CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation
<p>Flow cytometry «counts» of cellular events in aqueous humor (AH) sample. (<b>A</b>) AH samples from patients with retinitis pigmentosa (RP) (n = 14) and from controls (n = 9) were analyzed using flow cytometry in order to identify the presence of cells in each sample. The columns represent the mean value and CI of the total number of events recorded in the P1 gate, defined in the plot of physical parameters scatter (FSC/SSC) as classic mononuclear cell gate. (<b>B</b>) Flow cytometric dot plots of physical parameters scatter (FSC/SSC) representative of one RP sample (left panel) and one control sample (right panel).</p> "> Figure 2
<p>Flow cytometry analysis of immune cell phenotypes at peripheral blood (PB) and aqueous umor (AH) levels in patients with retinitis pigmentosa (n = 14). PB (black columns) and AH (white columns) samples were analyzed using flow cytometry for surface marker expression to permit identification of T cells (CD3+), B cells (CD19+), natural killer cells (CD3–CD16), and monocytes (CD14) in the mononuclear cells (MNCs) (<b>A</b>), and of the different T cell subpopulations (CD3+CD4+, CD3+CD8+, and CD3+CD4-CD8-) in the T cells (<b>B</b>). Columns represent the mean values + CI of the frequency of the indicated cell population and lymphocyte sub-population.</p> "> Figure 3
<p>Flow cytometry analysis of intracellular cytokine production. Peripheral blood (PB, black columns) and aqueous humor (AH, white columns) samples from patients with RP (n = 5) were stimulated with phorbol 12-myristate 13-acetate and ionomycin for 6 h, the last four in the presence of Brefeldin A, then fixed and stained for intracellular cytokines associated with surface markers. The flow cytometry analysis was performed on CD3+CD8- (<b>A</b>) and CD3+CD8+ (<b>B</b>) gated cells. The columns represent the mean values + CI of the frequency of positive cells for the indicated cytokine.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Aqueous Humor of Patients with RP-Contained Mononucleated Leukocytes
2.3. Phenotypical Characteristics of Leukocytes Infiltrating the Aqueous Humor of Patients with RP
2.4. Cytokine Production Profile of T Cells Infiltrating the Aqueous Humor of Patients with RP
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Sample Collection
4.3. Reagents
4.4. Surface Markers Evaluation
4.5. Intracellular Cytokine Evaluation
4.6. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Joussen, A.M.; Poulaki, V.; Le, M.L.; Koizumi, K.; Esser, C.; Janicki, H.; Schraermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004, 18, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Buschini, E.; Piras, A.; Nuzzi, R.; Vercelli, A. Age related macular degeneration and drusen: Neuroinflammation in the retina. Prog. Neurobiol. 2011, 95, 14–25. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Fekrat, S. Retinal vein occlusion: Beyond the acute event. Surv. Ophthalmol. 2011, 56, 281–299. [Google Scholar] [CrossRef]
- Murakami, Y.; Yoshida, N.; Ikeda, Y.; Nakatake, S.; Fujiwara, K.; Notomi, S.; Nabeshima, T.; Nakao, S.; Hisatomi, T.; Enaida, H.; et al. Relationship between aqueous flare and visual function in retinitis pigmentosa. Am. J. Ophthalmol. 2015, 159, 958–963.e1. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ikeda, Y.; Murakami, Y.; Nakatake, S.; Tachibana, T.; Yoshida, N.; Nakao, S.; Hisatomi, T.; Yoshida, S.; Yoshitomi, T.; et al. Association between aqueous flare and epiretinal membrane in retinitis pigmentosa. Investig. Opthalmology Vis. Sci. 2016, 57, 4282–4286. [Google Scholar] [CrossRef]
