Transcriptional Changes Associated with Amyoplasia
<p>(<b>A</b>) List of muscle biopsy samples subjected to RNA-seq; and (<b>B</b>) heatmap displaying the Spearman correlations between samples.</p> "> Figure 2
<p>RNA-seq analysis showing differential gene expression in amyoplasia muscle and control muscle. Volcano plots showing −log (adjusted <span class="html-italic">p</span>-value) vs. log2 (fold change) for “lower” (<b>A</b>), “upper+lower” (<b>B</b>), and “upper” (<b>C</b>) groups. Dashed vertical lines mark log2 (fold change) > |4|. Dashed horizontal line marks adjusted <span class="html-italic">p</span>-value < 0.001. Blue dots represent downregulated genes and red dots represent upregulated genes. Venn plots illustrating the intersection of (<b>D</b>) downregulated DEGs and (<b>E</b>) upregulated DEGs between “lower”, “lower+upper”, and “upper” groups.</p> "> Figure 3
<p>Gene Ontology function and pathway enrichment analysis of downregulated (<b>A</b>) and upregulated (<b>B</b>) DEGs in the “lower” group. Dotplots for each of the GO analysis categories (biological processes, molecular function and cellular component) are presented.</p> "> Figure 4
<p>Gene Ontology function and pathway enrichment analysis of downregulated (<b>A</b>) and upregulated (<b>B</b>) DEGs in the “lower+upper” group. Dotplots for each of the GO analysis categories (biological processes, molecular function and cellular component) are presented.</p> "> Figure 5
<p>Gene Ontology function and pathway enrichment analysis of downregulated (<b>A</b>) and upregulated (<b>B</b>) DEGs in the “upper” group. Dotplots for each of the GO analysis categories (biological processes, molecular function and cellular component) are presented.</p> "> Figure 6
<p>Analysis of PPI networks for “lower” group sample: (<b>A</b>) MCODE-clustered subnetwork for downregulated DEGs; (<b>B</b>) MCODE-clustered subnetwork for upregulated DEGs. Hub genes identified by cytoHubba. (<b>C</b>) Hub genes of the PPI network for downregulated DEGs; (<b>D</b>) Hub genes of the PPI network for upregulated DEGs. Enrichment analysis of MCODE-clustered subnetwork by Metascape. (<b>E</b>) Enrichment analysis of downregulated DEGs; (<b>F</b>) Enrichment analysis of upregulated DEGs.</p> "> Figure 7
<p>Analysis of PPI networks for “upper+lower” group sample. (<b>A</b>) MCODE-clustered subnetwork for downregulated DEGs; (<b>B</b>) MCODE-clustered subnetwork for upregulated DEGs. Hub genes identified by cytoHubba. (<b>C</b>) Hub genes of the PPI network for downregulated DEGs; (<b>D</b>) Hub genes of the PPI network for upregulated DEGs. Enrichment analysis of MCODE-clustered subnetwork by Metascape. (<b>E</b>) Enrichment analysis of downregulated DEGs; (<b>F</b>) Enrichment analysis of upregulated DEGs.</p> "> Figure 8
<p>Analysis of PPI networks for “upper” group sample. (<b>A</b>) MCODE-clustered subnetwork for downregulated DEGs; (<b>B</b>) MCODE-clustered subnetwork for upregulated DEGs. Hub genes identified by cytoHubba. (<b>C</b>) Hub genes of the PPI network for downregulated DEGs; (<b>D</b>) Hub genes of the PPI network for upregulated DEGs. Enrichment analysis of MCODE-clustered subnetwork by Metascape. (<b>E</b>) Enrichment analysis of downregulated DEGs; (<b>F</b>) Enrichment analysis of upregulated DEGs.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Transcriptomic Analysis of Amyoplasia Muscle Samples
2.2. Identification of Key Biological Pathways
2.3. Protein–Protein Interaction Network Construction and Identification of the Hub Genes
3. Discussion
4. Materials and Methods
