The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences
<p>The histological progression model of ER+ ductal carcinoma and accompanying molecular and nuclear genetic alterations. Initiation of tumor cells from epithelium cells that are confined within the duct characterizes Atypical Ductal Hyperplasia. Ductal in situ carcinoma is the complete filling of the duct with tumor cells. When tumor cells escape the duct and spread, the invasive ductal carcinoma is formed. The molecular changes underlying each stage of progression are comprehensively depicted, highlighting key alterations that drive the transition from normal epithelium to invasive ductal carcinoma.</p> "> Figure 2
<p>Germline and somatic mitochondrial DNA alterations/polymorphisms associated with breast cancer. The images were adapted from Biorender.com and modified as necessary. “-White” represents the mutations prevalent predominantly in the White American populations. (<b>Left)</b>: Represents germline mtDNA single nucleotide mutations/polymorphisms associated with breast cancer. Mutations were reported in the control, RNR1, RNR2, tRNA for isoleucine (I), <span class="html-italic">ND2, CO1, CO2</span>, <span class="html-italic">ATP6, CO3, ND3, ND4, ND5,</span> and <span class="html-italic">ND6</span> regions. (<b>Right)</b>: Represents somatic mtDNA single nucleotide mutations associated with breast cancer. Mutations are reported in the RNR2, <span class="html-italic">ND1</span>, tRNA for isoleucine (I), tRNA for tryptophan [W], <span class="html-italic">CO1</span>, <span class="html-italic">CO2</span>, <span class="html-italic">ATP6</span>, <span class="html-italic">CO3</span>, <span class="html-italic">ND4</span>, <span class="html-italic">ND5</span>, and <span class="html-italic">CYTB</span> regions. HSP: H strand promoter; LSP: Light strand promoter; ND: NADH dehydrogenase; CYTB: Cytochrome B; CO: Cytochrome c oxidase; ATP6: ATP synthase F0 subunit 6; ATP8: ATP synthase F0 subunit 8; MT: Mitochondrial; RC: Respiratory complex.</p> "> Figure 3
<p>Strategy for the development of minimally invasive mtDNA based biomarker tools for early detection of breast cancer. The mitochondria derived extracellular vesicles (EVs) harboring mutated mtDNA enter the bloodstream. Blood is drawn from the patient and processed to isolate EVs, which are then subjected to mtDNA enrichment. The enriched mtDNA is analyzed through mitochondrial whole genome sequencing and quantified using PCR to identify mtDNA based biomarkers of breast cancer. This noninvasive approach could facilitate early detection, monitoring, and therapeutic planning in breast cancer patients.</p> "> Figure 4
<p>This figure demonstrates the most prevalent microbial families and genera found in breast tumors of White American and Black American women. Microbial composition varies between these populations, as shown by the distinct genera and families listed for each. Data are based on studies exploring microbiome diversity in breast cancer across racial groups.</p> ">
Abstract
:1. Introduction
2. Epidemiology and Risk Factors of Breast Cancer and Racial Divergence
3. The Current Paradigms of Breast Cancer Diagnosis and Treatment
3.1. Breast Cancer Diagnosis
3.2. Breast Cancer Treatment
4. Histopathologic and Molecular Subtypes of Breast Cancer
4.1. Histopathologic Subtypes of Breast Cancer
4.2. Molecular Subtypes of Breast Cancer
5. Histopathological and Molecular Progression Pattern of Breast Cancer
5.1. Histological Progression of Ductal Breast Carcinoma
5.2. Histological Progression of Lobular Breast Carcinoma
5.3. Molecular Progression Pattern of Breast Cancer
6. The Pattern of Nuclear Genetic Alterations in Breast Cancer and Racial Differences
7. Mitochondrial Genetic Heterogeneity in Breast Cancer Subtypes and Racial Divergence
8. Epigenetic Alteration Signatures of Breast Cancer Subtypes in Racially Disparate Populations
9. Microbiome Alteration Pattern in Breast Cancer Subtypes and Their Racial Distribution
10. Future Perspective
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Breast Cancer Facts & Figures 2022–2024; American Cancer Society: New York, NY, USA, 2022. [Google Scholar]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Mehak, S.; Ashraf, M.U.; Zafar, R.; Alghamdi, A.M.; Alfakeeh, A.S.; Alassery, F.; Hamam, H.; Shafiq, M. Automated Grading of Breast Cancer Histopathology Images Using Multilayered Autoencoder. Comput. Mater. Contin. 2021, 71, 3407–3423. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef]
- Beňačka, R.; Szabóová, D.; Guľašová, Z.; Hertelyová, Z.; Radoňák, J. Classic and New Markers in Diagnostics and Classification of Breast Cancer. Cancers 2022, 14, 5444. [Google Scholar] [CrossRef]
- Fakhri, N.; Chad, M.A.; Lahkim, M.; Houari, A.; Dehbi, H.; Belmouden, A.; El Kadmiri, N. Risk factors for breast cancer in women: An update review. Med. Oncol. 2022, 39, 197. [Google Scholar] [CrossRef]
- Fortner, R.T.; Sisti, J.; Chai, B.; Collins, L.C.; Rosner, B.; Hankinson, S.E.; Tamimi, R.M.; Eliassen, A.H. Parity, breastfeeding, and breast cancer risk by hormone receptor status and molecular phenotype: Results from the Nurses’ Health Studies. Breast Cancer Res. 2019, 21, 40. [Google Scholar] [CrossRef]