- Nagasaka, Y.; Ito, Y.; Ueno, S.; Terasaki, H. Increased aqueous flare is associated with thickening of inner retinal layers in eyes with retinitis pigmentosa. Sci. Rep. 2016, 6, 33921. [Google Scholar] [CrossRef]
- Nishiguchi, K.M.; Yokoyama, Y.; Kunikata, H.; Abe, T.; Nakazawa, T. Correlation between aqueous flare and residual visual field area in retinitis pigmentosa. Br. J. Ophthalmol. 2019, 103, 475–480. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ikeda, Y.; Murakami, Y.; Tachibana, T.; Funatsu, J.; Koyanagi, Y.; Nakatake, S.; Shimokawa, S.; Yoshida, N.; Nakao, S.; et al. Aqueous flare and progression of visual field loss in patients with retinitis pigmentosa. Investig. Opthalmology Vis. Sci. 2020, 61, 26. [Google Scholar] [CrossRef]
- Küchle, M.; Nguyen, N.X.; Martus, P.; Freissler, K.; Schalnus, R. Aqueous flare in retinitis pigmentosa. Graefe’s Arch. Clin. Exp. Ophthalmol. 1998, 236, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Strobbe, E.; Cellini, M.; Fresina, M.; Campos, E.C. ET-1 plasma levels, aqueous flare, and choroidal thickness in patients with retinitis pigmentosa. J. Ophthalmol. 2015, 2015, 292615. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; E Brown, K.; Milam, A.H. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp. Eye Res. 2003, 76, 463–471. [Google Scholar] [CrossRef]
- Zhao, L.; Zabel, M.K.; Wang, X.; Ma, W.; Shah, P.; Fariss, R.N.; Qian, H.; Parkhurst, C.N.; Gan, W.B.; Wong, W.T. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 2015, 7, 1179–1197. [Google Scholar] [CrossRef]
- Yoshida, N.; Ikeda, Y.; Notomi, S.; Ishikawa, K.; Murakami, Y.; Hisatomi, T.; Enaida, H.; Ishibashi, T. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology 2013, 120, 100–105. [Google Scholar] [CrossRef]
- Berge, J.C.T.; Fazil, Z.; Born, L.I.v.D.; Wolfs, R.C.W.; Schreurs, M.W.J.; Dik, W.A.; Rothova, A. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2018, 97, 185–192. [Google Scholar] [CrossRef]
- Lu, B.; Yin, H.; Tang, Q.; Wang, W.; Luo, C.; Chen, X.; Zhang, X.; Lai, K.; Xu, J.; Chen, X.; et al. Multiple cytokine analyses of aqueous humor from the patients with retinitis pigmentosa. Cytokine 2020, 127, 154943. [Google Scholar] [CrossRef]
- Okita, A.; Murakami, Y.; Shimokawa, S.; Funatsu, J.; Fujiwara, K.; Nakatake, S.; Koyanagi, Y.; Akiyama, M.; Takeda, A.; Hisatomi, T.; et al. Changes of serum inflammatory molecules and their relationships with visual function in retinitis pigmentosa. Investig. Opthalmology Vis. Sci. 2020, 61, 30. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [CrossRef]
- Amor, S.; Puentes, F.; Baker, D.; Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology 2010, 129, 154–169. [Google Scholar] [CrossRef]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef] [PubMed]
- Wyss-Coray, T.; Mucke, L. Inflammation in neurodegenerative disease—A double-edged sword. Neuron 2002, 35, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014, 13, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Giugliano, D. The metabolic syndrome and inflammation: Association or causation? Nutr. Metab. Cardiovasc. Dis. 2004, 14, 228–232. [Google Scholar] [CrossRef]
- Balkwill, F.R.; Mantovani, A. Cancer-related inflammation: Common themes and therapeutic opportunities. Semin. Cancer Biol. 2012, 22, 33–40. [Google Scholar] [CrossRef]
