Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections
Abstract
:1. Introduction
2. Effects of CARD9 on the Immune Response to Fungal Infections
2.1. Aspergillus fumigatus
2.2. Candida albicans
2.3. Candida parapsilosis
2.4. Candida tropicalis
2.5. Cryptococcus neoformans
2.6. Exophiala spinifera
2.7. Mucor irregularis
2.8. Pneumocystis jirovecii (P. murina and P. carinii)
Pathogens: Fungi | Host | Effects of CARD9 | Refs. | ||
---|---|---|---|---|---|
Positive | Negative | No Effect | |||
A. fumigatus | H * (c.883C>T) (c.3G>C) (c.819_820insG) | Production of cytokines (IL-1β, IL-6, IL-17A, IL-22, TNF-α, GM-CSF, IFN-γ) Th cell response (Th1, Th17, Th22) Infiltration of PMNs | Phagocytosis of PMNs Killing ability of PMNs Chemotactic capacity of PMNs | [20,21] | |
M * (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-1β, IL-6, IL-22, TNF-α, IFN-γ) Production of chemokines (CXCL1, CXCL2, CXCL5) Infiltration of PMNs and T cells Clearance of fungus in footpad and lung | Production of cytokine (IL-17A) Survival Chemotactic capacity of PMNs | [21,22,23] | ||
C. albicans | H (c.883C>T) (c.3G>C) (c.170G>A) | Production of cytokines (IL-1β, IL-6, IL-8, IL-17, IL-22, TNF-α, GM-CSF, IFN-γ) Production of chemokines (CXCL1, CXCL2, CXCL5, CXCL8) Th cells response (Th17, Th22) Killing ability of PMNs | Phagocytosis of PMNs and PBMCs ROS production of PMNs Expression of CLRs (dectin-1, dectin-2) Th1 cell response Apoptosis of PMNs [31] | [20,28,29,30,31,32] | |
M (C57BL/6 vs. CARD9−/−) | Production of cytokine (TNF-α) Production of chemokines (CXCL1, CXCL2, CXCL5, CCL3) Killing ability of PMNs Infiltration of PMNs in the brain [31] Clearance of fungus in the spleen, kidney, liver, and brain Survival Activation of NF-κB | Production of cytokines (IL-1α, IL-1β, IL-6, TNF-α, CCL2) in the kidney Mitochondrial ROS production of PMNs Oxidative phosphorylation activity of PMNs Infiltration of PMNs in the kidney [30,31] Apoptosis of PMNs [32] MPO stain in the kidney | Phagocytosis of BMDMs and PMNs Killing ability of BMDMs ROS production of PMNs | [27,30,31,32,34] | |
C. parapsilosis | M (C57BL/6 vs. CARD9−/−) | Production of cytokine (TNF-α) Production of chemokines (CXCL1, CXCL2, CCL3) Activation of NF-κB Clearance of fungus in the kidney, spleen, liver, and brain | Production of cytokines (IL-1α, IFN-γ) Infiltration of immune cells | Production of cytokines (IL-1β, IL-6, TNF-α) in the kidney Production of chemokine (CCL2) in the kidney MPO production in the kidney Phagocytosis of BMDMs Killing ability of BMDMs | [30] |
C. tropicalis | M (C57BL/6 vs. CARD9−/−) | Production of cytokine (TNF-α) Clearance of fungus in the kidney, brain, and liver Killing ability of macrophages Survival M2 differentiation | Infiltration of immune cells | Production of cytokines (IL-6, IL-1β, IL-23, IL-17A) Production of chemokines (CXCL1, CXCL2, CXCL5) Clearance of fungus in the spleen Killing ability of PMNs Infiltration of PMNs and monocytes | [37,38] |
C. neoformans | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-17, IL-12p70, IL-23p19, TGF-β, ROR-γt) Production of chemokines (CCL3, CCL4, CCL5, CXCL9, CXCL10) [42] Clearance of fungus in the spleen and lung M1 differentiation Survival Phagocytosis of macrophages and DCs Killing ability of immune cells | Production of cytokines (IL-4, IL-5, IL-6, IL-13, G-CSF) Production of chemokines (CCL2, CCL3, CCL11) [40] Infiltration of PMNs M2 differentiation | Production of IFN-γ Infiltration of leukocytes Clearance of fungus in the brain | [40,41,42] |
E. spinifera | H (c.68C>A) (c.819- 820insG) (c.191–192insTGCT) | Production of cytokines (IL-1β, IL-6, IL-17, IL-22, IFN-γ, TNF-α) Production of chemokines (CXCL1, CXCL2, CXCL8) Th cells response (Th17, Th22) Activation of NF-κB | ROS production of PBMCs Phagocytosis of PBMCs Th1 cell response | [28] | |
M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-1β, IL-6, IL-17A, IL-22, IFN-γ, TNF-α) Production of chemokines (CXCL1, CXCL2) Infiltration of PMNs Clearance of fungus in footpad Activation of NF-κB and p38 | Expression of p38 | [28] | ||
M. irregularis | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-1β, IL-6, IL-10, IL-17A, IL-17p70, IL-23, IFN-γ, TNF-α) Production of chemokines (CXCL1, CXCL2) Activation of NF-κB NETosis Th cells response (Th1, Th17) Clearance of fungus on footpad and lymph node | Production of cytokine (IL-4) Infiltration of immune cells | [49] | |
P. murina | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-1β, IL-6, IL-12, TNF-α, G-CSF) in BMDMs Activation of MAPKs and NF-κB Killing ability of macrophages MPO production in the lung Infiltration of immune cells Clearance of fungus in the lung M1 and M2 differentiation Expression of CLRs | Production of cytokine (IFN-γ) | Production of cytokines (IL-4, IL-17) Survival | [51] |