4.1. Patient Cohort and Muscle Samples
4.2. Isolation of Total RNA from Muscle Tissue
4.3. Purification of Total RNA from DNA Contaminants
4.4. Depletion of RNA
4.5. Determination of Total RNA Concentration
4.6. Preparation of RNA Libraries
4.7. RNA Sequencing Data Processing
4.8. Identification of Differentially Expressed Genes (DEG)
4.9. Functional and Enrichment Analysis of DEG Pathways
4.10. Protein–Protein Interaction (PPI) Network Construction and Subnetwork Identification
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahan-Oliel, N.; Cachecho, S.; Barnes, D.; Bedard, T.; Davison, A.M.; Dieterich, K.; Donohoe, M.; Fąfara, A.; Hamdy, R.; Hjartarson, H.T.; et al. International multidisciplinary collaboration toward an annotated definition of arthrogryposis multiplex congenita. Am. J. Med. Genet. C 2019, 181, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, F.; Pinto, L.; Sousa, D.S.; Carvalho, J.; Branco, C.A. Arthrogryposis multiplex congenita and the importance of orthoses: A case report. Cureus 2024, 16, e53993. [Google Scholar] [CrossRef]
- Kimber, E. AMC: Amyoplasia and distal arthrogryposis. J. Child. Orthop. 2015, 9, 427–432. [Google Scholar] [CrossRef]
- Bamshad, M.; Van Heest, A.E.; Pleasure, D. Arthrogryposis: A review and update. J. Bone Jt. Surg. 2009, 91 (Suppl. S4), 40–46. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.G.; Aldinger, K.A.; Tanaka, K.I. Amyoplasia revisited. Am. J. Med. Genet. A 2014, 164, 700–730. [Google Scholar] [CrossRef]
- Hall, J.G.; Reed, S.D.; Driscoll, E.P.; Opitz, J.M. Part I. Amyoplasia: A common, sporadic condition with congenital contractures. Am. J. Med. Genet. 1983, 15, 571–590. [Google Scholar] [CrossRef] [PubMed]
- Langston, S.; Chu, A. Arthrogryposis multiplex congenita. Pediatr. Ann. 2020, 49, e299–e304. [Google Scholar] [CrossRef] [PubMed]
- Busack, B.; Ott, C.E.; Henrich, W.; Verlohren, S. Prognostic significance of prenatal ultrasound in fetal arthrogryposis multiplex congenita. Arch. Gynecol. Obstet. 2021, 303, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Kalampokas, E.; Kalampokas, T.; Sofoudis, C.; Deligeoroglou, E.; Botsis, D. Diagnosing arthrogryposis multiplex congenita: A review. Int. Sch. Res. Not. 2012, 2012, 264918. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Flores, M.; Casas-Avila, L.; Hernández-Zamora, E.; Kofman, S.; Hidalgo-Bravo, A. Characterization of a group of unrelated patients with arthrogryposis multiplex congenita. J. Pediatr. 2016, 92, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Gordon, N. Arthrogryposis multiplex congenita. Brain Dev. 1998, 20, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, B.; Feluś, J. Arthrogryposis: An update on clinical aspects, etiology, and treatment strategies. Arch. Med. Sci. 2016, 12, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.G.; Kiefer, J. Arthrogryposis as a syndrome: Gene ontology analysis. Mol. Syndromol. 2016, 7, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Toydemir, R.M.; Rutherford, A.; Whitby, F.G.; Jorde, L.B.; Carey, J.C.; Bamshad, M.J. Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Nat. Genet. 2006, 38, 561–565. [Google Scholar] [CrossRef]
- Robinson, P.; Lipscomb, S.; Preston, L.C.; Altin, E.; Watkins, H.; Ashley, C.C.; Redwood, C.S. Mutations in fast skeletal troponin I, troponin T, and β-tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J. 2007, 21, 896–905. [Google Scholar] [CrossRef]