- Xie, J.; Van Hoecke, L.; Vandenbroucke, R.E. The Impact of Systemic Inflammation on Alzheimer’s Disease Pathology. Front. Immunol. 2022, 12, 796867. [Google Scholar] [CrossRef]
- Zhang, P.-F.; Gao, F. Neuroinflammation in Parkinson’s disease: A meta-analysis of PET imaging studies. J. Neurol. 2021, 269, 2304–2314. [Google Scholar] [CrossRef]
- Guadagni, V.; Novelli, E.; Piano, I.; Gargini, C.; Strettoi, E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog. Retin. Eye Res. 2015, 48, 62–81. [Google Scholar] [CrossRef]
- Forrester, J.V.; Reid, D.M.; Campbell, A.M. Autoimmunity and retinitis pigmentosa. Semin. Ophthalmol. 1987, 2, 81–88. [Google Scholar] [CrossRef]
- Newsome, D.A.; Michels, R.G. Detection of lymphocytes in the vitreous gel of patients with retinitis pigmentosa. Arch. Ophthalmol. 1988, 105, 596–602. [Google Scholar] [CrossRef]
- Olivares-González, L.; Velasco, S.; Campillo, I.; Rodrigo, R. Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int. J. Mol. Sci. 2021, 22, 2096. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Singh, N.K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int. J. Mol. Sci. 2021, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Niederkorn, J.Y. Role of NKT cells in anterior chamber-associated immune deviation. Expert Rev. Clin. Immunol. 2009, 5, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Voelkl, S.; Heymann, J.; Przybylski, G.K.; Mondal, K.; Laumer, M.; Kunz-Schughart, L.; Schmidt, C.A.; Andreesen, R.; Mackensen, A. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(-) CD8- double-negative regulatory T cells. Blood 2005, 105, 2828–2835. [Google Scholar] [CrossRef] [PubMed]
- Brandt, D.; Hedrich, C.M. TCRalphabeta(+)CD3(+)CD4(-)CD8(-) (double negative) T cells in autoimmunity. Autoimmun. Rev. 2018, 17, 422–430. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, Y.; Sheng, J.; Han, Y.; Yang, Y.; Pan, H.; Yao, J. CD3+CD4-CD8- (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer. Front. Immunol. 2022, 13, 816005. [Google Scholar] [CrossRef]
- Voelkl, S.; Moore, T.V.; Rehli, M.; Nishimura, M.I.; Mackensen, A.; Fischer, K. Characterization of MHC class-I restricted TCRαβ+ CD4−CD8− double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol. Immunother. 2009, 58, 709–718. [Google Scholar] [CrossRef]
- Annunziato, F.; Cosmi, L.; Santarlasci, V.; Maggi, L.; Liotta, F.; Mazzinghi, B.; Parente, E.; Filì, L.; Ferri, S.; Frosali, F.; et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007, 204, 1849–1861. [Google Scholar] [CrossRef]
- Cosmi, L.; Cimaz, R.; Maggi, L.; Santarlasci, V.; Capone, M.; Borriello, F.; Frosali, F.; Querci, V.; Simonini, G.; Barra, G.; et al. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum. 2011, 63, 2504–2515. [Google Scholar] [CrossRef]
- Sparrow, J.R.; A Parish, C.; Hashimoto, M.; Nakanishi, K. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Investig. Opthalmology Vis. Sci. 1999, 40, 2988–2995. [Google Scholar]
- Holtkamp, G.; Kijlstra, A.; Peek, R.; de Vos, A. Retinal pigment epithelium-immune system interactions: Cytokine production and cytokine-induced changes. Prog. Retin. Eye Res. 2001, 20, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.M. Flow of water between aqueous and vitreous compartments in the rabbit eye. Am. J. Physiol. Physiol. 1987, 252, F104–F108. [Google Scholar] [CrossRef] [PubMed]
- Vinores, S.A.; Kuchle, M.; Derevjaniketal, N.L. Blood-retinal barrier breakdown in retinitis pigmentosa: Light and electron mi-croscopic immunolocalization. Histol. Histopathol. 1995, 10, 913–923. [Google Scholar] [PubMed]