3. Effects of CARD9 on the Immune Response to Bacterial Infections
3.1. Citrobacter rodentium
3.2. Mycobacterium tuberculosis
3.3. Staphylococcus aureus
3.4. Salmonella enterica serovar Typhimurium
3.5. Streptococcus pneumoniae
Pathogens: Bacteria | Host | Effects of CARD9 | Refs. | ||
---|---|---|---|---|---|
Positive | Negative | No Effect | |||
C. rodentium | M * (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-6, IL-17A, IL-22, RegIIIγ) Survival Bacterial susceptibility | [56,57] | ||
M. tuberculosis | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-1β, IL-6, IL-12p40, TNF) Production of chemokine (CCL5) Survival Clearance of bacterium in the lung | Production of cytokines (CXCL1, CCL2, G-CSF) | [65] | |
S. aureus | H * (c.883C>T) (c.214G>A) (c.1118G>C) | Production of cytokines (IL-1β, IL-6) [29] | Production of cytokines (IL-1β, IL-6) [20] and (IL-8) [29] | [20,29] | |
M (C57BL/6 vs. CARD9−/−) | Infiltration of PMNs Clearance of bacterium in the brain and spleen | [31,34] | |||
S. Typhimurium | M (C57BL/6 vs. CARD9−/−) | Pyroptosis in BMDMs | Production of cytokine (IL-1β) Activation of Syk | [69,70] | |
S. pneumoniae | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-12p40, IFN-γ, TNF-α) Production of chemokines (CXCL1, CXCL2) Phagocytosis of PMNs Infiltration of PMNs Clearance of bacterium in the lung | Infiltration of macrophages | [54] |
4. Effects of CARD9 on the Immune Response to Viral Infections
4.1. Coxsackievirus B3
4.2. Influenza Virus
4.3. La Crosse Virus
4.4. Theiler’s Murine Encephalomyelitis Virus
Pathogen: Viruses | Host | Effects of CARD9 | Refs. | ||
---|---|---|---|---|---|
Positive | Negative | No Effect | |||
Coxsackievirus B3 | M * (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-6, IL-10, IL-17A, IFN-γ, TGF-β) Expression of BCL10 | Expression of Syk Viral burden | [75] | |
Influenza virus | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-6, TNF-α) in the lung and DCs Production of chemokines (CXCL1, CCL3, IP-10) Infiltration of T cells and PMNs | Production of cytokine (IFN-γ) in the lung Survival Clearance of virus | Production of cytokines (IL-6, IFN-α/β, TNF-α) in macrophages Infiltration of B cells, NK cells, macrophages, and DCs Production of IgA and IgG | [79] |
La Crosse virus | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-6, TNF-α) | Clearance of virus | [85] | |
Theiler’s murine encephalomyelitis virus | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-1β, IFN-γ) Hippocampal damage | Production of cytokine (IL-5) M2 differentiation T cells infiltration | Production of cytokines (IL-1α, IL-4, IL-6, IL-10, TNF-α, TGF-β1) Clearance of virus T cells priming | [88] |
5. Effects of CARD9 on the Immune Response against Miscellaneous Stimuli
5.1. CLR Ligands (Curdlan, Mannan, and TDB)
5.2. Zymosan
5.3. TLR Ligands (LPS and Pam3CSK4)
5.4. MDP
5.5. Dextran Sulfate Sodium
5.6. Hydrogen Peroxide
5.7. Particulate Matter
Stimuli | Host | Effects of CARD9 | Refs. | ||
---|---|---|---|---|---|
Positive | Negative | No Effect | |||
Curdlan, TDB, and Mannan | H * (c.819-820insG) | Production of cytokines (IL-1β, IL-6, IL-10, IL-12p40, IL-17A, IL-22, IFN-γ, TNF-α) Th cells response (Th1, Th17, Th22) | [21] | ||
M * (C57BL/6 vs. CARD9−/−) RAW 264.7 cell | Production of cytokines (IL-1β, IL-6, IL-17A, IL-22, IFN-γ, TNF-α) Activation of NF-κB (mannan) | Activation of NF-κB (curdlan) | [43,94,112] | ||
Dextran sulfate sodium | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-6, IL-17A, IL-22, IFN-γ, TNF-α) Production of chemokines (CCL2, CCL20) Bodyweight and colon length | Production of MPO Infiltration of monocytes, macrophages, and PMNs [106] | Infiltration of B and T cells [106] and PMNs [32] | [32,57,105,106] |
Hydrogen peroxide | M (C57BL/6 vs. CARD9−/−) H9c2 cells | Apoptosis of cardiomyocytes and PMNs | Cytochrome C release | [32,107] | |
LPS and Pam3CSK4 | H (c.3G>C) (c.819_820insG) (c.68C>A) | Production of cytokines (IL-1β, TNF-α) [21] | Production of cytokines (IL-1β, IL-6, TNF-α, GM-CSF) [20,28] | [20,21,28] | |
M (C57BL/6 vs. CARD9−/−) | Production of NO in macrophages | Production of cytokines (IL-6, TNF-α) [10] Activation of NF-κB and MAPKs | [10,30,40,97] | ||
MDP | H (c.68C>A) (c.819-820insG) | Production of cytokines (IL-1β, IL-6, TNF-α) | [28] | ||
Particulate matter | M (C57BL/6 vs. CARD9−/−) | ROS production of macrophages Infiltration of inflammatory cells | [110,111] | ||
