoting healthier and more active aging [221]. Emerging evidence supports the abil-
ity of different phytochemical classes to modulate the senescence process, underscoring
the importance of nutraceutical research for promoting healthy aging [292]. Data on the
anti-aging effects of various natural and synthetic compounds are available from databases
like Geroprotectors (http://geroprotectors.org/resources (accessed on)) and DrugAge
(https://ngdc.cncb.ac.cn/databasecommons/database/id/4466 (accessed on. The scien-
tific evaluation of the anti-aging effects of natural compounds is still in the early stages, and
evidence regarding their senolytic properties is limited [293]. Tocotrienols, a member of the
vitamin E family, possess antioxidant properties and play a role in cell signaling, immune
responses, and apoptosis [294]. Recently, they have gained attention for their senolytic
properties, stimulating senescence in cancer cells and reducing the accumulation of senes-
cent cells in healthy tissues, thereby slowing the aging process [295]. Combining quercetin
and dasatinib has significantly enhanced the health span in various mouse models [296].
Derived from Piper longum, Piperlongumine (PL) is known for its anticancer properties.
It suppresses cancer stemness and has been shown to preferentially kill senescent human
fibroblasts, making it a promising anticancer agent, with potential senolytic effects [293].

6. Emerging Nutraceuticals and Future Directions
The field of nutraceuticals is rapidly evolving, with novel compounds and advanced

technologies paving the way for more effective anti-aging interventions [187,297]. Novel
compounds with potential anti-aging effects are at the forefront of current research [293].
For instance, pterostilbene, a compound structurally similar to resveratrol, but with supe-
rior bioavailability, is gaining attention for its potent antioxidant and anti-inflammatory
properties, which could play a crucial role in slowing the aging process and combating
neurodegenerative diseases [298]. Similarly, urolithin A, a metabolite derived from ellag-
itannins that is found in pomegranates, has shown promise in enhancing mitochondrial
function and promoting mitophagy, thereby supporting cellular health and longevity [299].
Overall, the integration of nanotechnology into nutraceutical formulations is overcoming
the barriers to implementation [300]. Nanoparticles, liposomes, and nanoemulsions are
employed to encapsulate bioactive compounds, protecting them from degradation and
improving their absorption and bioavailability [300,301]. For example, nanocurcumin,
a nanoparticle form of curcumin, has enhanced stability and bioavailability, leading to
more pronounced anti-inflammatory and neuroprotective effects [241]. These cutting-
edge delivery systems could revolutionize the effectiveness of nutraceutical interventions,
making them more potent and reliable for preventing and managing age-related dis-
eases [241,278]. Moreover, the future of nutraceuticals is moving towards personalized
interventions, tailored to an individual’s genetic and epigenetic profile [302]. As our under-
standing of genomics and epigenetics deepens, it is becoming increasingly clear that the
efficacy of nutraceuticals can vary significantly based on an individual’s unique genetic
makeup [302]. For instance, specific gene variants may influence how well a person metabo-
lizes specific nutrients, impacting the effectiveness of nutraceuticals like omega-3 fatty acids
or polyphenols [303]. By integrating genetic testing and epigenetic analysis, healthcare
providers could tailor nutraceutical regimens to optimize their anti-aging effects [304].
This personalized approach could also involve monitoring epigenetic markers, such as
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DNA methylation patterns or microRNA expression, to adjust nutraceutical interventions
dynamically, ensuring they remain effective as an individual ages [304]. In summary, the
future of nutraceuticals lies in developing novel bioactive compounds, applying advanced
delivery technologies, and shifting toward personalized interventions based on genetic
and epigenetic data [305]. These advancements promise to significantly enhance the role of
nutraceuticals in promoting healthy aging and preventing age-related diseases, offering
a more precise, effective, and individualized approach to health span extension [187,297].
Indeed, a recent study, currently in the recruitment phase and listed on ClinicalTrials.gov
https://clinicaltrials.gov/study/NCT06352099?cond=frailty&intr=Nutraceutical&rank=2
(accessed on 15 November 2024) led by Dr. Giovannini Silvia, aims to investigate the effects
of Altemor®, a supplement with diosmin, hesperidin, and herbal extracts, on cognitive
function, balance, fatigue, and quality of life in older adults. Aging involves gradual
physical and cognitive changes driven by cellular and molecular shifts that reduce func-
tional ability, contributing to frailty, falls, and disability. Nutrition plays a crucial role in
counteracting frailty. Diets rich in plant-based foods provide macronutrients, micronutri-
ents, and phytochemicals, including beneficial compounds like phenols and flavonoids.
These phytochemicals support health through their antioxidant, anti-inflammatory, and
cardiovascular benefits and may protect against age-related cognitive decline. Flavonoids,
such as those in rutin, hesperidin, and diosmin, are particularly active, with some already
used in supplements for cardiovascular and cognitive health. This focus on Altemor® is
significant as it builds on existing research on the individual components of the supplement
and it is the first study to investigate the combined effects of these components. The study
will explicitly assess Altemor®’s potential to support blood microcirculation and address
age-related challenges.