- Shin, H.-C.; Lee, H.-B.; Yoo, T.-K.; Kim, R.N.; Park, B.; Yoon, K.-A.; Park, C.; Lee, E.S.; Moon, H.-G.; Noh, D.-Y.; et al. Detection of Germline Mutations in Breast Cancer Patients with Clinical Features of Hereditary Cancer Syndrome Using a Multi-Gene Panel Test. Cancer Res. Treat. 2020, 52, 697–713. [Google Scholar] [CrossRef]
- Tzeng, A.; Sangwan, N.; Jia, M.; Liu, C.-C.; Keslar, K.S.; Downs-Kelly, E.; Fairchild, R.L.; Al-Hilli, Z.; Grobmyer, S.R.; Eng, C. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 2021, 13, 60. [Google Scholar] [CrossRef]
- Charan, M.; Verma, A.K.; Hussain, S.; Misri, S.; Mishra, S.; Majumder, S.; Ramaswamy, B.; Ahirwar, D.; Ganju, R.K. Molecular and Cellular Factors Associated with Racial Disparity in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 5936. [Google Scholar] [CrossRef]
- Sparano, J.A.; Brawley, O.W. Deconstructing Racial and Ethnic Disparities in Breast Cancer. JAMA Oncol. 2021, 7, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Stringer-Reasor, E.M.; Elkhanany, A.; Khoury, K.; Simon, M.A.; Newman, L.A. Disparities in Breast Cancer Associated with African American Identity. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, e29–e46. [Google Scholar] [CrossRef] [PubMed]
- Tennen, R.I.; Laskey, S.B.; Koelsch, B.L.; McIntyre, M.H.; Tung, J.Y. Identifying Ashkenazi Jewish BRCA1/2 founder variants in individuals who do not self-report Jewish ancestry. Sci. Rep. 2020, 10, 7669. [Google Scholar] [CrossRef] [PubMed]
- Khorshid Shamshiri, A.; Afzaljavan, F.; Alidoust, M.; Taherian, V.; Vakili, F.; Moezzi, A.; Shandiz, F.H.; Farrokh, D.; Pasdar, A. ESR1 gene variants, haplotypes and diplotypes may influence the risk of breast cancer and mammographic density. Mol. Biol. Rep. 2020, 47, 8367–8375. [Google Scholar] [CrossRef]
- Wang, F.; Moon, W.; Letsou, W.; Sapkota, Y.; Wang, Z.; Im, C.; Baedke, J.L.; Robison, L.; Yasui, Y. Genome-Wide Analysis of Rare Haplotypes Associated with Breast Cancer Risk. Cancer Res. 2023, 83, 332–345. [Google Scholar] [CrossRef]
- Torres, C.G.P.; Barrios-Rodríguez, R.; Muñoz-Bravo, C.; Toledo, E.; Dierssen, T.; Jiménez-Moleón, J.J. Mediterranean diet and risk of breast cancer: An umbrella review. Clin. Nutr. 2023, 42, 600–608. [Google Scholar] [CrossRef]
- Yao, Y. Mediterranean diet: Fighting breast cancer naturally: A review. Medicine 2024, 103, e38743. [Google Scholar] [CrossRef]
- Kamal, A.M.; Sakorikar, T.; Pal, U.M.; Pandya, H.J. Engineering Approaches for Breast Cancer Diagnosis: A Review. IEEE Rev. Biomed. Eng. 2023, 16, 687–705. [Google Scholar] [CrossRef]
- Lee, Y.; Ni, J.; Beretov, J.; Wasinger, V.C.; Graham, P.; Li, Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol. Cancer 2023, 22, 33. [Google Scholar] [CrossRef]
- Hadebe, B.; Harry, L.; Ebrahim, T.; Pillay, V.; Vorster, M. The Role of PET/CT in Breast Cancer. Diagnostics 2023, 13, 597. [Google Scholar] [CrossRef]
- Mahmood, T.; Li, J.; Pei, Y.; Akhtar, F.; Rehman, M.U.; Wasti, S.H. Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach. PLoS ONE 2022, 17, e0263126. [Google Scholar] [CrossRef] [PubMed]
- Caumo, F.; Montemezzi, S.; Romanucci, G.; Brunelli, S.; Bricolo, P.; Cugola, L.; Gennaro, G. Repeat Screening Outcomes with Digital Breast Tomosynthesis Plus Synthetic Mammography for Breast Cancer Detection: Results from the Prospective Verona Pilot Study. Radiology 2021, 298, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Aminolroayaei, F.; Shahbazi-Gahrouei, S.; Khorasani, A.; Shahbazi-Gahrouei, D. A Review of Imaging Methods and Recent Nanoparticles for Breast Cancer Diagnosis. Information 2024, 15, 10. [Google Scholar] [CrossRef]
- Joseph, S.; Singh, E. Nuclear Medicine PET/CT Breast Cancer Assessment, Protocols, and Interpretation. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK570617/ (accessed on 14 September 2024).
- Sardanelli, F.; Magni, V.; Rossini, G.; Kilburn-Toppin, F.; Healy, N.A.; Gilbert, F.J. The paradox of MRI for breast cancer screening: High-risk and dense breasts—Available evidence and current practice. Insights Imaging 2024, 15, 96. [Google Scholar] [CrossRef] [PubMed]
- Coffey, K.; Jochelson, M.S. Contrast-enhanced mammography in breast cancer screening. Eur. J. Radiol. 2022, 156, 110513. [Google Scholar] [CrossRef]
- Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.-L.; Pollack, E.; Mollura, D.J.; Mullen, L.A.; Harvey, S.C. Ultrasound for Breast Cancer Detection Globally: A Systematic Review and Meta-Analysis. J. Glob. Oncol. 2019, 5, 1–17. [Google Scholar] [CrossRef]
- Barba, D.; León-Sosa, A.; Lugo, P.; Suquillo, D.; Torres, F.; Surre, F.; Trojman, L.; Caicedo, A. Breast cancer, screening and diagnostic tools: All you need to know. Crit. Rev. Oncol. Hematol. 2021, 157, 103174. [Google Scholar] [CrossRef]
- Gwak, H.; Woo, S.S.; Oh, S.J.; Kim, J.Y.; Shin, H.-C.; Youn, H.J.; Chun, J.W.; Lee, D.; Kim, S.H. A Comparison of the Prognostic Effects of Fine Needle Aspiration and Core Needle Biopsy in Patients with Breast Cancer: A Nationwide Multicenter Prospective Registry. Cancers 2023, 15, 4638. [Google Scholar] [CrossRef]
- Weitz, P.; Valkonen, M.; Solorzano, L.; Carr, C.; Kartasalo, K.; Boissin, C.; Koivukoski, S.; Kuusela, A.; Rasic, D.; Feng, Y.; et al. A Multi-Stain Breast Cancer Histological Whole-Slide-Image Data Set from Routine Diagnostics. Sci. Data 2023, 10, 562. [Google Scholar] [CrossRef]