depleted Zymosan | M (C57BL/6 vs. CARD9−/−) | Production of cytokines (IL-2, IL-6, TNF-α) in DCs | [97] | ||
Zymosan | H (c.214G>A) (c.1118G>C) | Production of H2O2 | [29,97] | ||
M (C57BL/6 vs. CARD9−/−) | Production of cytokine (IL-2, IL-6, TNF-α) in DCs Production of cytokine (TNF-α) in macrophages Survival Autophagy of macrophages M2 differentiation | Production of cytokine (IL-1β) Production of chemokine (CCL2) Infiltration of macrophages M1 differentiation | Phagocytosis of macrophages and DCs Infiltration of T cells and PMNs | [34,97,98] |
6. Conclusions
Species | Pathogens | Primary Cells | Functions | Refs. |
---|---|---|---|---|
Fungi | A. fumiagtus | PMNs PBMCs | Production of cytokines Infiltration Phagocytosis Killing ability | [20,21,22,23] |
C. albicans | PMNs PBMCs | Production of cytokines Infiltration Phagocytosis Killing ability ROS production | [20,27,28,29,30,31,32] | |
C. parapsilosis | BMDMs | Production of cytokines Phagocytosis | [30] | |
C. tropicalis | PMNs BMDMs Monocytes | Killing ability | [37,38] | |
C. neoformans | PMNs BMDMs BMDCs | Infiltration Phagocytosis Anticryptococcal activity | [40,41,42] | |
E. spinifera | PBMCs BMDMs | Production of cytokines Phagocytosis ROS production Activation of NF-κB and MAPKs | [28] | |
M. irregularis | PMNs BMDMs BMDCs | Production of cytokines NETosis Activation of NF-κB | [49] | |
P. murina | PMNs BMDMs | Production of cytokines Infiltration Activation of MAPKs | [51] | |
Bacteria | C. rodentium | PMNs Macrophages DCs | Infiltration | [58,59] |
M. tuberculosis | BMDMs PMNs | Production of cytokines Production of NO Infiltration Internalization Killing ability MPO production | [65] | |
S. aureus | PMNs PBMC | Production of cytokines Infiltration | [20,29,31,34] | |
S. Typhimurium | BMDMs | Production of cytokines Pyroptosis | [70] | |
S. pneumoniae | PMNs Macrophages | Production of cytokines Infiltration Phagocytosis | [54] | |
Virus | Influenza virus | PMNs Macrophages DCs | Production of cytokines Infiltration | [79] |
Theiler’s murine encephalomyelitis virus | Macrophages | Differentiation | [88] |
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALRs | AIM2-like receptors |
BCL | B-cell lymphoma/leukemia |
BMDCs | Bone marrow-derived dendritic cells |
BMDMs | Bone marrow-derived macrophages |
CARD9 | Caspase recruitment domain-containing protein 9 |
CBM | CARD9-BCL10-MALT1 |
CLRs | C-type lectin receptors |
CNS | Central nervous system |
DC-SIGN | Dendritic cell-specific ICAM-grabbing non-integrin |
DCs | Dendritic cells |
DSS | Dextran sulfate sodium |
G-CSF | Granulocyte colony-stimulating factor |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
ICAM | Intracellular adhesion molecule |
IFN | Interferon |
IL | Interleukin |
IP | Interferon gamma-induced protein |
JNK | c-Jun N-terminal kinase |
LP | Lipopeptide |
LPS | Lipopolysaccharide |
MALT | Mucosa-associated lymphoid tissue lymphoma translocation protein |
MAPK | Mitogen-activated protein kinase |
MDP | Muramyl dipeptide |
MIP | Macrophage inflammatory protein |
MPO MYD88 | Myeloperoxidase Myeloid differentiation primary response 88 |
NETs | Neutrophil extracellular traps |
NF-κB NK NLRC4 | Nuclear factor kappa-light-chain-enhancer of activated B cells Natural killer NLR family CARD domain-containing 4 |
NLPR3 | NLR family pyrin domain-containing protein 3 |
NLRs | NOD-like receptors |
NOD | Nucleotide oligomerization domain |
OLRs | OAS-like receptors |
Pam3CSK4 | Pam3CysSerLyn4 |
PAMPs | Pathogen-associated molecular patterns |
PGBPs | Peptidoglycan-binding proteins |
PBMCs | Peripheral blood mononuclear cells |
PGN | Peptidoglycans |
PMNs | Polymorphonuclear leukocytes |
PRRs | Pattern recognition receptors |
RIG | Retinoic acid-inducible gene |
RLRs | RIG-I-like receptors |
ROR | Retinoic acid receptor-related orphan receptor |
ROS | Reactive oxygen species |
SLAMF | Signaling lymphocytic activation molecule family |
Syk | Spleen tyrosine kinase |
TDB | Trehalose-6,6-dibehenate |
TGF | Transforming growth factor |
Th | T helper |
TLRs | Toll-like receptors |
TNF | Tumor necrosis factor |
References
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Itav, S.; Elinav, E. Integration of innate immune signaling. Trends Immunol. 2016, 37, 84–101. [Google Scholar] [CrossRef]
- Chuenchor, W.; Jin, T.; Ravilious, G.; Xiao, T.S. Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Curr. Opin. Immunol. 2014, 26, 14–20. [Google Scholar] [CrossRef]
- Hoving, J.C.; Wilson, G.J.; Brown, G.D. Signalling C-type lectin receptors, microbial recognition and immunity. Cell. Microbiol. 2014, 16, 185–194. [Google Scholar] [CrossRef]