7. Challenges and Limitations vs. Advantages and Benefits
7.1. Challenges and Limitations

While nutraceuticals hold great promise for promoting health and combating age-
related diseases, several challenges and limitations must be addressed to realize their
full potential [305,306]. A primary concern is the bioavailability and pharmacokinetics of
nutraceuticals [307]. Many bioactive compounds in nutraceuticals, such as polyphenols,
curcumin, and omega-3 fatty acids, have inherently low bioavailability due to poor absorp-
tion, rapid metabolism, and quick elimination from the body [307]. For example, despite
its potent anti-inflammatory and antioxidant properties, curcumin is notorious for its poor
bioavailability, as it is quickly metabolized in the liver and intestines [308]. Nutraceuti-
cals typically have lower and more variable bioavailability compared to pharmaceutical
drugs, due to factors like poor absorption, rapid metabolism, and limited cellular uptake.
Studies have highlighted that bioactive compounds in nutraceuticals, like polyphenols
and carotenoids, often face difficulties in relation to being absorbed efficiently through
the gastrointestinal tract, with a significant portion being metabolized before reaching
systemic circulation [308]. In contrast, pharmaceutical drugs are meticulously designed
to optimize bioavailability through advanced delivery systems, such as nanoparticles or
liposomes, which enhance absorption and facilitate targeted cellular uptake [308]. These
systems ensure that drugs are delivered efficiently to specific sites of action, thus improving
therapeutic efficacy. However, the bioavailability of nutraceuticals within cells is often
hindered by their molecular characteristics, such as poor solubility and instability, which
necessitate the development of novel formulations, including nanocarriers, to improve
their cellular delivery and effectiveness [309]. Consequently, nutraceuticals tend to exhibit a
slower onset and less precise targeting than pharmaceutical drugs, limiting their immediate
therapeutic impact [309]. This limitation severely reduces its effectiveness when consumed
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orally, leading to the need for higher doses or the development of advanced delivery sys-
tems, such as nanoparticles or liposomes, to enhance absorption and prolong circulation in
the bloodstream [308]. Additionally, the pharmacokinetics of nutraceuticals, which involve
their absorption, distribution, metabolism, and excretion, can vary widely among individu-
als due to their age, genetics, gut microbiota composition, and overall health [310]. This
variability complicates the standardization of dosing regimens and makes it challenging to
predict therapeutic outcomes consistently [310]. Another significant issue is the safety and
long-term efficacy of nutraceuticals [310]. Although generally regarded as safe due to their
natural origin, the long-term use of specific nutraceuticals may carry risks, particularly
at high doses or in combination with other medications [310]. For instance, prolonged
high-dose consumption of certain antioxidants, like vitamin E, has been associated with
an increased risk of hemorrhagic stroke, highlighting the need for caution and proper
dosage guidelines [311]. Moreover, the long-term efficacy of nutraceuticals remains an
open question. While short-term studies often demonstrate beneficial effects, robustness in
regard to clinical trials still needs to be improved to confirm that these benefits persist over
years or decades of use [310]. The potential for cumulative side effects or interactions with
other dietary supplements or medications over prolonged periods must be explored [310].
This knowledge gap underscores the necessity for more extensive longitudinal studies
to assess both the safety and sustained effectiveness of nutraceuticals in diverse popula-
tions [310]. Lastly, the regulatory and ethical considerations surrounding nutraceuticals
present significant challenges [183]. The regulatory landscape for nutraceuticals varies
considerably between countries, with some regions having stringent regulations similar
to those for pharmaceuticals, while others offer minimal oversight [183]. Nutraceuticals
are often classified as dietary supplements rather than drugs, meaning they are not sub-
ject to the same rigorous testing of their efficacy, safety, and quality [183]. This can lead
to inconsistencies in product quality, including variations in the concentration of active
ingredients or the presence of contaminants. Furthermore, the marketing of nutraceuti-
cals often includes claims that are not fully supported by scientific evidence, potentially
misleading consumers about their health benefits [183]. Ethical concerns also arise from
the commercialization of nutraceuticals, mainly when vulnerable populations are targeted
with exaggerated promises of anti-aging or disease-preventive effects [183]. As the industry
grows, there is a pressing need for more stringent regulations to ensure product safety,
efficacy, and accurate labeling, as well as for ethical guidelines to govern the marketing
and distribution of these products [183].

