Pulmonary Biodistribution of Platelet-Derived Regenerative Exosomes in a Porcine Model
<p>Exosome characterization of PEP and membrane labeling by lipophilic dye. (<b>A</b>) NanoSight analysis of PEP demonstrating distribution of particle size ± standard deviation (gray shading). (<span class="html-italic">n</span> = 3). (<b>B</b>) Transmission electron microscopy image of PEP with scale bar 2 µm. (<b>C</b>) Western blot demonstrating presence of hallmark exosomal proteins CD9, CD63, and Flotillin, as well as platelet integrin CD41. (<b>D</b>) Immunocytochemistry of human umbilical vein endothelial cells following treatment with DiI-labeled PEP or DiI alone (control) in red, counterstained with phalloidin (green) and DAPI (blue), scale bar 20 µm. (<b>E</b>) Quantification (<span class="html-italic">n</span> = 5) of mean integrated density DiI per nuclei (±SD) for <a href="#ijms-25-02642-f001" class="html-fig">Figure 1</a>D. ** <span class="html-italic">p</span> < 0.001 using Mann-Whitney two-tailed <span class="html-italic">t</span>-test. (<b>F</b>) Xenogen image demonstrating fluorescent signal detected in unlabeled PEP, DiI, and PEP + DiI. (<b>G</b>) Xenogen image demonstrating fluorescent signal detected in unlabeled PEP, DiR, and PEP + DiR.</p> "> Figure 2
<p>Pulmonary exosome delivery procedures. (<b>A</b>) Cartoon depicting methods employed for pulmonary delivery of exosomes, including nebulization, intravenous, and PA balloon catheter-guided approaches. (<b>B</b>) Photograph demonstrating jet nebulizer (red arrow) attachment to endotracheal tubing. (<b>C</b>) Fluoroscopy image showing placement of endotracheal tube (red arrow) in the trachea above the carina to allow bilateral pulmonary delivery. (<b>D</b>) Pulmonary angiogram of the right lung. (<b>E</b>) Angiogram demonstrating occlusion by balloon catheter of pulmonary artery branch with contrast injection and dashed box indicating area of zoomed in image in <a href="#ijms-25-02642-f002" class="html-fig">Figure 2</a>F. (<b>F</b>) Zoomed-in image from <a href="#ijms-25-02642-f002" class="html-fig">Figure 2</a>E with red arrow indicating area of balloon catheter occlusion.</p> "> Figure 3
<p>Pulmonary absorption of exosomes with intravenous, PA balloon catheter-guided, and nebulized delivery. (<b>A</b>) Xenogen imaging of uptake of DiR-labeled PEP in the lungs for intravenous, PA balloon catheter-guided, and nebulized delivery. (<b>B</b>) Western blot demonstrating presence of PEP in control lung (ctrl) tissue compared to lung tissue from intravenous, PA balloon catheter-guided, and nebulized deliveryusing exosomal protein CD63 (green) and loading control actin (red). (<b>C</b>) Quantification (<span class="html-italic">n</span> = 3) of mean fluorescent signal (±SEM) of CD63 normalized to actin loading control; dotted line represents level of control (ctrl).</p> "> Figure 4
<p>Off-target absorption of exosomes in the liver, heart, spleen, and kidney with intravenous, PA balloon catheter-guided, and nebulized delivery. (<b>A</b>) Xenogen imaging of uptake of DiR-labeled PEP in the heart, liver, spleen, and kidney with images of entire organ and organ sections shown. (<b>B</b>) Western blots demonstrating presence of PEP in liver tissue compared to PEP and control organ tissue (–ctrl) using exosomal protein CD63 (green) and loading control GAPDH (green). (<b>C</b>) Quantification (<span class="html-italic">n</span> = 3) of mean fluorescent signal (±SEM) of CD63 normalized to GAPDH loading control, with level of control liver tissue shown in dotted line. (<b>D</b>–<b>F</b>) Western blots demonstrating presence of PEP in heart (<b>D</b>), spleen (<b>E</b>), and kidney (<b>F</b>) compared to PEP and control organ tissue (–ctrl) using exosomal protein CD63 (green) and loading controls actin (red) or GAPDH (green).</p> "> Figure 4 Cont.