- Saxena, M.; Yeretssian, G. NOD-like receptors: Master regulators of inflammation and cancer. Front. Immunol. 2014, 5, 327. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.M.; Gale, M., Jr. Immune signaling by RIG-I-like receptors. Immunity 2011, 34, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Yang, Z.; Zhong, X.; Xia, J. The role and mechanism of CARD9 gene polymorphism in diseases. Biomed. J. 2021, 44, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Bertin, J.; Guo, Y.; Wang, L.; Srinivasula, S.M.; Jacobson, M.D.; Poyet, J.L.; Merriam, S.; Du, M.Q.; Dyer, M.J.; Robison, K.E.; et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa B. J. Biol. Chem. 2000, 275, 41082–41086. [Google Scholar] [CrossRef] [PubMed]
- Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci. 1996, 21, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.M.; Zhang, Y.; You, Y.; Wang, D.; Li, H.; Duramad, O.; Qin, X.F.; Dong, C.; Lin, X. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 2007, 8, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Lionakis, M.S. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front. Cell. Infect. Microbiol. 2016, 6, 39. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Hou, Y.; Shen, S.; Wang, T. The adaptor protein CARD9, from fungal immunity to tumorigenesis. Am. J. Cancer Res. 2020, 10, 2203–2225. [Google Scholar] [PubMed]
- Vornholz, L.; Ruland, J. Physiological and pathological functions of CARD9 signaling in the innate immune system. Curr. Top. Microbiol. Immunol. 2020, 429, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Tayal, V.; Kalra, B.S. Cytokines and anti-cytokines as therapeutics—An update. Eur. J. Pharmacol. 2008, 579, 1–12. [Google Scholar] [CrossRef]
- Murphy, K.W.; Weaver, C.; Berg, L. Janeway’s Immunobiology; W. W. Norton & Company: New York, NY, USA, 2022. [Google Scholar]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014, 1843, 2563–2582. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Franco, L.M.; Lionakis, M.S. Human CARD9: A critical molecule of fungal immune surveillance. Front. Immunol. 2018, 9, 1836. [Google Scholar] [CrossRef] [PubMed]
- Palomino, D.C.; Marti, L.C. Chemokines and immunity. Einstein 2015, 13, 469–473. [Google Scholar] [CrossRef] [PubMed]
- van de Veerdonk, F.L.; Gresnigt, M.S.; Romani, L.; Netea, M.G.; Latge, J.P. Aspergillus fumigatus morphology and dynamic host interactions. Nat. Rev. Microbiol. 2017, 15, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Rieber, N.; Gazendam, R.P.; Freeman, A.F.; Hsu, A.P.; Collar, A.L.; Sugui, J.A.; Drummond, R.A.; Rongkavilit, C.; Hoffman, K.; Henderson, C.; et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight 2016, 1, e89890. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Song, Y.; Ma, Y.; Wan, Z.; Zhu, X.; Wang, X.; Li, R. Primary cutaneous Aspergillosis in a patient with CARD9 deficiency and Aspergillus susceptibility of Card9 knockout mice. J. Clin. Immunol. 2021, 41, 427–440. [Google Scholar] [CrossRef]
- Jhingran, A.; Mar, K.B.; Kumasaka, D.K.; Knoblaugh, S.E.; Ngo, L.Y.; Segal, B.H.; Iwakura, Y.; Lowell, C.A.; Hamerman, J.A.; Lin, X.; et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012, 2, 1762–1773. [Google Scholar] [CrossRef]
- Jhingran, A.; Kasahara, S.; Shepardson, K.M.; Junecko, B.A.; Heung, L.J.; Kumasaka, D.K.; Knoblaugh, S.E.; Lin, X.; Kazmierczak, B.I.; Reinhart, T.A.; et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015, 11, e1004589. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.Y.; Tian, X.L.; Shao, H.T.; Wu, X.D.; Wang, Q.; Su, X.; Shi, Y. Activation of NF-kappaB and respiratory burst following Aspergillus fumigatus stimulation of macrophages. Immunobiology 2014, 219, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.X.; Wang, Y.; Hu, D.D.; Yan, L.; Jiang, Y.Y. The role of pattern recognition receptors in the innate recognition of Candida albicans. Virulence 2015, 6, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Saijo, S.; Fujikado, N.; Furuta, T.; Chung, S.H.; Kotaki, H.; Seki, K.; Sudo, K.; Akira, S.; Adachi, Y.; Ohno, N.; et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 2007, 8, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Swamydas, M.; Oikonomou, V.; Zhai, B.; Dambuza, I.M.; Schaefer, B.C.; Bohrer, A.C.; Mayer-Barber, K.D.; Lira, S.A.; Iwakura, Y.; et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 2019, 20, 559–570. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Wu, W.; Song, Y.; Wan, Z.; Han, W.; Li, R. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J. Investig. Dermatol. 2018, 138, 607–617. [Google Scholar] [CrossRef]