While nutraceuticals hold great promise for promoting health and combating age-
related diseases, several challenges and limitations must be addressed to realize their
full potential [305,306]. A primary concern is the bioavailability and pharmacokinetics of
nutraceuticals [307]. Many bioactive compounds in nutraceuticals, such as polyphenols,
curcumin, and omega-3 fatty acids, have inherently low bioavailability due to poor absorp-
tion, rapid metabolism, and quick bodily elimination [307]. For example, despite its potent
anti-inflammatory and antioxidant properties, curcumin is notorious for its poor bioavail-
ability, as it is quickly metabolized in the liver and intestines [308]. This limitation severely
reduces its effectiveness when consumed orally, leading to the need for higher doses or the
development of advanced delivery systems, such as nanoparticles or liposomes, to enhance
absorption and prolong circulation in the bloodstream [308].

Additionally, the pharmacokinetics of nutraceuticals, which involve their absorption,
distribution, metabolism, and excretion, can vary widely among individuals due to age,
genetics, gut microbiota composition, and overall health [310]. This variability complicates
the standardization of dosing regimens and makes it challenging to predict therapeutic out-
comes consistently [310]. Another significant issue is nutraceuticals’ safety and long-term
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efficacy [310]. Although generally considered safe due to their natural origin, the long-term
use of specific nutraceuticals may carry risks, particularly at high doses or in combination
with other medications [310]. For instance, prolonged high-dose consumption of certain
antioxidants like vitamin E has been associated with an increased risk of hemorrhagic
stroke, highlighting the need for caution and proper dosage guidelines [311]. Moreover, the
long-term efficacy of nutraceuticals remains an open question. While short-term studies of-
ten demonstrate beneficial effects, the robustness of clinical trials still needs to be improved
to confirm that these benefits persist over years or decades of use [310]. The potential
for cumulative side effects or interactions with other dietary supplements or medications
over prolonged periods must be explored [310]. This gap in knowledge underscores the
necessity for more extensive longitudinal studies to assess both the safety and sustained ef-
fectiveness of nutraceuticals in diverse populations [310]. Lastly, nutraceuticals’ regulatory
and ethical considerations present significant challenges [183]. The regulatory landscape for
nutraceuticals varies considerably between countries, with some regions having stringent
regulations similar to those for pharmaceuticals while others offer minimal oversight [183].
Nutraceuticals are often classified as dietary supplements rather than drugs, meaning they
are not subject to the same rigorous testing for efficacy, safety, and quality [183]. This
can lead to consistency in product quality, with variations in the concentration of active
ingredients or the presence of contaminants.

Furthermore, the marketing of nutraceuticals often includes claims not fully supported
by scientific evidence, potentially misleading consumers about their health benefits [183].
Ethical concerns also arise from the commercialization of nutraceuticals, mainly when
vulnerable populations are targeted with exaggerated promises of anti-aging or disease-
preventive effects [183]. As the industry grows, there is a pressing need for more stringent
regulations to ensure product safety, efficacy, and accurate labeling, as well as for ethical
guidelines to govern the marketing and distribution of these products [183].