- Naik, N.; Madani, A.; Esteva, A.; Keskar, N.S.; Press, M.F.; Ruderman, D.; Agus, D.B.; Socher, R. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H & E stains. Nat. Commun. 2020, 11, 5727. [Google Scholar]
- Nourieh, M.; Vibert, R.; Saint-Ghislain, M.; Cyrta, J.; Vincent-Salomon, A. Next-generation sequencing in breast pathology: Real impact on routine practice over a decade since its introduction. Histopathology 2023, 82, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Beadnell, T.C.; Scheid, A.D.; Vivian, C.J.; Welch, D.R. Roles of the mitochondrial genetics in cancer metastasis: Not to be ignored any longer. Cancer Metastasis Rev. 2018, 37, 615. [Google Scholar] [CrossRef] [PubMed]
- Burguin, A.; Diorio, C.; Durocher, F. Breast Cancer Treatments: Updates and New Challenges. J. Pers. Med. 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Trayes, K.P.; Cokenakes, S.E.H. Breast Cancer Treatment. Am. Fam. Physician 2021, 104, 171–178. [Google Scholar]
- Kouwenberg, C.A.E.; de Ligt, K.M.; Kranenburg, L.W.; Rakhorst, H.M.; de Leeuw, D.M.; Siesling, S.; Busschbach, J.J.; Mureau, M.A.M.M. Long-Term Health-Related Quality of Life after Four Common Surgical Treatment Options for Breast Cancer and the Effect of Complications: A Retrospective Patient-Reported Survey among 1871 Patients. Plast. Reconstr. Surg. 2020, 146, 1–13. [Google Scholar] [CrossRef]
- Kerr, A.J.; Dodwell, D.; McGale, P.; Holt, F.; Duane, F.; Mannu, G.; Darby, S.C.; Taylor, C.W. Adjuvant and neoadjuvant breast cancer treatments: A systematic review of their effects on mortality. Cancer Treat. Rev. 2022, 105, 102375. [Google Scholar] [CrossRef]
- Lorentzen, T.; Heidemann, L.N.; Möller, S.; Bille, C. Impact of neoadjuvant chemotherapy on surgical complications in breast cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2022, 48, 44–52. [Google Scholar] [CrossRef]
- Yu, K.D.; Ye, F.G.; He, M.; Fan, L.; Ma, D.; Mo, M.; Wu, J.; Liu, G.Y.; Di, G.H.; Zeng, X.H.; et al. Effect of Adjuvant Paclitaxel and Carboplatin on Survival in Women with Triple-Negative Breast Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1390–1396. [Google Scholar] [CrossRef]
- Berkowitz, M.J.; Thompson, C.K.; Zibecchi, L.T.; Lee, M.K.; Streja, E.; Berkowitz, J.S.; Wenziger, C.M.; Baker, J.L.; DiNome, M.L.; Attai, D.J. How patients experience endocrine therapy for breast cancer: An online survey of side effects, adherence, and medical team support. J. Cancer Surviv. 2021, 15, 29–39. [Google Scholar] [CrossRef]
- Dvir, K.; Giordano, S.; Leone, J.P. Immunotherapy in Breast Cancer. Int. J. Mol. Sci. 2024, 25, 7517. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Thomas, S.; Munster, P. Immunotherapy in breast cancer: A clinician’s perspective. J. Natl. Cancer Cent. 2021, 1, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Henriques, B.; Mendes, F.; Martins, D. Immunotherapy in Breast Cancer: When, How, and What Challenges? Biomedicines 2021, 9, 1687. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Garber, J.E. PARP inhibition in breast cancer: Progress made and future hopes. NPJ Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef]
- Dent, S.F.; Morse, A.; Burnette, S.; Guha, A.; Moore, H. Cardiovascular Toxicity of Novel HER2-Targeted Therapies in the Treatment of Breast Cancer. Curr. Oncol. Rep. 2021, 23, 128. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, S.; Xin, Q.; Zhang, Y.; Wang, K.; Li, M. Recent progress of CDK4/6 inhibitors’ current practice in breast cancer. Cancer Gene Ther. 2024, 31, 1283–1291. [Google Scholar] [CrossRef]
- Taurin, S.; Alkhalifa, H. Breast cancers, mammary stem cells, and cancer stem cells, characteristics, and hypotheses. Neoplasia 2020, 22, 663–678. [Google Scholar] [CrossRef]
- Saad, H.A.; Baz, A.; Riad, M.; Eraky, M.E.; El-Taher, A.; Farid, M.I.; Sharaf, K.; Said, H.E.M.; Ibrahim, L.A. Tumor microenvironment and immune system preservation in early-stage breast cancer: Routes for early recurrence after mastectomy and treatment for lobular and ductal forms of disease. BMC Immunol. 2024, 25, 9. [Google Scholar]
- Tabár, L.; Dean, P.B.; Tucker, F.L.; Yen, A.M.F.; Fann, J.C.Y.; Lin, A.T.Y.; Smith, R.A.; Duffy, S.W.; Chen, T.H.H. Breast cancers originating from the terminal ductal lobular units: In situ invasive acinar adenocarcinoma of the breast, AAB. Eur. J. Radiol. 2022, 152, 110323. [Google Scholar] [CrossRef]
- Wetstein, S.C.; Onken, A.M.; Luffman, C.; Baker, G.M.; Pyle, M.E.; Kensler, K.H.; Liu, Y.; Bakker, B.; Vlutters, R.; van Leeuwen, M.B.; et al. Deep learning assessment of breast terminal duct lobular unit involution: Towards automated prediction of breast cancer risk. PLoS ONE 2020, 15, e0231653. [Google Scholar] [CrossRef]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2021, 3, 12–24. [Google Scholar] [CrossRef]
- Rakha, E.; Toss, M.; Quinn, C. Specific cell differentiation in breast cancer: A basis for histological classification. J. Clin. Pathol. 2022, 75, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.G.D.; Otoni, K.M. Histological and molecular classification of breast cancer: What do we know? Mastology 2020, 30, e20200024. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Luo, M.; Huang, J.; Zhang, K.; Zheng, S.; Zhang, S.; Zhou, J. Progression from ductal carcinoma in situ to invasive breast cancer: Molecular features and clinical significance. Signal Transduct. Target. Ther. 2024, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Euhus, D.M. Why Breast Cancer Risk Models Fail: The Case of Lobular Carcinoma In Situ. Ann. Surg. Oncol. 2020, 27, 627–629. [Google Scholar] [CrossRef]