- Drewniak, A.; Gazendam, R.P.; Tool, A.T.; van Houdt, M.; Jansen, M.H.; van Hamme, J.L.; van Leeuwen, E.M.; Roos, D.; Scalais, E.; de Beaufort, C.; et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 2013, 121, 2385–2392. [Google Scholar] [CrossRef]
- Zajta, E.; Csonka, K.; Toth, A.; Tiszlavicz, L.; Nemeth, T.; Orosz, A.; Novak, A.; Csikos, M.; Vagvolgyi, C.; Mocsai, A.; et al. Signaling through Syk or CARD9 mediates species-specific anti-Candida protection in bone marrow chimeric mice. mBio 2021, 12, e0160821. [Google Scholar] [CrossRef]
- Drummond, R.A.; Collar, A.L.; Swamydas, M.; Rodriguez, C.A.; Lim, J.K.; Mendez, L.M.; Fink, D.L.; Hsu, A.P.; Zhai, B.; Karauzum, H.; et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015, 11, e1005293. [Google Scholar] [CrossRef]
- Danne, C.; Michaudel, C.; Skerniskyte, J.; Planchais, J.; Magniez, A.; Agus, A.; Michel, M.L.; Lamas, B.; Da Costa, G.; Spatz, M.; et al. CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival. Gut 2022. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Gross, O.; Gewies, A.; Finger, K.; Schafer, M.; Sparwasser, T.; Peschel, C.; Forster, I.; Ruland, J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006, 442, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Trofa, D.; Gacser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef] [PubMed]
- Zuza-Alves, D.L.; Silva-Rocha, W.P.; Chaves, G.M. An update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol. 2017, 8, 1927. [Google Scholar] [CrossRef] [PubMed]
- Whibley, N.; Jaycox, J.R.; Reid, D.; Garg, A.V.; Taylor, J.A.; Clancy, C.J.; Nguyen, M.H.; Biswas, P.S.; McGeachy, M.J.; Brown, G.D.; et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-alpha-dependent, IL-17-independent mechanism. J. Immunol. 2015, 195, 3781–3792. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fan, C.; Yao, A.; Xu, X.; Zheng, G.; You, Y.; Jiang, C.; Zhao, X.; Hou, Y.; Hung, M.C.; et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity 2018, 49, 504–514.e504. [Google Scholar] [CrossRef] [PubMed]
- Voelz, K.; May, R.C. Cryptococcal interactions with the host immune system. Eukaryot. Cell 2010, 9, 835–846. [Google Scholar] [CrossRef]
- Campuzano, A.; Castro-Lopez, N.; Martinez, A.J.; Olszewski, M.A.; Ganguly, A.; Leopold Wager, C.; Hung, C.Y.; Wormley, F.L., Jr. CARD9 is required for classical macrophage activation and the induction of protective immunity against pulmonary cryptococcosis. mBio 2020, 11. [Google Scholar] [CrossRef]
- Kitai, Y.; Sato, K.; Tanno, D.; Yuan, X.; Umeki, A.; Kasamatsu, J.; Kanno, E.; Tanno, H.; Hara, H.; Yamasaki, S.; et al. Role of dectin-2 in the phagocytosis of Cryptococcus neoformans by dendritic cells. Infect. Immun. 2021, 89, e0033021. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nakamura, Y.; Sato, K.; Takahashi, Y.; Nomura, T.; Miyasaka, T.; Ishii, K.; Hara, H.; Yamamoto, N.; Kanno, E.; et al. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans. Infect. Immun. 2014, 82, 1606–1615. [Google Scholar] [CrossRef]
- Saijo, S.; Ikeda, S.; Yamabe, K.; Kakuta, S.; Ishigame, H.; Akitsu, A.; Fujikado, N.; Kusaka, T.; Kubo, S.; Chung, S.H.; et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010, 32, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Kinjo, T.; Saijo, S.; Miyazato, A.; Adachi, Y.; Ohno, N.; Fujita, J.; Kaku, M.; Iwakura, Y.; Kawakami, K. Dectin-1 is not required for the host defense to Cryptococcus neoformans. Microbiol. Immunol. 2007, 51, 1115–1119. [Google Scholar] [CrossRef]
- Mansour, M.K.; Latz, E.; Levitz, S.M. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J. Immunol. 2006, 176, 3053–3061. [Google Scholar] [CrossRef]
- Mansour, M.K.; Schlesinger, L.S.; Levitz, S.M. Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 2002, 168, 2872–2879. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.E.; Sutton, D.A.; Rubin, A.; Wickes, B.; De Hoog, G.S.; Kovarik, C. Exophiala spinifera as a cause of cutaneous phaeohyphomycosis: Case study and review of the literature. Med. Mycol. 2009, 47, 87–93. [Google Scholar] [CrossRef]
- Lu, X.L.; Najafzadeh, M.J.; Dolatabadi, S.; Ran, Y.P.; Gerrits van den Ende, A.H.; Shen, Y.N.; Li, C.Y.; Xi, L.Y.; Hao, F.; Zhang, Q.Q.; et al. Taxonomy and epidemiology of Mucor irregularis, agent of chronic cutaneous mucormycosis. Persoonia 2013, 30, 48–56. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Wan, Z.; Li, R.; Yu, J. In vivo and in vitro impairments in T helper cell and neutrophil responses against Mucor irregularis in Card9 knockout mice. Infect. Immun. 2021, 89, e00040-21. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, F.; Limper, A.H.; Wright, T. Pneumocystis. Cold Spring Harb. Perspect. Med. 2014, 4, a019828. [Google Scholar] [CrossRef]