- Zhao, N.; Jiang, M.; Han, W.; Bian, C.; Li, X.; Huang, F.; Kong, Q.; Li, J. A novel mutation in TNNT3 associated with Sheldon–Hall syndrome in a Chinese family with vertical talus. Eur. J. Med. Genet. 2011, 54, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Pollazzon, M.; Caraffi, S.G.; Faccioli, S.; Rosato, S.; Fodstad, H.; Campos-Xavier, B.; Soncini, E.; Comitini, G.; Frattini, D.; Grimaldi, T.; et al. Clinical and genetic findings in a series of eight families with arthrogryposis. Genes 2021, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Daly, S.B.; Shah, H.; O’Sullivan, J.; Anderson, B.; Bhaskar, S.; Williams, S.; Al-Sheqaih, N.; Mueed Bidchol, A.; Banka, S.; Newman, W.G.; et al. Exome sequencing identifies a dominant TNNT3 mutation in a large family with distal arthrogryposis. Mol. Syndromol. 2014, 5, 218–228. [Google Scholar] [CrossRef]
- Hall, J.G.; Kimber, E.; van Bosse, H.J. Genetics and classifications. J. Pediatr. Orthop. 2017, 37, S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Lowry, R.B.; Sibbald, B.; Bedard, T.; Hall, J.G. Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 1057–1061. [Google Scholar] [CrossRef]
- Griffet, J.; Dieterich, K.; Bourg, V.; Bourgeois, E. Amyoplasia and distal arthrogryposis. Orthop. Traumatol. Surg. Res. 2021, 107, 102781. [Google Scholar] [CrossRef] [PubMed]
- Ravenscroft, G.; Nolent, F.; Rajagopalan, S.; Meireles, A.M.; Paavola, K.J.; Gaillard, D.; Alanio, E.; Buckland, M.; Arbuckle, S.; Krivanek, M.; et al. Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am. J. Hum. Genet. 2015, 96, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Hale, M.A.; Bates, K.; Provenzano, M.; Johnson, N.E. Dynamics and variability of transcriptomic dysregulation in congenital myotonic dystrophy during pediatric development. Hum. Mol. Genet. 2023, 32, 1413–1428. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.R.; Zoghbi, H.Y. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics 2000, 63, 97–107. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Z.; Liu, X.; Chen, Y.; Gong, W.; Yu, K.; Qin, L.; Chen, H.; Mo, D. The switch role of the Tmod4 in the regulation of balanced development between myogenesis and adipogenesis. Gene 2013, 532, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Skaria, P.; Dahl, A.; Ahmed, A. Arthrogryposis multiplex congenita in utero: Radiologic and pathologic findings. J. Matern. -Fetal Neonatal Med. 2019, 32, 502–511. [Google Scholar] [CrossRef]
- Amunts, A.; Brown, A.; Toots, J.; Scheres, S.H.; Ramakrishnan, V. The structure of the human mitochondrial ribosome. Science 2015, 348, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.; Daniels, E.G.; Vasam, G.; Kamble, R.; Janssens, G.E.; Hu, I.M.; Green, A.E.; Houtkooper, R.H.; Menzies, K.J. Reducing mitochondrial ribosomal gene expression does not alter metabolic health or lifespan in mice. Sci. Rep. 2023, 13, 8391. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Li, H.; Zhang, H. Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases. Int. J. Mol. Sci. 2020, 21, 8879. [Google Scholar] [CrossRef]
- Kenmochi, N.; Suzuki, T.; Uechi, T.; Magoori, M.; Kuniba, M.; Higa, S.; Watanabe, K.; Tanaka, T. The human mitochondrial ribosomal protein genes: Mapping of 54 genes to the chromosomes and implications for human disorders. Genomics 2001, 77, 65–70. [Google Scholar] [CrossRef]
- Formosa, L.E.; Dibley, M.G.; Stroud, D.A.; Ryan, M.T. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin. Cell Dev. Biol. 2018, 76, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Wilnai, Y.; Seaver, L.H.; Enns, G.M. Atypical amyoplasia congenita in an infant with Leigh syndrome: A mitochondrial cause of severe contractures? Am. J. Med. Genet. A 2012, 158, 2353–2357. [Google Scholar] [CrossRef]