- Sokolova, A.; Lakhani, S.R. Lobular carcinoma in situ: Diagnostic criteria and molecular correlates. Mod. Pathol. 2021, 34, 8–14. [Google Scholar] [CrossRef]
- McCart Reed, A.E.; Kalinowski, L.; Simpson, P.T.; Lakhani, S.R. Invasive lobular carcinoma of the breast: The increasing importance of this special subtype. Breast Cancer Res. 2021, 23, 6. [Google Scholar] [CrossRef]
- Abdel-Fatah, T.M.A.; Powe, D.G.; Hodi, Z.; Reis-Filho, J.S.; Lee, A.H.S.; Ellis, I.O. Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: Further evidence to support the concept of low nuclear grade breast neoplasia family. Am. J. Surg. Pathol. 2008, 32, 513–523. [Google Scholar] [CrossRef]
- Brogi, E. The morphologic spectrum of lobular carcinoma in situ (LCIS) observations on clinical significance, management implications and diagnostic pitfalls of classic, florid and pleomorphic LCIS. Virchows Arch. 2022, 481, 823–837. [Google Scholar] [CrossRef]
- Pramod, N.; Nigam, A.; Basree, M.; Mawalkar, R.; Mehra, S.; Shinde, N.; Tozbikian, G.; Williams, N.; Majumder, S.; Ramaswamy, B. Comprehensive Review of Molecular Mechanisms and Clinical Features of Invasive Lobular Cancer. Oncologist 2021, 26, e943–e953. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.Y.; Lee, H.-B.; Lee, Y.J.; Seong, M.-K.; Paik, N.; Park, W.-C.; Park, S.; Jung, S.P.; Bae, S.Y.; et al. Characteristics and prognosis of 17 special histologic subtypes of invasive breast cancers according to World Health Organization classification: Comparative analysis to invasive carcinoma of no special type. Breast Cancer Res. Treat. 2020, 184, 527–542. [Google Scholar] [CrossRef]
- Cobb, A.N.; Czaja, R.; Jorns, J.; Cortina, C.S. Breast Cancer Subtypes: Clinicopathologic Features and Treatment Considerations. Curr. Breast Cancer Rep. 2024, 16, 150–160. [Google Scholar] [CrossRef]
- Jenkins, S.; Kachur, M.E.; Rechache, K.; Wells, J.M.; Lipkowitz, S. Rare Breast Cancer Subtypes. Curr. Oncol. Rep. 2021, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Molecular Classification of Breast Cancer: Relevance and Challenges. Arch. Pathol. Lab. Med. 2022, 147, 46–51. [Google Scholar] [CrossRef]
- Hung, S.-K.; Yang, H.-J.; Lee, M.-S.; Liu, D.-W.; Chen, L.-C.; Chew, C.-H.; Lin, C.-H.; Lee, C.-H.; Li, S.-C.; Hong, C.-L.; et al. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: A propensity-score-matched cohort study. Breast Cancer Res. 2023, 25, 149. [Google Scholar] [CrossRef]
- Di Palma, S.; Koliou, P.; Simonovic, A.; Costa, D.; Faulkes, C.; Kobutungi, B.; Paterson, F.; Horsnell, J.D.; Pakzad, F.; Irvine, T.; et al. Breast Cancer Molecular Subtyping in Practice: A Real-World Study of the APIS Breast Cancer Subtyping Assay in a Consecutive Series of Breast Core Biopsies. Int. J. Mol. Sci. 2024, 25, 2616. [Google Scholar] [CrossRef]
- Sadeghalvad, M.; Mohammadi-Motlagh, H.R.; Rezaei, N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res. Treat. 2021, 185, 261–279. [Google Scholar] [CrossRef]
- Ilić, I.; Cvetković, J.; Ilić, R.; Cvetković, L.; Milićević, A.; Todorović, S.; Ranđelović, P. Differences in Histological Subtypes of Invasive Lobular Breast Carcinoma According to Immunohistochemical Molecular Classification. Diagnostics 2024, 14, 660. [Google Scholar] [CrossRef]
- Danzinger, S.; Hielscher, N.; Izsó, M.; Metzler, J.; Trinkl, C.; Pfeifer, C.; Tendl-Schulz, K.; Singer, C.F. Invasive lobular carcinoma: Clinicopathological features and subtypes. J. Int. Med. Res. 2021, 49, 03000605211017039. [Google Scholar] [CrossRef]
- Bergeron, A.; MacGrogan, G.; Bertaut, A.; Ladoire, S.; Arveux, P.; Desmoulins, I.; Bonnefoi, H.; Loustalot, C.; Auriol, S.; Beltjens, F.; et al. Triple-negative breast lobular carcinoma: A luminal androgen receptor carcinoma with specific ESRRA mutations. Mod. Pathol. 2021, 34, 1282–1296. [Google Scholar] [CrossRef]
- Yang, C.; Lei, C.; Zhang, Y.; Zhang, J.; Ji, F.; Pan, W.; Zhang, L.; Gao, H.; Yang, M.; Li, J.; et al. Comparison of Overall Survival Between Invasive Lobular Breast Carcinoma and Invasive Ductal Breast Carcinoma: A Propensity Score Matching Study Based on SEER Database. Front. Oncol. 2020, 10, 590643. [Google Scholar] [CrossRef]
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.S.; Kumar, A.; Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Bombonati, A.; Sgroi, D.C. The molecular pathology of breast cancer progression. J. Pathol. 2011, 223, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Bart, J.; Tan, L.P.; Platteel, I.; van der Sluis, T.; Huitema, S.; Harms, G.; Fu, L.; Hollema, H.; Berg, A.V.D. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 2009, 9, 163. [Google Scholar] [CrossRef]
- Simpson, P.T.; Gale, T.; Reis-Filho, J.S.; Jones, C.; Parry, S.; Sloane, J.P.; Hanby, A.; Pinder, S.E.; Lee, A.H.; Humphreys, S.; et al. Columnar cell lesions of the breast: The missing link in breast cancer progression? A morphological and molecular analysis. Am. J. Surg. Pathol. 2005, 29, 734–746. [Google Scholar] [CrossRef]
- Flat Epithelial Atypia and Risk of Breast Cancer: A Mayo Cohort Study—Said—2015—Cancer—Wiley Online Library. Available online: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29243 (accessed on 4 June 2024).