- Kottom, T.J.; Nandakumar, V.; Hebrink, D.M.; Carmona, E.M.; Limper, A.H. A critical role for CARD9 in pneumocystis pneumonia host defence. Cell Microbiol. 2020, 22, e13235. [Google Scholar] [CrossRef]
- McGreal, E.P.; Rosas, M.; Brown, G.D.; Zamze, S.; Wong, S.Y.; Gordon, S.; Martinez-Pomares, L.; Taylor, P.R. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 2006, 16, 422–430. [Google Scholar] [CrossRef]
- Akahori, Y.; Miyasaka, T.; Toyama, M.; Matsumoto, I.; Miyahara, A.; Zong, T.; Ishii, K.; Kinjo, Y.; Miyazaki, Y.; Saijo, S.; et al. Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae. BMC Immunol. 2016, 17, 1. [Google Scholar] [CrossRef]
- Ishizuka, S.; Yokoyama, R.; Sato, K.; Shiroma, R.; Nakahira, A.; Yamamoto, H.; Takano, K.; Kagesawa, T.; Miyasaka, T.; Kasamatsu, J.; et al. Effect of CARD9 deficiency on neutrophil-mediated host defense against pulmonary infection with Streptococcus pneumoniae. Infect. Immun. 2020, 89. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.W.; Keeney, K.M.; Crepin, V.F.; Rathinam, V.A.; Fitzgerald, K.A.; Finlay, B.B.; Frankel, G. Citrobacter rodentium: Infection, inflammation and the microbiota. Nat. Rev. Microbiol. 2014, 12, 612–623. [Google Scholar] [CrossRef]
- Lamas, B.; Michel, M.L.; Waldschmitt, N.; Pham, H.P.; Zacharioudaki, V.; Dupraz, L.; Delacre, M.; Natividad, J.M.; Costa, G.D.; Planchais, J.; et al. Card9 mediates susceptibility to intestinal pathogens through microbiota modulation and control of bacterial virulence. Gut 2018, 67, 1836–1844. [Google Scholar] [CrossRef]
- Sokol, H.; Conway, K.L.; Zhang, M.; Choi, M.; Morin, B.; Cao, Z.; Villablanca, E.J.; Li, C.; Wijmenga, C.; Yun, S.H.; et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology 2013, 145, 591–601.e593. [Google Scholar] [CrossRef]
- Lebeis, S.L.; Bommarius, B.; Parkos, C.A.; Sherman, M.A.; Kalman, D. TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J. Immunol. 2007, 179, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.L.; Ma, C.; Bergstrom, K.S.; Huang, J.T.; Man, C.; Vallance, B.A. MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell. Microbiol. 2008, 10, 618–631. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef]
- Roth, S.; Ruland, J. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 2013, 34, 243–250. [Google Scholar] [CrossRef]
- Jo, E.K. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr. Opin. Infect. Dis. 2008, 21, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.V.; Boom, W.H. Regulation of antigen presentation by Mycobacterium tuberculosis: A role for Toll-like receptors. Nat. Rev. Microbiol. 2010, 8, 296–307. [Google Scholar] [CrossRef] [PubMed]
- El-Etr, S.H.; Cirillo, J.D. Entry mechanisms of mycobacteria. Front. Biosci. 2001, 6, D737–D747. [Google Scholar] [CrossRef] [PubMed]
- Dorhoi, A.; Desel, C.; Yeremeev, V.; Pradl, L.; Brinkmann, V.; Mollenkopf, H.J.; Hanke, K.; Gross, O.; Ruland, J.; Kaufmann, S.H.E. The adaptor molecule CARD9 is essential for tuberculosis control. J. Exp. Med. 2010, 207, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.P.; Molle, V. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Askarian, F.; Wagner, T.; Johannessen, M.; Nizet, V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol. Rev. 2018, 42, 656–671. [Google Scholar] [CrossRef]
- Herrero-Fresno, A.; Olsen, J.E. Salmonella Typhimurium metabolism affects virulence in the host—A mini-review. Food Microbiol. 2018, 71, 98–110. [Google Scholar] [CrossRef]
- Broz, P.; Ohlson, M.B.; Monack, D.M. Innate immune response to Salmonella Typhimurium, a model enteric pathogen. Gut Microbes 2012, 3, 62–70. [Google Scholar] [CrossRef]
- Pereira, M.; Tourlomousis, P.; Wright, J.; Monie, T.P.; Bryant, C.E. CARD9 negatively regulates NLRP3-induced IL-1beta production on Salmonella infection of macrophages. Nat. Commun. 2016, 7, 12874. [Google Scholar] [CrossRef]
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: Transmission, colonization and invasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef]
- Poeck, H.; Bscheider, M.; Gross, O.; Finger, K.; Roth, S.; Rebsamen, M.; Hannesschlager, N.; Schlee, M.; Rothenfusser, S.; Barchet, W.; et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 2010, 11, 63–69. [Google Scholar] [CrossRef]
- Roth, S.; Rottach, A.; Lotz-Havla, A.S.; Laux, V.; Muschaweckh, A.; Gersting, S.W.; Muntau, A.C.; Hopfner, K.P.; Jin, L.; Vanness, K.; et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat. Immunol. 2014, 15, 538–545. [Google Scholar] [CrossRef]