- Laubscher, B.; Janzer, R.C.; Krähenbühl, S.; Hirt, L.; Deonna, T. Ragged-red fibers and complex I deficiency in a neonate with arthrogryposis congenita. Pediatr. Neurol. 1997, 17, 249–251. [Google Scholar] [CrossRef]
- McPherson, E.; Zabel, C. Mitochondrial mutation in a child with distal arthrogryposis. Am. J. Med. Genet. A 2006, 140, 184–185. [Google Scholar] [CrossRef]
- Swinyard, C.A.; Bleck, E.E. The etiology of arthrogryposis (multiple congenital contracture). Clin. Orthop. Relat. Res. 1985, 194, 15–29. [Google Scholar] [CrossRef]
- Agerholm, J.S.; McEvoy, F.J.; Menzi, F.; Jagannathan, V.; Drögemüller, C. A CHRNB1 frameshift mutation is associated with familial arthrogryposis multiplex congenita in Red dairy cattle. BMC Genom. 2016, 17, 479. [Google Scholar] [CrossRef]
- Di Stasio, L.; Albera, A.; Pauciullo, A.; Cesarani, A.; Macciotta, N.P.; Gaspa, G. Genetics of Arthrogryposis and Macroglossia in Piemontese Cattle Breed. Animals 2020, 10, 1732. [Google Scholar] [CrossRef] [PubMed]
- Whittle, J.; Johnson, A.; Dobbs, M.B.; Gurnett, C.A. Models of Distal Arthrogryposis and Lethal Congenital Contracture Syndrome. Genes 2021, 12, 943. [Google Scholar] [CrossRef] [PubMed]
- Whittle, J.; Antunes, L.; Harris, M.; Upshaw, Z.; Sepich, D.S.; Johnson, A.N.; Mokalled, M.; Solnica-Krezel, L.; Dobbs, M.B.; Gurnett, C.A. MYH 3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin. EMBO Mol. Med. 2020, 12, e12356. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kronert, W.A.; Hsu, K.H.; Huang, A.; Sarsoza, F.; Bell, K.M.; Suggs, J.A.; Swank, D.M.; Bernstein, S.I. Drosophila myosin mutants model the disparate severity of type 1 and type 2B distal arthrogryposis and indicate an enhanced actin affinity mechanism. Skelet. Muscle 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Kumar, P.; Verma, A.; Maiti, T.K.; Mathew, S.J. Myosin heavy chain mutations that cause Freeman-Sheldon syndrome lead to muscle structural and functional defects in Drosophila. Dev. Biol. 2019, 449, 90–98. [Google Scholar] [CrossRef]
- Kiefer, J.; Hall, J.G. Gene ontology analysis of arthrogryposis (multiple congenital contractures). Am. J. Med. Genet. Part C Semin. Med. Genet. 2019, 181, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential Expression Analysis for Sequence Count Data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komissarov, A.E.; Agranovich, O.E.; Kuchinskaia, I.A.; Tkacheva, I.V.; Bolshakova, O.I.; Latypova, E.M.; Batkin, S.F.; Sarantseva, S.V. Transcriptional Changes Associated with Amyoplasia. Int. J. Mol. Sci. 2025, 26, 124. https://doi.org/10.3390/ijms26010124
Komissarov AE, Agranovich OE, Kuchinskaia IA, Tkacheva IV, Bolshakova OI, Latypova EM, Batkin SF, Sarantseva SV. Transcriptional Changes Associated with Amyoplasia. International Journal of Molecular Sciences. 2025; 26(1):124. https://doi.org/10.3390/ijms26010124
Chicago/Turabian StyleKomissarov, Artem E., Olga E. Agranovich, Ianina A. Kuchinskaia, Irina V. Tkacheva, Olga I. Bolshakova, Evgenia M. Latypova, Sergey F. Batkin, and Svetlana V. Sarantseva. 2025. "Transcriptional Changes Associated with Amyoplasia" International Journal of Molecular Sciences 26, no. 1: 124. https://doi.org/10.3390/ijms26010124
APA StyleKomissarov, A. E., Agranovich, O. E., Kuchinskaia, I. A., Tkacheva, I. V., Bolshakova, O. I., Latypova, E. M., Batkin, S. F., & Sarantseva, S. V. (2025). Transcriptional Changes Associated with Amyoplasia. International Journal of Molecular Sciences, 26(1), 124. https://doi.org/10.3390/ijms26010124