- The Diagnosis and Management of Pre-Invasive Breast Disease: Flat Epithelial Atypia—Classification, Pathologic Features and Clinical Significance. Available online: https://dash.harvard.edu/handle/1/8097017 (accessed on 4 June 2024).
- Calhoun, B.C.; Sobel, A.; White, R.L.; Gromet, M.; Flippo, T.; Sarantou, T.; Livasy, C.A. Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies. Mod. Pathol. 2015, 28, 670–676. [Google Scholar] [CrossRef]
- Harper, L.K.; Carnahan, M.B.; Bhatt, A.A.; Simmons, C.L.; Patel, B.K.; Downs, E.; Pockaj, B.A.; Yancey, K.; Eversman, S.E.; Sharpe, R.E. Imaging Characteristics of and Multidisciplinary Management Considerations for Atypical Ductal Hyperplasia and Flat Epithelial Atypia: Review of Current Literature. RadioGraphics 2023, 43, e230016. [Google Scholar] [CrossRef]
- Wilson, G.M.; Dinh, P.; Pathmanathan, N.; Graham, J.D. Ductal Carcinoma in Situ: Molecular Changes Accompanying Disease Progression. J. Mammary Gland. Biol. Neoplasia 2022, 27, 101–131. [Google Scholar] [CrossRef]
- Casasent, A.K.; Almekinders, M.M.; Mulder, C.; Bhattacharjee, P.; Collyar, D.; Thompson, A.M.; Jonkers, J.; Lips, E.H.; van Rheenen, J.; Hwang, E.S.; et al. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat. Rev. Cancer 2022, 22, 663–678. [Google Scholar] [CrossRef]
- Wright, J.L.; Rahbar, H.; Obeng-Gyasi, S.; Carlos, R.; Tjoe, J.; Wolff, A.C. Overcoming Barriers in Ductal Carcinoma In Situ Management: From Overtreatment to Optimal Treatment. J. Clin. Oncol. 2022, 40, 225–230. [Google Scholar] [CrossRef]
- van Seijen, M.; Lips, E.H.; Thompson, A.M.; Nik-Zainal, S.; Futreal, A.; Hwang, E.S.; Verschuur, E.; Lane, J.; Jonkers, J.; Rea, D.W.; et al. Ductal carcinoma in situ: To treat or not to treat, that is the question. Br. J. Cancer 2019, 121, 285–292. [Google Scholar] [CrossRef]
- Burrai, G.P.; Baldassarre, V.; Brunetti, B.; Iussich, S.; Maniscalco, L.; Mariotti, F.; Sfacteria, A.; Cocumelli, C.; Grieco, V.; Millanta, F.; et al. Canine and feline in situ mammary carcinoma: A comparative review. Veter. Pathol. 2022, 59, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.J.; Roberts, A.L.; Conlon, E.M.; Mayfield, J.A.; Hagen, M.J.; Crisi, G.M.; Bentley, B.A.; Kane, J.J.; Makari-Judson, G.; Mason, H.S.; et al. Gene expression signature of atypical breast hyperplasia and regulation by SFRP1. Breast Cancer Res. 2019, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Shi, B.; Zhao, F.; Wu, Y.; Jin, F. Systematic analysis of breast atypical hyperplasia-associated hub genes and pathways based on text mining. Eur. J. Cancer Prev. 2019, 28, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Wells, V.A.; Medeiros, I.; Shevtsov, A.; Fishman, M.D.C.; Selland, D.-L.G.; Dao, K.; Rives, A.F.; Slanetz, P.J. Demystifying Breast Disease Markers. RadioGraphics 2023, 43, e220151. [Google Scholar] [CrossRef]
- Tomlinson-Hansen, S.E.; Khan, M.; Cassaro, S. Atypical Ductal Hyperplasia. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK562244/ (accessed on 29 June 2024).
- Kuba, M.G.; Lester, S.C.; Bowman, T.; Stokes, S.M.; Taneja, K.L.; Garber, J.E.; Dillon, D.A. Histopathologic features of breast cancer in Li–Fraumeni syndrome. Mod. Pathol. 2021, 34, 542–548. [Google Scholar] [CrossRef]
- Ang, D.C.; Warrick, A.L.; Shilling, A.; Beadling, C.; Corless, C.L.; Troxell, M.L. Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions. Mod. Pathol. 2014, 27, 740–750. [Google Scholar] [CrossRef]
- Kader, T.; Hill, P.; Rakha, E.A.; Campbell, I.G.; Gorringe, K.L. Atypical ductal hyperplasia: Update on diagnosis, management, and molecular landscape. Breast Cancer Res. 2018, 20, 39. [Google Scholar] [CrossRef]
- Zhang, J.; Aishan, N.; SAAD, B.A.; Chen, Y.; Zhou, J.; Ji, F.; Wang, L. Clinicopathological Features of Breast Cancer Progression: From DCIS to Invasive Ductal Carcinoma. 2023. Available online: https://www.researchsquare.com/article/rs-3410901/v1 (accessed on 29 June 2024).