- Mamana, J.; Humber, G.M.; Espinal, E.R.; Seo, S.; Vollmuth, N.; Sin, J.; Kim, B.J. Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells. Front. Cell Infect. Microbiol. 2023, 13, 1171275. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, X.; Yu, Y.; Li, Z.; Xie, Y. CARD9 mediates T cell inflammatory response in Coxsackievirus B3-induced acute myocarditis. Cardiovasc. Pathol. 2020, 49, 107261. [Google Scholar] [CrossRef]
- Kaya, Z.; Dohmen, K.M.; Wang, Y.; Schlichting, J.; Afanasyeva, M.; Leuschner, F.; Rose, N.R. Cutting edge: A critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. J. Immunol. 2002, 168, 1552–1556. [Google Scholar] [CrossRef]
- Myers, J.M.; Cooper, L.T.; Kem, D.C.; Stavrakis, S.; Kosanke, S.D.; Shevach, E.M.; Fairweather, D.; Stoner, J.A.; Cox, C.J.; Cunningham, M.W. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 2016, 1, e85851. [Google Scholar] [CrossRef]
- Zelaya, H.; Alvarez, S.; Kitazawa, H.; Villena, J. Respiratory antiviral immunity and immunobiotics: Beneficial effects on inflammation-coagulation interaction during Influenza virus infection. Front. Immunol. 2016, 7, 633. [Google Scholar] [CrossRef]
- Uematsu, T.; Iizasa, E.; Kobayashi, N.; Yoshida, H.; Hara, H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci. Rep. 2015, 5, 17577. [Google Scholar] [CrossRef]
- McJunkin, J.E.; de los Reyes, E.C.; Irazuzta, J.E.; Caceres, M.J.; Khan, R.R.; Minnich, L.L.; Fu, K.D.; Lovett, G.D.; Tsai, T.; Thompson, A. La Crosse encephalitis in children. N. Engl. J. Med. 2001, 344, 801–807. [Google Scholar] [CrossRef]
- Gaensbauer, J.T.; Lindsey, N.P.; Messacar, K.; Staples, J.E.; Fischer, M. Neuroinvasive arboviral disease in the United States: 2003 to 2012. Pediatrics 2014, 134, e642–e650. [Google Scholar] [CrossRef]
- Verbruggen, P.; Ruf, M.; Blakqori, G.; Overby, A.K.; Heidemann, M.; Eick, D.; Weber, F. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II. J. Biol. Chem. 2011, 286, 3681–3692. [Google Scholar] [CrossRef]
- Mukherjee, P.; Woods, T.A.; Moore, R.A.; Peterson, K.E. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 2013, 38, 705–716. [Google Scholar] [CrossRef]
- Hofmann, H.; Li, X.; Zhang, X.; Liu, W.; Kuhl, A.; Kaup, F.; Soldan, S.S.; Gonzalez-Scarano, F.; Weber, F.; He, Y.; et al. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J. Virol. 2013, 87, 4384–4394. [Google Scholar] [CrossRef]
- Monteiro, J.T.; Schon, K.; Ebbecke, T.; Goethe, R.; Ruland, J.; Baumgartner, W.; Becker, S.C.; Lepenies, B. The CARD9-associated C-Type lectin, mincle, recognizes La Crosse Virus (LACV) but plays a limited role in early antiviral responses against LACV. Viruses 2019, 11, 303. [Google Scholar] [CrossRef]
- Libbey, J.E.; Kirkman, N.J.; Smith, M.C.; Tanaka, T.; Wilcox, K.S.; White, H.S.; Fujinami, R.S. Seizures following picornavirus infection. Epilepsia 2008, 49, 1066–1074. [Google Scholar] [CrossRef]
- Stewart, K.A.; Wilcox, K.S.; Fujinami, R.S.; White, H.S. Development of postinfection epilepsy after Theiler’s virus infection of C57BL/6 mice. J. Neuropathol. Exp. Neurol. 2010, 69, 1210–1219. [Google Scholar] [CrossRef]
- Pavasutthipaisit, S.; Stoff, M.; Ebbecke, T.; Ciurkiewicz, M.; Mayer-Lambertz, S.; Stork, T.; Pavelko, K.D.; Lepenies, B.; Beineke, A. CARD9 deficiency increases hippocampal injury following acute neurotropic Picornavirus infection but does not affect pathogen elimination. Int. J. Mol. Sci. 2021, 22, 6982. [Google Scholar] [CrossRef]
- Castro, G.R.; Panilaitis, B.; Bora, E.; Kaplan, D.L. Controlled release biopolymers for enhancing the immune response. Mol. Pharm. 2007, 4, 33–46. [Google Scholar] [CrossRef]
- Mocanu, G.; Mihai, D.; Moscovici, M.; Picton, L.; LeCerf, D. Curdlan microspheres. Synthesis, characterization and interaction with proteins (enzymes, vaccines). Int. J. Biol. Macromol. 2009, 44, 215–221. [Google Scholar] [CrossRef]
- Schoenen, H.; Bodendorfer, B.; Hitchens, K.; Manzanero, S.; Werninghaus, K.; Nimmerjahn, F.; Agger, E.M.; Stenger, S.; Andersen, P.; Ruland, J.; et al. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol. 2010, 184, 2756–2760. [Google Scholar] [CrossRef]
- Desel, C.; Werninghaus, K.; Ritter, M.; Jozefowski, K.; Wenzel, J.; Russkamp, N.; Schleicher, U.; Christensen, D.; Wirtz, S.; Kirschning, C.; et al. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS ONE 2013, 8, e53531. [Google Scholar] [CrossRef]
- Werninghaus, K.; Babiak, A.; Gross, O.; Holscher, C.; Dietrich, H.; Agger, E.M.; Mages, J.; Mocsai, A.; Schoenen, H.; Finger, K.; et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J. Exp. Med. 2009, 206, 89–97. [Google Scholar] [CrossRef]