7.2. Advantages and Benefits

Nutraceuticals have gained in popularity due to their perceived safety, widespread
availability, and ability to enhance immune functions effectively. These bioactive com-
pounds, when consumed in controlled doses, offer synergistic health benefits, without
significant toxicity, as long as proper guidelines are followed [187]. Despite their cost,
nutraceuticals are gaining recognition as valuable therapeutic agents, due to their potent
antioxidant and anti-inflammatory properties. These compounds can counteract the harm-
ful effects of oxidative stress and chronic inflammation, often exacerbated by conventional
drug therapies [215]. By mitigating oxidative damage, nutraceuticals can enhance the
efficacy of standard treatments and support improved long-term outcomes [215]. In the
management of PD, the integration of nutraceuticals with treatments such as levodopa
has shown promise [215]. Nutraceuticals may extend the duration of the drug’s effective-
ness, often referred to as the “dopamine honeymoon” phase, while reducing the risk of
developing secondary dyskinesias [312]. Similarly, in the context of frailty, nutraceuticals
have been found to limit mitochondrial damage caused by polypharmacy, a common
issue in the treatment of comorbidities [312]. By protecting mitochondrial health, these
compounds help preserve physical functions and slow the progression of functional de-
cline [313]. The growing body of evidence underscores the role of nutraceuticals not only
as adjuncts to existing therapies, but also as tools to address the underlying mechanisms
of oxidative stress, inflammation, and mitochondrial dysfunction, offering a multifaceted
approach to managing PD and geriatric frailty [226]. Despite their cost, nutraceuticals
are establishing themselves as valuable therapeutic agents due to their potent antioxidant
and anti-inflammatory properties. These compounds can reverse the damaging effects
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of oxidative stress and chronic inflammation, often exacerbated by conventional drug
therapies [170,313–315]. By alleviating oxidative damage, nutraceuticals can enhance the
efficacy of regular treatments and promote improved long-term outcomes [170,313–315].
Supplementing nutraceuticals with treatments such as levodopa has shown promise in
managing PD. Nutraceuticals can extend the duration of drug efficacy, often called the
“dopamine honeymoon phase,” while reducing the risk of developing secondary dyski-
nesias [170,313–315]. Similarly, in the context of frailty, nutraceuticals have been seen to
limit mitochondrial damage caused by polypharmacy, a common problem in treating co-
morbidities. By protecting mitochondrial health, these compounds help preserve physical
function and slow the progression of functional decline [170,313–315]. The growing body
of evidence underscores the role of nutraceuticals not only as adjuncts to existing therapies
but also as tools to address the mechanisms underlying oxidative stress, inflammation, and
mitochondrial dysfunction, offering a multifaceted approach. According to this we can
propose a new type of classification of nutriacetucals based on their application (Table S1
supplementary data) [316–320]. Advanced delivery technologies, such as nanoparticles
and liposomes, further enhance their bioavailability and effectiveness, paving the way for
tailored therapeutic strategies [170,313–315].

8. Conclusions
PD and geriatric frailty are distinct pathologies, yet they exhibit significant overlaps,

particularly within the context of advancing age. While frailty predominantly affects older
adults, PD typically manifests in later life, often in the final decades. With the increase in
life expectancy globally, the emphasis has shifted from merely prolonging life to enhancing
its quality for individuals living with these conditions. Although halting the neurodegen-
erative processes or reversing neuronal loss in PD remains unattainable, nutraceuticals
have emerged as a promising adjunctive strategy. These compounds, known for their
antioxidant and anti-inflammatory properties, have the potential to mitigate the cellular
damage driving symptom progression in both PD and geriatric frailty, offering improved
outcomes and a better quality of life for patients [321]. In addition to reducing oxidative
stress and inflammation, nutraceuticals can target mitochondrial dysfunction, a critical
factor in the pathophysiology of both conditions. By preserving mitochondrial health,
they may slow cognitive and physical decline, enhancing the patient’s resilience against
disease progression [322]. This review highlights the role of nutraceuticals as a potential
complement to conventional therapies. When combined with pharmacological treatments,
physical exercise, and lifestyle modifications, nutraceuticals can help modulate antioxidant,
inflammatory, and neuroprotective pathways, potentially enhancing the effectiveness of
traditional management strategies. In PD, specific nutraceuticals can address oxidative
stress and support neuroprotection, thereby improving clinical outcomes. Similarly, in
frailty, nutraceuticals can help counteract muscle weakness, cognitive impairment, and
overall functional decline. Integrating nutraceuticals into a comprehensive treatment strat-
egy that includes exercise and targeted drug therapy may not only improve functional
health, but also extend the lifespan and enhance well-being in aging populations. How-
ever, several challenges remain regarding their use, including the need to optimize their
bioavailability, ensure their long-term safety, address the related regulatory frameworks,
and refine formulations for maximum accuracy and efficacy. Future research should focus
on determining optimal dosages, evaluating the synergistic effects of nutraceuticals with
conventional therapies, and understanding their role within holistic care approaches. In
summary, combining nutraceuticals with physical activity, pharmacological interventions,
and lifestyle changes has the potential to transform the management of ARDs, fostering
not only longer lives, but also healthier, more fulfilling ones for older individuals.
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bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules
2021, 26, 1547. [CrossRef]