- Grimm, L.J.; Rahbar, H.; Abdelmalak, M.; Hall, A.H.; Ryser, M.D. Ductal Carcinoma in Situ: State-of-the-Art Review. Radiology 2022, 302, 246–255. [Google Scholar] [CrossRef]
- Hasan, Q.A.; Kumar, R.; Eranki, A. Analysis of single-nucleotide polymorphisms in genes associated with triple-negative breast cancer. Front. Genet. 2022, 13, 1071352. [Google Scholar]
- Byun, J.S.; Singhal, S.K.; Park, S.; Yi, D.I.; Yan, T.; Caban, A.; Jones, A.; Mukhopadhyay, P.; Gil, S.M.; Hewitt, S.M.; et al. Racial Differences in the Association Between Luminal Master Regulator Gene Expression Levels and Breast Cancer Survival. Clin. Cancer Res. 2020, 26, 1905–1914. [Google Scholar] [CrossRef]
- Mendiratta, G.; Ke, E.; Aziz, M.; Liarakos, D.; Tong, M.; Stites, E.C. Cancer gene mutation frequencies for the U.S. population. Nat. Commun. 2021, 12, 5961. [Google Scholar] [CrossRef] [PubMed]
- Marvalim, C.; Datta, A.; Lee, S.C. Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics 2023, 13, 1421–1442. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Stefanovska, B.; Lusque, A.; Dien, A.T.; Garberis, I.; Droin, N.; Le Tourneau, C.; Sablin, M.-P.; Lacroix, L.; Enrico, D.; et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann. Oncol. 2020, 31, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, E.; Bredin, P.; Toomey, S.; Hennessy, B.T.; Furney, S.J. KMT2C and KMT2D aberrations in breast cancer. Trends Cancer 2024, 10, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Anabel Sinberger, L.; Zahavi, T.; Sonnenblick, A.; Salmon-Divon, M. Coexistent ARID1A-PIK3CA mutations are associated with immune-related pathways in luminal breast cancer. Sci. Rep. 2023, 13, 20911. [Google Scholar] [CrossRef]
- Chen, J.W.; Murugesan, K.; Newberg, J.Y.; Sokol, E.S.; Savage, H.M.; Stout, T.J.; Maund, S.L.; Hutchinson, K.E. Comparison of PIK3CA Mutation Prevalence in Breast Cancer Across Predicted Ancestry Populations. JCO Precis. Oncol. 2022, 6, e2200341. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Andrikopoulou, A.; Terpos, E.; Chatzinikolaou, S.; Apostolidou, K.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Dimopoulos, M.A.; Zagouri, F. TP53 mutations determined by targeted NGS in breast cancer: A case-control study. Oncotarget 2021, 12, 2206–2214. [Google Scholar] [CrossRef]
- Abubakar, M.; Guo, C.; Koka, H.; Sung, H.; Shao, N.; Guida, J.; Deng, J.; Li, M.; Hu, N.; Zhou, B.; et al. Clinicopathological and epidemiological significance of breast cancer subtype reclassification based on p53 immunohistochemical expression. NPJ Breast Cancer 2019, 5, 20. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, F.; Byun, J.S.; Dorsey, T.H.; Yfantis, H.G.; Ajao, A.; Liu, H.; Pichardo, M.S.; Pichardo, C.M.; Harris, A.R.; et al. Population-specific Mutation Patterns in Breast Tumors from African American, European American, and Kenyan Patients. Cancer Res. Commun. 2023, 3, 2244–2255. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, G.; Chen, B.; Wang, Y.; Guo, L.; Cao, L.; Ren, C.; Wen, L.; Liao, N. Association between histone lysine methyltransferase KMT2C mutation and clinicopathological factors in breast cancer. Biomed. Pharmacother. 2019, 116, 108997. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, G.; Wang, Y.; Chen, B.; Li, K.; Cao, L.; Ren, C.; Wen, L.; Jia, M.; Mok, H.; et al. Spectrum of MAP3K1 mutations in breast cancer is luminal subtype-predominant and related to prognosis. Oncol. Lett. 2022, 23, 68. [Google Scholar] [CrossRef] [PubMed]
- Gamble, L.A.; McClelland, P.H.; Teke, M.E.; Samaranayake, S.G.; Juneau, P.; Famiglietti, A.L.; Blakely, A.M.; Redd, B.; Davis, J.L. Defining features of hereditary lobular breast cancer due to CDH1 with magnetic resonance imaging and tumor characteristics. NPJ Breast Cancer 2023, 9, 77. [Google Scholar] [CrossRef]
- Girardi, A.; Magnoni, F.; Vicini, E.; Kouloura, A.; La Vecchia, C.; Veronesi, P.; Corso, G. CDH1 germline mutations in families with hereditary lobular breast cancer. Eur. J. Cancer Prev. 2022, 31, 274–278. [Google Scholar] [CrossRef]
- Adib, E.; El Zarif, T.; Nassar, A.H.; Akl, E.W.; Alaiwi, S.A.; Mouhieddine, T.H.; Esplin, E.D.; Hatchell, K.; Nielsen, S.M.; Rana, H.Q.; et al. CDH1 germline variants are enriched in patients with colorectal cancer, gastric cancer, and breast cancer. Br. J. Cancer 2022, 126, 797–803. [Google Scholar] [CrossRef]
- Tierno, D.; Grassi, G.; Scomersi, S.; Bortul, M.; Generali, D.; Zanconati, F.; Scaggiante, B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int. J. Mol. Sci. 2023, 24, 9688. [Google Scholar] [CrossRef]
- Reinhardt, K.; Stückrath, K.; Hartung, C.; Kaufhold, S.; Uleer, C.; Hanf, V.; Lantzsch, T.; Peschel, S.; John, J.; Pöhler, M.; et al. PIK3CA-mutations in breast cancer. Breast Cancer Res. Treat. 2022, 196, 483–493. [Google Scholar] [CrossRef]
- Voutsadakis, I.A. High Mutation Burden in ER-Positive/HER2-Negative/Luminal Breast Cancers. J. Clin. Med. 2022, 11, 1605. [Google Scholar] [CrossRef]
- Sereesongsaeng, N.; McDowell, S.H.; Burrows, J.F.; Scott, C.J.; Burden, R.E. Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Res. 2020, 22, 139. [Google Scholar] [CrossRef]
- Saotome, M.; Poduval, D.B.; Nair, R.; Cooper, M.; Takaku, M. GATA3 Truncation Mutants Alter EMT Related Gene Expression via Partial Motif Recognition in Luminal Breast Cancer Cells. Front. Genet. 2022, 13, 820532. [Google Scholar] [CrossRef]
- Schettini, F.; Prat, A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast 2021, 59, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, F.; Reis-Filho, J.S. Pathogenesis of Triple-Negative Breast Cancer. Annu. Rev. Pathol. 2022, 17, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Rühmkorf, A.; Harbauer, A.B. Role of Mitochondria–ER Contact Sites in Mitophagy. Biomolecules 2023, 13, 1198. [Google Scholar] [CrossRef]