- Schweneker, K.; Gorka, O.; Schweneker, M.; Poeck, H.; Tschopp, J.; Peschel, C.; Ruland, J.; Gross, O. The mycobacterial cord factor adjuvant analogue trehalose-6,6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology 2013, 218, 664–673. [Google Scholar] [CrossRef]
- Gantner, B.N.; Simmons, R.M.; Canavera, S.J.; Akira, S.; Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 2003, 197, 1107–1117. [Google Scholar] [CrossRef]
- Goodridge, H.S.; Simmons, R.M.; Underhill, D.M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 2007, 178, 3107–3115. [Google Scholar] [CrossRef]
- Goodridge, H.S.; Shimada, T.; Wolf, A.J.; Hsu, Y.M.; Becker, C.A.; Lin, X.; Underhill, D.M. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J. Immunol. 2009, 182, 1146–1154. [Google Scholar] [CrossRef]
- Xu, Z.; Qiao, S.; Qian, W.; Zhu, Y.; Yan, W.; Shen, S.; Wang, T. Card9 protects fungal peritonitis through regulating Malt1-mediated activation of autophagy in macrophage. Int. Immunopharmacol. 2022, 110, 108941. [Google Scholar] [CrossRef]
- Zhang, G.; Meredith, T.C.; Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol. 2013, 16, 779–785. [Google Scholar] [CrossRef]
- Nguyen, D.T.; de Witte, L.; Ludlow, M.; Yuksel, S.; Wiesmuller, K.H.; Geijtenbeek, T.B.; Osterhaus, A.D.; de Swart, R.L. The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation. PLoS Pathog. 2010, 6, e1001049. [Google Scholar] [CrossRef]
- Soares, J.B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R.; Leite-Moreira, A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol. Int. 2010, 4, 659–672. [Google Scholar] [CrossRef]
- Tsolmongyn, B.; Koide, N.; Jambalganiin, U.; Odkhuu, E.; Naiki, Y.; Komatsu, T.; Yoshida, T.; Yokochi, T. A Toll-like receptor 2 ligand, Pam3CSK4, augments interferon-gamma-induced nitric oxide production via a physical association between MyD88 and interferon-gamma receptor in vascular endothelial cells. Immunology 2013, 140, 352–361. [Google Scholar] [CrossRef]
- Grimes, C.L.; Ariyananda Lde, Z.; Melnyk, J.E.; O’Shea, E.K. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J. Am. Chem. Soc. 2012, 134, 13535–13537. [Google Scholar] [CrossRef]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15.25.11–15.25.14. [Google Scholar] [CrossRef]
- Lamas, B.; Richard, M.L.; Leducq, V.; Pham, H.P.; Michel, M.L.; Da Costa, G.; Bridonneau, C.; Jegou, S.; Hoffmann, T.W.; Natividad, J.M.; et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 2016, 22, 598–605. [Google Scholar] [CrossRef]
- Malik, A.; Sharma, D.; Malireddi, R.K.S.; Guy, C.S.; Chang, T.C.; Olsen, S.R.; Neale, G.; Vogel, P.; Kanneganti, T.D. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity 2018, 49, 515–530.e515. [Google Scholar] [CrossRef]
- Li, Y.; Liang, P.; Jiang, B.; Tang, Y.; Lv, Q.; Hao, H.; Liu, Z.; Xiao, X. CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. Free Radic. Biol. Med. 2019, 141, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The role of hydrogen peroxide in redox-dependent signaling: Homeostatic and pathological responses in mammalian cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liu, X.; Wu, H.; Yang, C.; Wang, M.; Chen, F.; Cui, Y.; Hao, H.; Hill, M.A.; Liu, Z. CARD9 deficiency improves the recovery of limb ischemia in mice with ambient fine particulate matter exposure. Front. Cardiovasc. Med. 2023, 10, 1125717. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, H.; Yang, T.; Rui, W.; Liu, F.; Zhang, F.; Zhao, Y.; Ding, W. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim. Biophys. Acta 2016, 1860, 2835–2843. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.M.; Tang, B.; Zhu, L.L.; Liu, Y.H.; Zhao, X.Q.; Gorjestani, S.; Hsu, Y.M.; Yang, L.; Guan, J.H.; Xu, G.T.; et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 2014, 211, 2307–2321. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S.; Kim, C. Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections. Int. J. Mol. Sci. 2024, 25, 2598. https://doi.org/10.3390/ijms25052598
Lee JS, Kim C. Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections. International Journal of Molecular Sciences. 2024; 25(5):2598. https://doi.org/10.3390/ijms25052598
Chicago/Turabian StyleLee, Ji Seok, and Chaekyun Kim. 2024. "Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections" International Journal of Molecular Sciences 25, no. 5: 2598. https://doi.org/10.3390/ijms25052598
APA StyleLee, J. S., & Kim, C. (2024). Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections. International Journal of Molecular Sciences, 25(5), 2598. https://doi.org/10.3390/ijms25052598