- Caldwell, R.B.; McLaughlin, B.J. Permeability of retinal pigment epithelial cell junctions in the dystrophic rat retina. Exp. Eye Res. 1983, 36, 415–427. [Google Scholar] [CrossRef]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef]
- Arroba, A.I.; Valverde, Á.M. Modulation of microglia in the retina: New insights into diabetic retinopathy. Acta Diabetol. 2017, 54, 527–533. [Google Scholar] [CrossRef]
- Cuenca, N.; Fernández-Sánchez, L.; Campello, L.; Maneu, V.; De la Villa, P.; Lax, P.; Pinilla, I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog. Retin. Eye Res. 2014, 43, 17–75. [Google Scholar] [CrossRef]
- Peng, B.; Xiao, J.; Wang, K.; So, K.-F.; Tipoe, G.L.; Lin, B. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J. Neurosci. 2014, 34, 8139–8150. [Google Scholar] [CrossRef]
- Sohn, J.H.; Kaplan, H.J.; Suk, H.J.; Bora, P.S.; Bora, N.S. Chronic low level complement activation within the eye is controlled by intraocular complement regulatory proteins. Investig. Opthalmology Vis. Sci. 2000, 41, 3492–3502. [Google Scholar]
- Marmor, M.F.; Fulton, A.B.; Holder, G.E.; Miyake, Y.; Brigell, M.; Bach, M. International Society for Clinical Electrophysiology of Vision. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc. Ophthalmol. 2009, 118, 69–77. [Google Scholar] [CrossRef]
RP Group | Control Group | |
---|---|---|
Total number of patients | N = 12 (N = 14 eyes) | N = 9 (N = 9 eyes) |
Median age (years) +/− SD | 57.1 (+/−8.2) | 77.11 (+/−9.8 years) |
Gender (M:F) | 6:6 | 3:6 |
Antigen | Fluorochrome | Clone | Company |
---|---|---|---|
CD16 | FITC | 3G8 | BDBioscience (San Jose, CA, USA) |
CD3 | Pacific Blue | UCHT1 | BDBioscience |
CD8 | PerCP | SK1 | BDBioscience |
CD4 | PE-Cy7 | SK3 | eBioscience™ (Waltham, MA, USA) |
CD14 | APC | MΦP9 | BDBioscience |
CD19 | APC-Cy7 | SJ25C1 | BDBioscience |
Antigen | Fluorochrome | Clone | Company |
---|---|---|---|
IFN-γ | FITC | 25723.11 | BDBioscience |
IL-4 | PE | 3010.211 | BDBioscience |
IL-17 | PerCP-Cy5.5 | eBio64DEC17 | eBioscience™ |
CD3 | Pacific Blue | UCHT1 | BDBioscience |
CD8 | APC-Cy7 | SK1 | BDBioscience |
CD4 | PE-Cy7 | SK3 | eBioscience™ |
CD161 | APC | DX12 | BDBioscience |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacherini, D.; Maggi, L.; Faraldi, F.; Sodi, A.; Vannozzi, L.; Mazzoni, A.; Capone, M.; Virgili, G.; Vicini, G.; Falsini, B.; et al. CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation. Int. J. Mol. Sci. 2024, 25, 13163. https://doi.org/10.3390/ijms252313163
Bacherini D, Maggi L, Faraldi F, Sodi A, Vannozzi L, Mazzoni A, Capone M, Virgili G, Vicini G, Falsini B, et al. CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation. International Journal of Molecular Sciences. 2024; 25(23):13163. https://doi.org/10.3390/ijms252313163
Chicago/Turabian StyleBacherini, Daniela, Laura Maggi, Francesco Faraldi, Andrea Sodi, Lorenzo Vannozzi, Alessio Mazzoni, Manuela Capone, Gianni Virgili, Giulio Vicini, Benedetto Falsini, and et al. 2024. "CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation" International Journal of Molecular Sciences 25, no. 23: 13163. https://doi.org/10.3390/ijms252313163
APA StyleBacherini, D., Maggi, L., Faraldi, F., Sodi, A., Vannozzi, L., Mazzoni, A., Capone, M., Virgili, G., Vicini, G., Falsini, B., Cosmi, L., Viggiano, P., Rizzo, S., Annunziato, F., Giansanti, F., & Liotta, F. (2024). CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation. International Journal of Molecular Sciences, 25(23), 13163. https://doi.org/10.3390/ijms252313163