- Gordaliza-Alaguero, I.; Cantó, C.; Zorzano, A. Metabolic implications of organelle–mitochondria communication. EMBO Rep. 2019, 20, e47928. [Google Scholar] [CrossRef]
- Wagner, A.; Kosnacova, H.; Chovanec, M.; Jurkovicova, D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int. J. Mol. Sci. 2022, 23, 7897. [Google Scholar] [CrossRef]
- Wu, Q.; Tsai, H.I.; Zhu, H.; Wang, D. The Entanglement between Mitochondrial DNA and Tumor Metastasis. Cancers 2022, 14, 1862. [Google Scholar] [CrossRef]
- Zakic, T.; Kalezic, A.; Drvendzija, Z.; Udicki, M.; Kapicl, T.I.; Galic, B.S.; Korac, A.; Jankovic, A.; Korac, B. Breast Cancer: Mitochondria-Centered Metabolic Alterations in Tumor and Associated Adipose Tissue. Cells 2024, 13, 155. [Google Scholar] [CrossRef]
- Weerts, M.J.A.; Sleijfer, S.; Martens, J.W.M. The role of mitochondrial DNA in breast tumors. Drug Discov. Today 2019, 24, 1202–1208. [Google Scholar] [CrossRef]
- Yadav, N.; Chandra, D. Mitochondrial DNA mutations and breast tumorigenesis. Biochim. Biophys. Acta 2013, 1836, 336–344. [Google Scholar] [CrossRef]
- Pérez-Amado, C.J.; Tovar, H.; Gómez-Romero, L.; Beltrán-Anaya, F.O.; Bautista-Piña, V.; Dominguez-Reyes, C.; Villegas-Carlos, F.; Tenorio-Torres, A.; Alfaro-Ruíz, L.A.; Hidalgo-Miranda, A.; et al. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting from Germline Heteroplasmy Toward Homoplasmy in Tumors. Front. Oncol. 2020, 10, 572954. [Google Scholar] [CrossRef]
- Jiménez-Morales, S.; Pérez-Amado, C.J.; Langley, E.; Hidalgo-Miranda, A. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Int. J. Oncol. 2018, 53, 923–936. [Google Scholar] [PubMed]
- Tan, D.J.; Bai, R.K.; Wong, L.J.C. Comprehensive Scanning of Somatic Mitochondrial DNA Mutations in Breast Cancer 1. Cancer Res. 2002, 62, 972–976. [Google Scholar] [PubMed]
- Sembene, F.M.M. Mitochondrial DNA Mutations Analysis in Breast, Ovarian and Oral Human Cancers. Jpn. J. Res. 2023, 4, 1–7. [Google Scholar]
- Zhu, W.; Qin, W.; Bradley, P.; Wessel, A.; Puckett, C.L.; Sauter, E.R. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 2005, 26, 145–152. [Google Scholar] [CrossRef]
- Parrella, P.; Xiao, Y.; Fliss, M.; Sanchez-Cespedes, M.; Mazzarelli, P.; Rinaldi, M.; Nicol, T.; Gabrielson, E.; Cuomo, C.; Cohen, D.; et al. Detection of Mitochondrial DNA Mutations in Primary Breast Cancer and Fine-Needle Aspirates1. Cancer Res. 2001, 61, 7623–7626. [Google Scholar]
- Vikramdeo, K.S.; Anand, S.; Sudan, S.K.; Pramanik, P.; Singh, S.; Godwin, A.K.; Singh, A.P.; Dasgupta, S. Profiling mitochondrial DNA mutations in tumors and circulating extracellular vesicles of triple-negative breast cancer patients for potential biomarker development. FASEB Bioadv. 2023, 5, 412–426. [Google Scholar] [CrossRef]
- Costantino, S. Epigenetic mechanisms of vascular dysfunction in obesity and type 2 diabetes. Cardiovasc. Med. 2019, 22. Available online: https://cvm.swisshealthweb.ch/en/article/doi/cvm.2019.02064 (accessed on 30 July 2024). [CrossRef]
- Prabhu, K.S.; Sadida, H.Q.; Kuttikrishnan, S.; Junejo, K.; Bhat, A.A.; Uddin, S. Beyond genetics: Exploring the role of epigenetic alterations in breast cancer. Pathol.—Res. Pract. 2024, 254, 155174. [Google Scholar] [CrossRef]
- Oubaddou, Y.; Oukabli, M.; Fenniche, S.; Elktaibi, A.; Elochi, M.R.; Al Bouzidi, A.; Qmichou, Z.; Dakka, N.; Diorio, C.; Richter, A.; et al. BRCA1 Promoter Hypermethylation in Malignant Breast Tumors and in the Histologically Normal Adjacent Tissues to the Tumors: Exploring Its Potential as a Biomarker and Its Clinical Significance in a Translational Approach. Genes 2023, 14, 1680. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, K.; Kong, X.; Zhang, K.; Wang, L.; Zhang, N.; Chen, Q.; Niu, M.; Li, W.; Zhong, X.; et al. FOXA1 O-GlcNAcylation–mediated transcriptional switch governs metastasis capacity in breast cancer. Sci. Adv. 2023, 9, eadg7112. [Google Scholar] [CrossRef]
- Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients 2020, 12, 761. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Garlapati, C.; Aneja, R. Epigenetic Determinants of Racial Disparity in Breast Cancer: Looking beyond Genetic Alterations. Cancers 2022, 14, 1903. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Higgins, M.J.; Hu, Q.; Khoury, T.; Liu, S.; Ambrosone, C.B.; Gong, Z. DNA methylation differences in noncoding regions in ER negative breast tumors between Black and White women. Front. Oncol. 2023, 13, 1167815. [Google Scholar] [CrossRef] [PubMed]
- Ensenyat-Mendez, M.; Solivellas-Pieras, M.; Llinàs-Arias, P.; Íñiguez-Muñoz, S.; Baker, J.L.; Marzese, D.M.; DiNome, M.L. Epigenetic Profiles of Triple-Negative Breast Cancers of African American and White Females. JAMA Netw. Open 2023, 6, e2335821. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Chen, J.; Douglass, J.; Prasath, V.; Neace, M.; Atrchian, S.; Manjili, M.H.; Shokouhi, S.; Habibi, M. The microbiome and breast cancer: A review. Breast Cancer Res. Treat. 2019, 178, 493–496. [Google Scholar] [CrossRef]
- Amaro-da-Cruz, A.; Rubio-Tomás, T.; Álvarez-Mercado, A.I. Specific microbiome patterns and their association with breast cancer: The intestinal microbiota as a potential biomarker and therapeutic strategy. Clin. Transl. Oncol. 2024. [Google Scholar] [CrossRef]
- Multi-Omics Analysis Elucidates the Relationship Between Intratumor Microbiome and Host Immune Heterogeneity in Breast Cancer|Microbiology Spectrum. Available online: https://journals.asm.org/doi/10.1128/spectrum.04104-23 (accessed on 21 July 2024).