<p>Off-target absorption of exosomes in the liver, heart, spleen, and kidney with intravenous, PA balloon catheter-guided, and nebulized delivery. (<b>A</b>) Xenogen imaging of uptake of DiR-labeled PEP in the heart, liver, spleen, and kidney with images of entire organ and organ sections shown. (<b>B</b>) Western blots demonstrating presence of PEP in liver tissue compared to PEP and control organ tissue (–ctrl) using exosomal protein CD63 (green) and loading control GAPDH (green). (<b>C</b>) Quantification (<span class="html-italic">n</span> = 3) of mean fluorescent signal (±SEM) of CD63 normalized to GAPDH loading control, with level of control liver tissue shown in dotted line. (<b>D</b>–<b>F</b>) Western blots demonstrating presence of PEP in heart (<b>D</b>), spleen (<b>E</b>), and kidney (<b>F</b>) compared to PEP and control organ tissue (–ctrl) using exosomal protein CD63 (green) and loading controls actin (red) or GAPDH (green).</p> "> Figure 5
<p>Off-target absorption of exosomes in the esophagus and trachea with intravenous, PA balloon catheter-guided, and nebulized delivery. (<b>A</b>) Xenogen imaging of DiR-labeled PEP uptake in the esophagus (white arrowhead) and trachea (white arrow) of control tissue compared to tissue exposed to nebulized PEP (top). (<b>B</b>) Endotracheal (ET) tube demonstrating loss of PEP on plastic tubing also shown (bottom). (<b>C</b>) Western blot demonstrating PEP uptake in the esophagus by nebulization compared to PEP and control pig esophagus tissue (–ctrl) with exosome marker CD63 (green) and GAPDH (green) loading control. (<b>D</b>) Western blot demonstrating PEP uptake in the trachea by nebulization compared to PEP and control pig trachea tissue (–ctrl) with exosome marker CD63 (green) and GAPDH (green) loading control. (<b>E</b>) Quantification (<span class="html-italic">n</span> = 3) of mean fluorescent signal (±SEM) of CD63 normalized to GAPDH loading control for trachea and esophagus with nebulization. The level of control esophagus or trachea tissue is shown with the labeled dotted lines.</p> "> Figure 6
<p>Histologic evaluation of pulmonary exosome delivery with intravenous, PA balloon catheter-guided, and nebulized delivery. (<b>A</b>) Immunohistochemical staining of lung tissue with CD63 (brown) with hematoxylin counterstain (blue) with scale bar 100 µm. (<b>B</b>) Mean (±SEM) ratio of CD63 area to total lung tissue area in untreated (control), intravenous, PA balloon catheter-guided, or nebulization delivery methods (<span class="html-italic">n</span> = 9). * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 using Kruskal–Wallis test.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Exosome Characterization of Platelet-Derived Exosome Product (PEP) and Membrane Labeling by Lipophilic Dye
2.2. Pulmonary Exosome Delivery Procedures
2.3. Biodistribution of PEP in Lung Tissue
2.4. Biodistribution of PEP in Off-Target Tissues
2.5. Histologic Analysis of PEP in Lung Tissue
3. Discussion
4. Materials and Methods
4.1. NanoSight Analysis
4.2. Transmission Electron Microscopy
4.3. Western Blot
4.4. Immunocytochemistry
4.5. Lipophilic Dye Exosome Membrane Labeling
4.6. Animal Studies
4.7. Xenogen IVUS Imaging
4.8. Histologic Analysis
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Hill, A.F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 2022, 21, 379–399. [Google Scholar] [CrossRef] [PubMed]
- Wiklander, O.P.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mager, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 2015, 4, 26316. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choi, Y.; Yim, H.Y.; Mirzaaghasi, A.; Yoo, J.K.; Choi, C. Biodistribution of Exosomes and Engineering Strategies for Targeted Delivery of Therapeutic Exosomes. Tissue Eng. Regen. Med. 2021, 18, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Cui, T.; Chen, J.; Mao, X.; Zhang, T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J. Transl. Med. 2023, 21, 895. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Guo, K.; Jiang, J.; Lin, S. Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed. Pharmacother. 2023, 170, 116008. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Zhu, L.; Xu, Z.; Liu, Y.; Li, Z.; Zhou, J.; Luo, F. Exosomes as Drug Carriers in Anti-Cancer Therapy. Front. Cell Dev. Biol. 2022, 10, 728616. [Google Scholar] [CrossRef]
- Aimaletdinov, A.M.; Gomzikova, M.O. Tracking of Extracellular Vesicles’ Biodistribution: New Methods and Approaches. Int. J. Mol. Sci. 2022, 23, 11312. [Google Scholar] [CrossRef]
- Popowski, K.D.; Lopez de Juan Abad, B.; George, A.; Silkstone, D.; Belcher, E.; Chung, J.; Ghodsi, A.; Lutz, H.; Davenport, J.; Flanagan, M.; et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 2022, 1, 100002. [Google Scholar] [CrossRef]