302. de Toro-Martín, J.; Arsenault, B.J.; Després, J.-P.; Vohl, M.-C. Precision nutrition: A review of personalized nutritional approaches
for the prevention and management of metabolic syndrome. Nutrients 2017, 9, 913. [CrossRef] [PubMed]

303. Simopoulos, A.P. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: Their role in the determination of
nutritional requirements and chronic disease risk. Exp. Biol. Med. 2010, 235, 785–795. [CrossRef]

304. Martens, C.R.; Wahl, D.; LaRocca, T.J. Personalized medicine: Will it work for decreasing age-related morbidities? In Aging;
Elsevier: Amsterdam, The Netherlands, 2023; pp. 683–700, ISBN 9780128237618.

https://doi.org/10.3390/ijms21103624
https://doi.org/10.1007/s12035-010-8105-9
https://doi.org/10.3390/molecules27175584
https://doi.org/10.3109/10715762.2013.795649
https://doi.org/10.4103/0973-7847.70902
https://doi.org/10.1016/j.lfs.2016.01.014
https://doi.org/10.22270/ajprd.v7i3.485
https://doi.org/10.1016/j.biopha.2018.08.136
https://doi.org/10.3390/antiox8080302
https://www.ncbi.nlm.nih.gov/pubmed/31409026
https://doi.org/10.3390/nu13114058
https://doi.org/10.1007/s40520-022-02203-y
https://doi.org/10.1038/s41580-020-00314-w
https://doi.org/10.1016/j.arr.2018.05.001
https://www.ncbi.nlm.nih.gov/pubmed/29742452
https://doi.org/10.1016/j.mam.2007.03.001
https://doi.org/10.18632/aging.102557
https://www.ncbi.nlm.nih.gov/pubmed/31789602
https://doi.org/10.1007/s13238-019-0646-8
https://doi.org/10.1016/j.arr.2023.102125
https://www.ncbi.nlm.nih.gov/pubmed/37979699
https://doi.org/10.3390/antiox12071479
https://doi.org/10.1016/j.jddst.2022.103418
https://doi.org/10.3390/molecules26061547
https://doi.org/10.3390/nu9080913
https://www.ncbi.nlm.nih.gov/pubmed/28829397
https://doi.org/10.1258/ebm.2010.009298


Int. J. Mol. Sci. 2025, 26, 122 37 of 37

305. Tenchov, R.; Sasso, J.M.; Wang, X.; Zhou, Q.A. Antiaging strategies and remedies: A landscape of research progress and promise.
ACS Chem. Neurosci. 2024, 15, 408–446. [CrossRef]

306. Verburgh, K. Nutrigerontology: Why we need a new scientific discipline to develop diets and guidelines to reduce the risk of
aging-related diseases. Aging Cell 2015, 14, 17–24. [CrossRef] [PubMed]

307. Mittal, S.; Sawarkar, S.; Doshi, G.; Pimple, P.; Shah, J.; Bana, T. Pharmacokinetics and bioavailability of nutraceuticals. In
Industrial Application of Functional Foods, Ingredients and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2023; pp. 725–783,
ISBN 9780128243121.

308. Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.;
El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci.
Food Agric. 2021, 101, 5747–5762. [CrossRef] [PubMed]

309. Ashfaq, R.; Rasul, A.; Asghar, S.; Kovács, A.; Berkó, S.; Budai-Szűcs, M. Lipid nanoparticles: An effective tool to improve the
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322. Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.;
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