- Filippou, C.; Themistocleous, S.C.; Marangos, G.; Panayiotou, Y.; Fyrilla, M.; Kousparou, C.A.; Pana, Z.-D.; Tsioutis, C.; Johnson, E.O.; Yiallouris, A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int. J. Mol. Sci. 2024, 25, 1110. [Google Scholar] [CrossRef]
- Bernardo, G.; Le Noci, V.; Di Modica, M.; Montanari, E.; Triulzi, T.; Pupa, S.M.; Tagliabue, E.; Sommariva, M.; Sfondrini, L. The Emerging Role of the Microbiota in Breast Cancer Progression. Cells 2023, 12, 1945. [Google Scholar] [CrossRef]
- Alpuim Costa, D.A.; Nobre, J.G.; Batista, M.V.; Ribeiro, C.; Calle, C.; Cortes, A.; Marhold, M.; Negreiros, I.; Borralho, P.; Brito, M.; et al. Human Microbiota and Breast Cancer—Is There Any Relevant Link? A Literature Review and New Horizons Toward Personalised Medicine. Front. Microbiol. 2021, 12, 584332. [Google Scholar] [CrossRef]
- Banerjee, S.; Wei, Z.; Tian, T.; Bose, D.; Shih, N.N.C.; Feldman, M.D.; Khoury, T.; De Michele, A.; Robertson, E.S. Prognostic correlations with the microbiome of breast cancer subtypes. Cell Death Dis. 2021, 12, 831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, W.; Ren, H.; Xue, R.; Wang, Z.; Wang, Z.; Lv, Q. Mendelian randomization analysis revealed a gut microbiota–mammary axis in breast cancer. Front. Microbiol. 2023, 14, 1193725. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Pierre, J.F.; Makowski, L.; Tolley, E.; Lyn-Cook, B.; Lu, L.; Vidal, G.; Starlard-Davenport, A. Distinct microbial communities that differ by race, stage, or breast-tumor subtype in breast tissues of non-Hispanic Black and non-Hispanic White women. Sci. Rep. 2019, 9, 11940. [Google Scholar] [CrossRef]
- Parida, S.; Siddharth, S.; Xia, Y.; Sharma, D. Concomitant analyses of intratumoral microbiota and genomic features reveal distinct racial differences in breast cancer. NPJ Breast Cancer 2023, 9, 4. [Google Scholar] [CrossRef]
- Thyagarajan, S.; Zhang, Y.; Thapa, S.; Allen, M.S.; Phillips, N.; Chaudhary, P.; Kashyap, M.V.; Vishwanatha, J.K. Comparative analysis of racial differences in breast tumor microbiome. Sci. Rep. 2020, 10, 14116. [Google Scholar] [CrossRef]
Breast Cancer Subtypes | Genetic Signature |
---|---|
Luminal A | Highest frequency of PIK3CA mutation among the 4 subtypes [113] |
TP53 mutations are the second most common mutation in Luminal A after PIK3CA but occur less frequently compared to the other subtypes [98,114] | |
Mutations in CDH1 [114] | |
High expression levels of GATA3 [115] | |
Higher frequency of GATA3 mutation compared to luminal B [116] | |
Mutations in MAP3K1 [108] | |
Luminal B | Mutation in PIK3CA [85] |
Mutations in GATA3 [116] | |
Mutations in MAP3K1 [108] | |
Mutation in TP53 [98] | |
HER2 enriched | Mutations in TP53 [117] |
Mutations in PIK3CA [117] | |
CDH1, MAP3K1, GATA3, and ERBB2 mutations are detected with low frequency [117] | |
Triple-negative breast cancer | The highest frequency of TP53 mutation among the 4 subtypes [98] |
PIK3CA mutations are the second most common mutation in TNBC after TP53 but occur less frequently compared to other subtype types [113,118] | |
PTEN, KMT2C, and RB1 mutations are detected with low frequency [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galappaththi, S.P.L.; Smith, K.R.; Alsatari, E.S.; Hunter, R.; Dyess, D.L.; Turbat-Herrera, E.A.; Dasgupta, S. The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences. Int. J. Mol. Sci. 2024, 25, 13165. https://doi.org/10.3390/ijms252313165
Galappaththi SPL, Smith KR, Alsatari ES, Hunter R, Dyess DL, Turbat-Herrera EA, Dasgupta S. The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences. International Journal of Molecular Sciences. 2024; 25(23):13165. https://doi.org/10.3390/ijms252313165
Chicago/Turabian StyleGalappaththi, Sapthala P Loku, Kelly R. Smith, Enas S. Alsatari, Rachel Hunter, Donna L. Dyess, Elba A. Turbat-Herrera, and Santanu Dasgupta. 2024. "The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences" International Journal of Molecular Sciences 25, no. 23: 13165. https://doi.org/10.3390/ijms252313165
APA StyleGalappaththi, S. P. L., Smith, K. R., Alsatari, E. S., Hunter, R., Dyess, D. L., Turbat-Herrera, E. A., & Dasgupta, S. (2024). The Genomic and Biologic Landscapes of Breast Cancer and Racial Differences. International Journal of Molecular Sciences, 25(23), 13165. https://doi.org/10.3390/ijms252313165