- van der Meel, R.; Fens, M.H.; Vader, P.; van Solinge, W.W.; Eniola-Adefeso, O.; Schiffelers, R.M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release 2014, 195, 72–85. [Google Scholar] [CrossRef]
- Kisby, C.K.; Shadrin, I.Y.; Rolland, T.J.; Stalboerger, P.G.; Zhou, B.; Trabuco, E.C.; Behfar, A.; Occhino, J.A. Exosome-Induced Vaginal Tissue Regeneration in a Porcine Mesh Exposure Model. Female Pelvic Med. Reconstr. Surg. 2021, 27, 609–615. [Google Scholar] [CrossRef]
- Kisby, C.K.; Shadrin, I.Y.; Peng, L.T.; Stalboerger, P.G.; Trabuco, E.C.; Behfar, A.; Occhino, J.A. Impact of Repeat Dosing and Mesh Exposure Chronicity on Exosome-Induced Vaginal Tissue Regeneration in a Porcine Mesh Exposure Model. Female Pelvic Med. Reconstr. Surg. 2021, 27, 195–201. [Google Scholar] [CrossRef]
- Shi, A.; Li, J.; Qiu, X.; Sabbah, M.; Boroumand, S.; Huang, T.C.; Zhao, C.; Terzic, A.; Behfar, A.; Moran, S.L. TGF-beta loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021, 11, 6616–6631. [Google Scholar] [CrossRef]
- Rolland, T.J.; Peterson, T.E.; Singh, R.D.; Rizzo, S.A.; Boroumand, S.; Shi, A.; Witt, T.A.; Nagel, M.; Kisby, C.K.; Park, S.; et al. Exosome biopotentiated hydrogel restores damaged skeletal muscle in a porcine model of stress urinary incontinence. NPJ Regen. Med. 2022, 7, 58. [Google Scholar] [CrossRef]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Wu, J.Y.; Wang, J.M.; Hu, X.B.; Xiang, D.X. Emerging strategies for labeling and tracking of extracellular vesicles. J. Control. Release 2020, 328, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Marcoux, G.; Laroche, A.; Hasse, S.; Bellio, M.; Mbarik, M.; Tamagne, M.; Allaeys, I.; Zufferey, A.; Levesque, T.; Rebetz, J.; et al. Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules. Blood 2021, 138, 2607–2620. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Jiang, Y.; Yang, X.; Fu, L.; Luo, L.; Dong, Z.; Zhao, J.; Hei, F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: From bench to clinic. Front. Immunol. 2023, 14, 1244930. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Sun, Y.; Zhang, X.; Ma, D.; Xie, A.; Wang, E.; Cheng, L.; Liu, S. Wnt3a-Loaded Extracellular Vesicles Promote Alveolar Epithelial Regeneration after Lung Injury. Adv. Sci. 2023, 10, e2206606. [Google Scholar] [CrossRef] [PubMed]
- Rahimian, S.; Najafi, H.; Afzali, B.; Doroudian, M. Extracellular Vesicles and Exosomes: Novel Insights and Perspectives on Lung Cancer from Early Detection to Targeted Treatment. Biomedicines 2024, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Hao, Y.; Li, N.; Song, H.; Chen, X.; Zhou, Z.; Wang, J.; Zhang, Y.; Li, H.; Han, P.; et al. Cellular Uptake of Engineered Extracellular Vesicles: Biomechanisms, Engineered Strategies, and Disease Treatment. Adv. Healthc. Mater. 2024, 13, e2302280. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Yan, Y.; Liu, Y.; Liang, Q.; Xu, Z.; Zhu, W.; Thakur, A. Unraveling the significance of exosomal circRNAs in cancer therapeutic resistance. Front. Pharmacol. 2023, 14, 1093175. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef]
- Thakur, A.; Parra, D.C.; Motallebnejad, P.; Brocchi, M.; Chen, H.J. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact. Mater. 2022, 10, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Charoenviriyakul, C.; Takahashi, Y.; Morishita, M.; Matsumoto, A.; Nishikawa, M.; Takakura, Y. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur. J. Pharm. Sci. 2017, 96, 316–322. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, S.A.; Bagwell, M.S.; Schiebel, P.; Rolland, T.J.; Mahlberg, R.C.; Witt, T.A.; Nagel, M.E.; Stalboerger, P.G.; Behfar, A. Pulmonary Biodistribution of Platelet-Derived Regenerative Exosomes in a Porcine Model. Int. J. Mol. Sci. 2024, 25, 2642. https://doi.org/10.3390/ijms25052642
Rizzo SA, Bagwell MS, Schiebel P, Rolland TJ, Mahlberg RC, Witt TA, Nagel ME, Stalboerger PG, Behfar A. Pulmonary Biodistribution of Platelet-Derived Regenerative Exosomes in a Porcine Model. International Journal of Molecular Sciences. 2024; 25(5):2642. https://doi.org/10.3390/ijms25052642
Chicago/Turabian StyleRizzo, Skylar A., Monique S. Bagwell, Paige Schiebel, Tyler J. Rolland, Ryan C. Mahlberg, Tyra A. Witt, Mary E. Nagel, Paul G. Stalboerger, and Atta Behfar. 2024. "Pulmonary Biodistribution of Platelet-Derived Regenerative Exosomes in a Porcine Model" International Journal of Molecular Sciences 25, no. 5: 2642. https://doi.org/10.3390/ijms25052642
APA StyleRizzo, S. A., Bagwell, M. S., Schiebel, P., Rolland, T. J., Mahlberg, R. C., Witt, T. A., Nagel, M. E., Stalboerger, P. G., & Behfar, A. (2024). Pulmonary Biodistribution of Platelet-Derived Regenerative Exosomes in a Porcine Model. International Journal of Molecular Sciences, 25(5), 2642. https://doi.org/10.3390/ijms25052642